
Framework to measure and maintain the quality of software using the concept
of Code Readability

#1Rambabu P, *2Kumar J, *3Praneeth S,

Abstract

Present day’s software industry is using software
metrics to estimate the complexity of software
systems to find software cost estimation, software
development control, software testing, software
assurance and software maintenance. The
relationship between a simple set of local code
features and human concept of readability can be
derived by collecting the data from 120 human
annotators. This paper presents the concept of code
readability and investigate its relation to software
quality and also a Framework has been developed to
evaluate proposed metrics and apply to the use of
Bug counts, which reduces the complexity of not
capturing or missing even the small parts of the
meaning of the attributes they are being used to
measure.. By predicting the judgment of readability it
can be ensured that , the constructed automated
readability measure is more effective than a human
on average. Hence, this paper strongly satisfies the
three measures of software quality: Changes in the
code, defect log messages, and automated defect
reports.

Keywords

Software Quality, Readability, Snippets, human
Annotators, notations, Classifier.

1. INTRODUCTION
Readability can be defined as a human

judgment of understanding a text. The critical factor
in maintaining the software quality is readability and
the readability of a program is related to its
maintainability. Where the cost of a software product
in the total life cycle the maintenance will consume
around 70%. According to Aggarwal in maintenance
of the software both the source code readability and
documentation readability play a critical role. On
other hand some researchers have noted that the act
of reading code is the most time-consuming

component of all maintenance activities. As of the
modern software engineering, maintaining software
often means evolving software and modifying
existing code. Readability is another important
attributes of software systems that gives substantial
affect on software maintainability. Maintenance of a
less readable source code is more difficult than a
source code which has more readable source code.
Readability Metrics are a family of software metrics
that measure software complexity with taking
readability into considerations. There are several uses
from this automated readability metric like, helps in
writing more readable software to the developers by
quickly identifying code that scores poorly and also it
can monitor and maintain the readability of a code
which support project managers. It can even assist
inspections by helping to target effort at parts of a
program that may need improvement. . It can serve as
a requirement for acceptance. The contributions
which included in this paper are:

A. An automatic software readability metric based on
local features. Our metric correlates strongly with
both human annotators and also external notations of
software quality.

B. A survey of 120 human annotators on 100 code
snippets that forms the basis for our metric. We are
unaware of any published software readability study
of comparable size (12,000 human judgments).

C. A discussion of the features involved in that
metric and their relation to software engineering and
programming language design.

The applications of Readability Metrics indicate the
readability of software systems and help in keeping
the source code readable and maintainable. Finally, it
can be used by other static analyses to rank warnings
or otherwise focus developer attention on sections of
the code that are less readable and thus more likely to
contain bugs.

Kumar J et al, Int. J. Comp. Tech. Appl., Vol 2 (5), 1466-1471

IJCTA | SEPT-OCT 2011
Available online@www.ijcta.com

1466

ISSN:2229-6093

2. RELATED WORK

Many major projects like Linux, Java ,

MySQL and some popular compilers has gained
incredible visibility and validation as open source
model of software .“Many eyes” approach which is a
source model had led to fast evolving, and easy to
configure software that is being used in production
environments by countless commercial enterprises.
However, how exactly (if at all) do consumers of
open source measure the quality and security of any
piece of software to determine if it is a good fit for
their stack? Few would disagree that many eyes
reviewing code is a very good way to reduce the
number of defects. However, no effective yardstick
has been available to measure how good the quality
really is. In this study, we propose a new technique
and framework to measure the quality of software.

This technique leverages technology that
automatically analyzes 100% of the paths through a
given code base, thus allowing a consistent
examination of every possible outcome when running
the resulting software. Using this new approach to
measuring quality, we aim to give visibility into how
various open source projects compare to each other
and suggest a new way to make software better.
Software has transitioned from being considered as a
liability to that of a re-usable asset. This shift in
understanding now requires that software be written
for maintainability (Troy, 1995). Of the software
quality attributes defined by ISO-9126,
maintainability is recognized by many researchers as
having the largest effect on software quality (Troy,
1995). At the 1992 Software Engineering
Productivity conference, a Hewlett- Packard
executive stated that 60 – 80% of their research and
development staff were involved with maintaining 40
– 50 million SLOC (Troy, 1995). Glass (2002) states
that software maintenance consumes from 40 – 80%
of the total software cost, with a mean of 60%.
Boehm and Basili (2001) report a mean of
70%.Spinellis (2003) observes that programmers are
poor at choosing meaningful identifier names
because they find it difficult to concurrently manage
the expression of programming constructs along with
the managing of natural language description, say to
invent identifier names. Slaughter (2006) reports that
80% of software quality programs fail within the first
year and that these failures are not because of poor
measurement techniques but due to cultural
resistance on the part of the programmers and their
management.

The techniques presented in(2011) this paper should
provide an excellent platform for conducting future
readability experiments, especially with respect to
unifying even a very large number of judgments into
an accurate model of readability.

3. BASIC TECHNIQUES AND PROCEDURES

Some of the major techniques which are

used to code readability of software are as follows.
a. Software Quality Measurement.
b. Software Quality Management.
c. Readability Model.
d. Software Verification & Validation.

A. Software Quality Measurement

Historically software quality metrics have
been the measurement of exactly their opposite—that
is, the frequency of software defects or bugs. The
inference was, of course, that quality in software was
the absence of bugs. So, for example, measures of
error density per thousand lines of code discovered
per year or per release were used. Lower values of
these measures implied higher build or release
quality. For example, a density of two bugs per 1,000
lines of code (LOC) discovered per year was
considered pretty good, but this is a very long way
from today's Six Sigma goals.

We will start this article by reviewing some
of the leading historical quality models and metrics to
establish the state of the art in software metrics today
and to develop a baseline on which we can build a
true set of upstream quality metrics for robust
software architecture. Perhaps at this point we should
attempt to settle on definitionof software
architecture as well. Most of the leading writers on
this topic do not define their subject term, assuming
that the reader will construct an intuitive working
definition on the metaphor of computer architecture
or even its earlier archetype, building architecture.

B. Software Quality Management

a. Software Quality Goals and Objectives – A
discussion of how to describe, analyze and evaluate
the quality goals and objectives for programs,
projects, and products.

Kumar J et al, Int. J. Comp. Tech. Appl., Vol 2 (5), 1466-1471

IJCTA | SEPT-OCT 2011
Available online@www.ijcta.com

1467

ISSN:2229-6093

b. Software Quality Management (SQM) Systems
Documentation – An overview of the various SQM
system documents that a company should have in
place and their relationship to each other.

c. Overview of Cost of Quality (COQ) – How to
define, differentiate, and analyze COQ categories
(prevention, appraisal, internal and external failure). ·
Problem Reporting and Corrective Action Procedures

C. Readability Model

We have shown that there is significant
agreement between our groups of annotators on the
relative readability of snippets. However, the
processes that underlie this correlation are unclear. In
this section, we explore the extent to which we can
mechanically predict human readability judgments.
We endeavor to determine which code features are
predictive of readability, and construct a model (i.e.,
an automated Software readability metric) to analyze
other code.

Software Verification & Validation
a. Planning Procedures and Tasks – Overview of
various methods for verification and validation,
including static analysis, structural analysis,
mathematical proof, simulation, and dynamic
analysis.

b. Reviews and Inspections – Overview of the
various types of reviews and inspections, including
desk-checking and inspections.

c. Testing – Overview of the various types of test,
including structural integration, black box and
regression.

4. DESIGNING & IMPLEMENTATION

OF SYSTEM
The Snippet Extractor Eclipse plug-in is a

simple and easy-to-use plug-in for storing and using
code snippets throughout the Eclipse workbench.
Snippet is a programming term for a small region of
re-usable source code, machine code or text.
Ordinarily, these are formally-defined operative units
to incorporate into larger programming modules.
Snippets are often used to clarify the meaning of an
otherwise "cluttered" function, or to minimize the use
of repeated code that is common to other functions.
Snippet management is a feature of some text
editors, program source code editors, IDE’s, and
related software. It allows the user to persist and use
snippets in the course of routine edit operations.

Annotators do the real work of extracting structured
information from unstructured data. We can write our
own annotators, use the annotators available here,
and annotators will give judgment on quality and also
represents feature director for verifying structural
format.

Classifier is used to extract the information from
annotators and feature director then it converts into
human readable format. Co-verity Prevent is an
advanced static software analysis tool designed to
make software more reliable and secure. It relies on a
combination of dataflow analysis, abstraction, and
highly efficient search algorithms that can detect over
40 categories of crash-causing defects while
achieving 100% path coverage.

Figure: 1. the complete data set obtained for this
study. Our metric for readability is derived from

these judgments.

Types of defects detected include memory
leaks, buffer overruns, illegal pointer accesses, use
after frees, concurrency errors and security
vulnerabilities. Co verity Prevent also efficiently
detects hard-to-see bugs that span functions and
modules. Most importantly, no changes to the code or
build are required and the analysis is fast, scaling
linearly with the code size.

Kumar J et al, Int. J. Comp. Tech. Appl., Vol 2 (5), 1466-1471

IJCTA | SEPT-OCT 2011
Available online@www.ijcta.com

1468

ISSN:2229-6093

To measure the readability and to maintain the
quality of the code initially we should check the
code, so a pseudo code is explained in Fig 2 to check
the code and another Pseudo code is displayed in Fig
3 to find the readability of the code.

Figure 2: The Pseudo Code to Check the Code

Figure 3: The Pseudo Code for Readability of Code

5. RESULTS
The following are the screen shots of the system.

Figure 4: Processing of Code and Doc Snippet’s

Figure 5: Generating the code readability check

Kumar J et al, Int. J. Comp. Tech. Appl., Vol 2 (5), 1466-1471

IJCTA | SEPT-OCT 2011
Available online@www.ijcta.com

1469

ISSN:2229-6093

Figure 6: Generating the doc readability check

6. CONCLUSION

In this paper we have presented an automated
readability measure for modeling code readability
based on the judgments of human annotators. And
here, we presented that it is possible to create a
metric that agrees with these annotators as much as
they agree with each other by only considering a
relatively simple set of low-level code features. We
have also observed that readability provides a
significant Level of correlation with more
conventional metrics of software quality, such as
defects, code churn, and self reported Stability.

7.REFERENCES
[1] B.B. Bederson, B. Shneiderman, and M. Wattenberg,
“Ordered and Quantum Treemaps: Making Effective Use
of 2D Space to Display Hierarchies,” ACM Trans.
Graphics, vol. 21, no. 4, pp. 833-854, 2002.
[2] B. Boehm and V.R. Basili, “Software Defect Reduction
Top 10 List,” Computer, vol. 34, no. 1, pp. 135-137, Jan.
2001.
[3] R.P.L. Buse and W.R. Weimer, “A Metric for Software
Readability,” Proc. Int’l Symp. Software Testing and
Analysis, pp. 121-130, 2008.
[4] L.W. Cannon, R.A. Elliott, L.W. Kirchhoff, J.H. Miller,
J.M. Milner, R.W. Mitze, E.P. Schan, N.O. Whittington, H.
Spencer, D. Keppel, and M. Brader, Recommended C Style
and Coding Standards: Revision 6.0, Specialized Systems
Consultants, June 1990.L.L. Giventer, Statistical Analysis
in Public Administration. Jones and Bartlett, 2007.

[5] J. Gosling, B. Joy, and G.L. Steele, The Java Language
Specification.Addison-Wesley, 1996.
[6] R. Gunning, The Technique of Clear Writing. McGraw-
Hill, 1952.
[7] N.J. Haneef, “Software Documentation and Readability:
A Proposed Process Improvement,” ACM SIGSOFT
Software Eng.Notes, vol. 23, no. 3, pp. 75-77, 1998.
[8] A.E. Hatzimanikatis, C.T. Tsalidis, and D.
Christodoulakis,“Measuring the Readability and
Maintainability of Hyperdocuments,”J. Software
Maintenance, vol. 7, no. 2, pp. 77-90, 1995.
[9] G. Holmes, A. Donkin, and I. Witten, “WEKA: A
MachineLearning Workbench,” Proc. Australia and New
Zealand Conf.Intelligent Information Systems, 1994.
[10] D. Hovemeyer and W. Pugh, “Finding Bugs Is Easy,”
ACMSIGPLAN Notices, vol. 39, no. 12, pp. 92-106, 2004.
[11] jUnit.org, “jUnit 4.0 Now Available,”
http://sourceforge.net/forum/forum.php?forum_id=541181,
Feb. 2006.
[12] J.P. Kinciad and E.A. Smith, “Derivation and
Validation of theAutomated Readability Index for Use with
Technical Materials,”Human Factors, vol. 12, pp. 457-464,
1970.
[13] J.C. Knight and E.A. Myers, “Phased Inspections and
TheirImplementation,” ACM SIGSOFT Software Eng.
Notes, vol. 16,no. 3, pp. 29-35, 1991.
[14] R. Kohavi, “A Study of Cross-Validation and
Bootstrap forAccuracy Estimation and Model Selection,”
Proc. Int’l Joint Conf.Artificial Intelligence, vol. 14, no. 2,
pp. 1137-1145, 1995.

AUTHORS

 Mr. Rambabu Pemula received
B.Tech(CSE), M.Tech(SE) from JNTU.He is a
research scholar in field of Software Engineering &
Data Mining .Presently he is working as Assistant
Professor at Nimra Institute of Engineering &
Technology, Ongole , Andhra Pradesh, India. He is
having 5+ years of teaching experience in the field of
Computer Science and Engineering. He can be
reached at rpemula@gmail.com

Kumar Jetti received Bachelors degree
in Computer science engineering from JNTUK,
M.Tech in Computer science engineering from

Kumar J et al, Int. J. Comp. Tech. Appl., Vol 2 (5), 1466-1471

IJCTA | SEPT-OCT 2011
Available online@www.ijcta.com

1470

ISSN:2229-6093

mailto:rpemula@gmail.com�

JNTUK. He is a research scholar in field of Data
Mining & Information Security. He is having
experience of 4 Years in the field of Computer
Science and Engineering, presently working as
Assistant Professor in the department of CSE, CMR
Group of Institutions, Hyderabad, R.R.Dist., A.P,
INDIA. He can be reached at
kumarkanna.j@gmail.com

Praneeth Sajjala received
B.Tech(CSIT), M.Tech(SE) from JNTU.He is a
research scholar in field of Software Engineering &
Networking .Presently he is working as a Asst.Prof at
Jaya Prakash Narayan College Of Engineering,
Mahaboob Nagar, Andhra Pradesh, India. He is
having 3+ years of teaching experience. He can be
reached at sajjala.praneeth@gmail.com

Kumar J et al, Int. J. Comp. Tech. Appl., Vol 2 (5), 1466-1471

IJCTA | SEPT-OCT 2011
Available online@www.ijcta.com

1471

ISSN:2229-6093

mailto:sajjala.praneeth@gmail.com�

