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Abstract 
The generation of fractals and study of the dynamics 
of transcendental function is one of emerging and 
interesting field of research nowadays. We introduce 
in this paper the complex dynamics of sine function of 

the type {sin( ) },nz c where 2n  and applied 

Ishikawa iteration to generate new Relative Superior 
Mandelbrot set and Relative Superior Julia set. Our 
results are different from those existing in the 
literature. 
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1. Introduction 
Extracting qualitative information from data is a 

central goal of experimental science. In dynamical 
systems, for example, the data typically approximate 
an attractor or other invariant set and knowledge of the 
structure of these sets increases our understanding of 
the dynamics. The most qualitative description of an 
object is in terms of its topology — whether or not it is 
connected? Based on this objective, this paper studies 
the dynamical behavior of sine function. 

The study of transcendental function has emerged 
out as discrete dynamical systems in numerical and 
complex analysis. It forms a rich dynamics for well 
known Julia sets and Mandelbrot sets[8].  On the other 
hand, the dynamics of iterated polynomials are one of 
the greatest pioneering work of Doaudy and 
Hubbard[10]. Given a polynomial of degree 2n , the 

most important set is the Julia set J consisting of the 
points z C which have no neighborhood in family 

of iterates, forms a normal family. Specially for the 
polynomials, one can start with the set of points I 
which converge to infinity under iteration (escaping 
points) and its complement /K C I is known as 

filled in Julia sets and it consists of points with 
bounded orbits. 

In other words, the Julia set cJ of the function 

cQ where
2

cQ z c  is either totally disconnected or 

connected. Its counterpart, Mandelbrot set for a family 

cQ is defined as             

        

{ : 0 }c cM c C orbit of under iteration by Q is bounded 
.For | | 2c  , orbit of 0 escapes to so only | | 2c   

is considered. For any n, ( )| (0 ) | 2n
cQ  , then the orbit 

of 0 tends to infinity[8]. 

The key feature of this paper is to show that the sine 
function, which falls under category of transcendental 
function, is an example, where Julia set is all of C . 
There is a great difference between the dynamics of 
polynomials and transcendental functions. Picard’s 
Theorem [21] tells us that for a transcendental 
function f , given any “neighborhood of infinity” 

[{ ;| | }, ]U z z r r R    ( )f U  covers C  with exception 

of at most one point. This is certainly not true for 
polynomials because we find a neighborhood of U so 
that ( )f U U . 

The study of dynamical behavior of the 
transcendental functions were initiated by Fatou[12]. For 
transcendental function, points with unbounded orbits 
are not in Fatou sets but they must lie in Julia sets. 
Attractive points of a function have a basin of attraction, 
which may be disconnected. A point z  in Julia for 
cosine function has an orbit that satisfies | Im | 50z   
A Julia set thus, satisfies the following properties: 

(i) Closed 
(ii) Nonempty 
(iii) Forward invariant t(If ( )z J F ,  

     then ( ) ( )F z J F , where F  is the function). 

(iv) Backward invariant 
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(v) Equal to the closure of the set of repelling 
cycles of F . 

On the other hand, Fatou Set is the complement 
set of Julia set, also stated as stable set.  Attracting 
cycles and their basins of attraction lie in the Fatou set, 
since iterates here tend to cycle and thus forms a 
normal family. 
Thus, the iteration of complex analytic function F  
decompose the complex plane into two disjoint sets 
 
1. Stable Fatou sets on which the iterates are well 

behaved. 
2. Julia sets on which the map is chaotic. 

In trigonometric function, ( ) sinS z z , 0 is 

defined as fixed point for S . If 0x R , then 

either
0( ) 0S x   or 0( ) 0nS x  . On the other hand, 

points on the imaginary axis have orbits that tend to 
infinity since sin( ) sin( )iy i hy . Sine and cosine 

functions are thus declared as “Topologically 
complete” [15 ]. 

The fixed point in topology, 0z z is declared 

as 

(i) Attracting if 00 | ( ) | 1F z  . 

(ii) Superattracting if 0( ) 0F z   

(iii) Repelling if 0| ( ) | 1F z   

(iv) Neutral if 0
0

2( ) iF z e    

If 0  is rational, then 0z is rationally 

indifferent or parabolic, otherwise 0z is irrationally 

indifferent. For ( ) sinS z z , then 0 is rationally 

indifferent fixed point for S . There are two attracting 
petals along the real axis.  Orbits on the imaginary axis 
leave a neighborhood of 0, so the orbits tend to 
infinity. 
 The fixed point 0 for ( ) sinS z z also 

satisfies (0) 1S   . Orbits on the real axis tend to 0, 

but on the imaginary axis tends to infinity. We cannot 
have uniform convergence in any neighborhood of 0.  

 The dynamics of sine function as revealed in the 
past literature studies that the points that converge to   
under iteration are organized in the form of rays. It is 
well known that the set of escaping points is an open 
neighborhood of , which can be parameterized by 
dynamic rays. For the entire transcendental functions, the 
point  is an essential singularity (rather than super 
attracting point). Ereneko[11] studied that for every 
entire transcendental functions, the set of escaping points 
is always non-empty. His query was answered in an 

affirmative way by R. L. Devaney[5,6 &7], for the 
special case of Exponential function, where every 
escaping point can be connected to , along with unique 
curve running entirely through the escaping points. 

  A dynamic ray is connected component of 
escaping set, removing the landing points. It turns out to 
be union of all uncountable many dynamic rays, having 
Hausdroff dimension equal to one. However by a result 
of McMullen[15 ] the set of escaping points of a cosine 
family has an infinite planar Lesbegue measure. 
Therefore the entire measure of escaping points sits in 
the landing points of those rays which land at the 
escaping points.  

In this past literature the sine function was 
considered of the following forms: 

(i) sin( )nz c ,where 2n   

(ii) ( ) ( ) / 2izizf z e e    

We are using in our paper sine function of the type 

{sin( ) },nz c where 2n  and applied Relative 

Superior Ishikawa iterates to develop fractal images of 
this transcendental function. Escape criteria of 
polynomials are used to generate Relative Superior 
Mandelbrot Sets and Relative Superior Julia Sets. Our 
results are different from existing results in literature. 

2. Preliminaries 
The  process  of generating  fractal  images from 

sin( )nz z c   is similar  to  the  one employed  

for the self-squared  function[17].  Briefly, this process 
consists of iterating this function up to N times. 

Starting from a value 0z  we obtain 1, 2 , 3, 4 , ...z z z z by 

applying the transformation sin( )nz z c  . 

 
Definition2.1:  Ishikawa Iteration [13]: Let X be a 
subset of real or complex numbers and :f X X  

for 0x X , we have the sequences{ }nx and { }ny  in 

X in the following manner: 

( ) (1 )n n n n ny s f x s x     

                    1 ( ) (1 )n n n n nx s f y s x     

where 0 1ns  , 0 1ns  and  ns &  ns are 

both convergent to non zero number. 
 
Definition 2.2[4, 18]: The sequences nx and 

 ny constructed above is called Ishikawa sequences of 

iterations or Relative Superior sequences of iterates. 
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We denote it by 0( , , , )n nRSO x s s t . Notice that 

0( , , , )n nRSO x s s t  with ns =1 is 0( , , )nSO x s t  i.e. 

Mann’s orbit and if we place 1n ns s   then 

0( , , , )n nRSO x s s t  reduces to
0( , )O x t . 

           We remark that Ishikawa orbit 

0( , , , )n nRSO x s s t with 1/ 2ns   is relative 

superior orbit. 

Now we define Mandelbrot sets for function with 
respect to Ishikawa iterates. We call them as Relative 
Superior Mandelbrot sets. 

Definition 2.3[4, 18]: Relative Superior Mandelbrot 

set RSM for the function of the form ( ) n
cQ z z c  , 

where n = 1, 2, 3, 4… is defined as the collection of 
c C for which the orbit of 0 is bounded i.e. 

{ : (0) : 0,1,2...}k
cRSM c C Q k   is bounded. 

 In functional dynamics, we have existence of 
two different types of points. Points that leave the 
interval after a finite number are in stable set of 
infinity. Points that never leave the interval after any 
number of iterations have bounded orbits. So, an orbit 
is bounded if there exists a positive real number, such 
that the modulus of every point in the orbit is less 
than this number. 

             The collection of points that are bounded, i.e. 

there exists M, such that | ( ) |nQ z M , for all n, is 

called as a prisoner set while the collection of points 
that are in the stable set of infinity is called the  
escape set. Hence, the boundary of the prisoner set is 
simultaneously the boundary of escape set and that is 
Julia set for Q. 

Definition 2.4[4, 18]]:  The set of points RSK whose 
orbits are bounded under relative superior iteration of 
the function Q (z) is called Relative Superior Julia 
sets. Relative Superior Julia set of Q is boundary of 
Julia set RSK 
 

3. Generating the fractals: 
 

We have used in this paper escape time criteria of 
Relative Superior Ishikawa iterates for 

function sin( )nz z c  . 

 Escape Criterion for Quadratics: Suppose 
that | | max{| |, 2 / , 2 / }z c s s , then 

| | (1 ) | |n
nz z   and | |nz  as n  .So, 

| | | |z c and | | 2 /z s as well as | | 2 /z s  shows 

the escape criteria for quadratics. 

Escape Criterion for Cubics:  Suppose 
1/2 1/2| | max{| |,(| | 2/ ) ,(| | 2/ ) }z b a s a s    

then| |nz    as n  . This gives an escape 

criterion for cubic polynomials 

General Escape Criterion: Consider 
1/ 1/| | max{| |,(2/ ) ,(2/ ) }n nz c s s then| |nz    

s n  is the escape criterion. (Escape Criterion 
derived in [4, 18]). 

 Note that the initial value 0z  should be 

infinity, since infinity is the critical point 

of cos( )nz z c   . However instead of starting with 

0z = infinity, it is simpler to start with 1z  = c , which 

yields the same result. (A critical point of 

z F(z) c   is a point where ( ) 0F z  ).  

 
4.  Geometry of Relative Superior 
Mandelbrot Sets and Relative Superior Julia 
Sets:  
The fractals generated from the equation 

sin( )nz z c   possesses symmetry along the real 

axis 
 

Relative Superior Mandelbrot Sets: 

 In case of quadratic polynomial, the central 
body is divided into two parts. The body is 
maintaining symmetry along the real axis. 
Secondary lobes are very small initially for 
s = 1, s =1. As the value is changed to 

s =0.3 s =0.7, the central body is divided 
into four parts but the middle part is quite 
larger in comparison to the head and tail. 
Secondary lobes seem to appear larger than 
initial stage. But as the value of the set 
changes to s =0.1, s =0.5, the central body 
gets bifurcated into four parts and size of 
secondary lobes becomes larger.  The fractal 
generated for s =0.1, s =0.5 appears to be in 
the form of a fish.  
 

 In case of Cubic polynomial, the central body 
is divided into two equal parts, each part 
containing one major secondary lobe and 
many minor secondary lobes. The symmetry 
of this body is maintained along both axes. 
For s =0.3 s =0.7, the major secondary 
lobes starts enlarging in its size and also a 
tiny bulb seems to occur along the real axis. 
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Satellites type structures are observed around 
the main body maintained in symmetry. As 
the value of relative Superior Mandelbrot set 
changes to s =0.1, s =0.5, the secondary 
bulbs shows greater enlargement. Satellites 
type structures are observed more in number 
around the main body maintained in 
symmetry along the both axes. 
 

 In case of Biquadratic polynomial, the central 
body is divided into three arts, each part 
having one major secondary bulb along with 
large number of minor secondary bulbs. The 
body is maintaining symmetry along the real 
axis. . For s =0.3, s =0.7, the two of the 
major secondary lobes retains their size but 
one of them grows larger in size and 
undergoes bifurcation along the real axis. But 
as the value of relative Superior Mandelbrot 
set changes to s =0.1, s =0.5, the secondary 
bulbs grows up in size while the central body 
shrinks. There occurs appearance of 
bifurcation along all three major secondary 
lobes. One major lobe that exists along the 
real axis shows maximum bifurcation i.e. it is 
divided into three parts.  

Relative Superior Julia Sets: 

 Relative Superior Julia Sets for the 
transcendental function sin( )z appears to 

follow law of having 2n wings.  These sets 
maintained their symmetry along both the 
axes i.e. along real and imaginary axis. 

 The Relative Superior Julia Sets for quadratic 
function is divided into four wings with 
central black body. Its symmetry exists along 
both axes. 

 The Relative Superior Julia Sets for Cubic 
function is divided into six wings having 
reflectional and rotational symmetry, along 
with a larger black region. 

 The Relative Superior Julia Sets for 
Biquadractic function is divided into eight 
wings possessing the reflectional and 
rotational symmetry, along with a large 
escape region. 

 It is also observed from the graphical study of 
fixed points of Relative Superior Julia Sets 
that the convergence for s =0.3, s = 0.7 is 
quite faster for all polynomials in comparison 
to the convergence for s =0.1, s = 0.5. 

5.  Generation of Relative Superior 
Mandelbrot Sets: 
5.1 Mandelbrot Sets of Quadratic function: 

Fig 1: Relative Superior Mandelbrot Set for 
s= s'=1 

 
Fig2: Relative Superior Mandelbrot Set for 

s=0.1, s'=0.5 

 
Fig 3: Relative Superior Mandelbrot Set for s=0.3, 

s'=0.7 

 
5.2 Mandelbrot Sets of Cubic function:  

Fig 1: Relative Superior Mandelbrot Set for 
s= s'=1 

 
Fig2: Relative Superior Mandelbrot Set for 

s=0.1, s'=0.5 
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Fig 3: Relative Superior Mandelbrot Set for 
s=0.3, s'=0.7          

 
     

5.3 Mandelbrot Sets of Biquadratic function:   
 

Fig 1: Relative Superior Mandelbrot Set for s= s'=1  

 
Fig2: Relative Superior Mandelbrot Set for 

s=0.1, s'=0.5 

 
Fig 3: Relative Superior Mandelbrot Set for 

s=0.3, s'=0.7 

 
5.4 Generalization of Relative Superior Mandelbrot 
Set 
Fig1: Relative Superior Mandelbrot Set for s=0.1, 

s'=0.5 n=19 

 

6. Generation of Relative Superior Julia 
Sets: 
6.1 Julia sets of Quadratic function: 

Fig1: Relative Superior Julia Set for s=0.3, s'=0.7 
c=-0.1848425651+0.2453514273i 

 
6.2 Julia Sets of Cubic function:  

Fig1: Relative Superior Julia Set for s=0.3, s'=0.7 
c= 0.06553079165+1.052110021i 

 
6.3 Julia Sets of Biquadratic function:   

Fig1: Relative Superior Julia Set for s=0.3, 
s'=0.7 

c= 0.02380189886-0.06066045312i 

 
 

7. Fixed points: 
7.1 Fixed points of quadratic polynomial 

Table 1: Orbit of F(z) at s=0.1 and s'=0.5 for 
(z0=3934870291+0i) 

 
Number of 
iteration i 

 
|F(z)| 

Number of 
iteration i 

 
|F(z)| 

57.  0.4233 66.  0.4237 
58.  0.4234 67.  0.4237 
59.  0.4234 68.  0.4237 
60.  0.4235 69.  0.4237 
61.  0.4235 70.  0.4237 
62. 0.4236 71.  0.4237
63.  0.4236 72.  0.4237 
64.  0.4236 73.  0.4237 
65.  0.4233 74.  0.4238 
66.  0.4234 75.  0.4238 

Here we skipped 56 iteration and observed that the 
value converges to a fixed point after 73 iterations 
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Figure1.  Orbit of F(z) at s=0.1 and s'=0.5 for 
(z0= -0.3934870291+0i) 

 
Table 2: Orbit of F(z) at s=0.3 and s'=0.7 for 

(z0=-0.1848425651+0.2453514273i) 
Number of 
iteration i 

 
|F(z)| 

Number of 
iteration i 

 
|F(z)| 

13.  0.4384 23.  0.4243 
14.  0.4342 24.  0.4242 
15.  0.4313 25.  0.4241
16.  0.4291 26.  0.424 
17.  0.4276 27.  0.4239 
18.  0.4265 28.  0.4239 
19.  0.4257 29.  0.4239 
20.  0.4252 30.  0.4239 
21.  0.4248 31.  0.4238 
22.  0.4245 32.  0.4238 

Here we skipped 12 iteration and observed that the 
value converges to a fixed point after 30 iterations 

Figure2. Orbit of F(z) at s=0.3 and s'=0.7 for 
(z0=-0.1848425651+0.2453514273i) 

 
7.2 Fixed points of cubic polynomial 

Table 1: Orbit of F(z) at s=0.1 and s'=0.5 for  
(z0= 0.07944042258+0.03670696339i) 

Number of 
iteration i 

 
|F(z)| 

Number of 
iteration i 

 
|F(z)| 

44.  0.4157 54.  0.4162 
45.  0.4158 55.  0.4163 
46.  0.4159 56.  0.4163 
47.  0.4159 57.  0.4163
48.  0.416 58.  0.4163 
49.  0.4161 59.  0.4163 
50.  0.4161 60.  0.4163 
51.  0.4161 61.  0.4163 
52.  0.4162 62.  0.4164 
53.  0.4162 63.  0.4164 

Here we skipped 43 iteration and observed that the 
value converges to a fixed point after 61 iterations 

Figure  1.  Orbit of F(z) at s=0.1 and s'=0.5 for 
 (z0= 0.07944042258+0.03670696339i) 

 
Table 2: Orbit of F(z) at s=0.3 and s'=0.7 for 

(z0 =0.06553079165+1.052110021i) 
Number of 
iteration i 

 
|F(z)| 

Number of 
iteration i 

 
|F(z)| 

1.  0.3072 11.  0.4161 
2.  0.3484 12.  0.4162 
3.  0.3763 13.  0.4163 
4.  0.3935 14.  0.4163 
5.  0.4036 15.  0.4164 
6.  0.4093 16.  0.4164 
7.  0.4125 17.  0.4164 
8.  0.4143 18.  0.4164 
9.  0.4152 19.  0.4164 
10.  0.4158 20.  0.4164 

Here observe that the value converges to a fixed 
point after 14 iterations 

Figure  2.  Orbit of F(z) at s=0.3 and s'=0.7 for 
 (z0 =0.06553079165+1.052110021i) 

 
7.3 Fixed points of Biquadratic polynomial 
Table 1: Orbit of F(z) at s=0.1 and s'=0.5 for  
         (z0= 0.1350789463+0.1340743799i) 
Number of 
iteration i 

 
|F(z)| 

Number of 
iteration i 

 
|F(z)| 

54. 0.4807 64.  0.4811
55.  0.4807 65.  0.4811 
56.  0.4808 66.  0.4811 
57.  0.4808 67.  0.4811 
58.  0.4809 68.  0.4811 
59.  0.4809 69.  0.4811 
60.  0.481 70.  0.4811 
61.  0.481 71.  0.4811 
62.  0.481 72.  0.4812 
63.  0.481 73.  0.4812 

Here we skipped 53 iteration and observed that the 
value converges to a fixed point after 71 iterations 
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Figure  1.  Orbit of F(z) at s=0.1 and s'=0.5 for 
 (z0= 0.1350789463+0.1340743799i) 

 
Table 2: Orbit of F(z) at s=0.3 and s'=0.7 for 

 (z0= 0.02380189886-0.06066045312i) 
Number of 
iteration i 

 
|F(z)| 

Number of 
iteration i 

 
|F(z)| 

6.  0.4033 16.  0.4801 
7.  0.4297 17.  0.4805 
8.  0.4473 18.  0.4807 
9.  0.459 19.  0.4809 
10.  0.4667 20.  0.481
11.  0.4717 21.  0.4811 
12.  0.475 22.  0.4811 
13.  0.4772 23.  0.4811 
14.  0.4786 24.  0.4812 
15.  0.4795 25.  0.4812 

Here we skipped 05 iteration and observed that the 
value converges to a fixed point after 23 iterations 

Figure  2.  Orbit of F(z) at s=0.3 and s'=0.7 for  
(z0 =0.02380189886-0.06066045312i) 

 

8. Conclusion: 
 
In this paper we studied the sine function which is 
one of the members of transcendental family. The 
fixed point 0 for ( ) sinS z z also 

satisfies (0) 1S   . Orbits on the real axis tend to 

0, but on the imaginary axis tends to infinity. 
Relative Superior Julia sets possess 2n wings. The 
surrounding region of the Mandelbrot set appears 
to be an invariant Cantor set in the form of curve 
or “hair” that extends to . The orbit of any point 
on hair tends to infinity under iteration. This 
geometry of hairs appears to be quite similar to 
that of exponential family and hence showed the 

property of transcendental function. On the other 
hand, Julia sets plane represented the region filled 
up of large number of escaping points. 
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