
TEST CASE EFFECTIVENESS OF HIGHER
ORDER MUTATION TESTING

Shalini Kapoor
CSE Deptt, GNI, Mullana

get_shalini@rediffmail.com

Abstract--- Effectiveness means how good a test case is in finding faults. Traditional mutation testing
considers First Order Mutants (FOM) created by injection of a single fault. We focus on Higher Order
Mutants (HOM) and in particular on subsuming HOM. Higher Order Mutants contain more than one fault.
We report in this paper that a strongly subsuming HOM is more effective as it kills all the FOM’s from which
it is constructed thereby reducing testing efforts without loss of effectiveness.

Keywords—Mutation Testing; First order mutants; Higher order mutants

I. INTRODUCTION

Mutants can be classified into two types: First Order
Mutants (FOMs) and Higher Order Mutants (HOMs).
FOMs are generated by applying mutation operators
only once. HOMs are generated by applying mutation
operators more than once. This paper introduces the
concept of subsuming HOMs. A subsuming HOMs is
harder to kill than the FOMs from which it is
constructed. As such, it may be preferable to replace
the FOMs with the single HOM. In particular, the
paper introduces the concept of a strongly subsuming
HOMs. A subsuming HOMs is only killed by a
subset of the intersection of test cases that kill each
FOM from which it is constructed.
 Consider a subsuming,
h, constructed from the FOMs f1... fn. The set of test
cases that kill h also kill each and every FOM f1... fn.
Therefore, h can replace all of the mutants f1... fn
without loss of test effectiveness. The converse does
not hold; there exist test sets that kill all FOMs f1...
fn but which fail to kill h. The FOMs cannot, even
taken collectively, replace the HOM without possible
loss of test effort. This is the sense in which h can be
said to ‘strongly subsume’ f1... fn.

II. CLASSIFICATION OF HIGHER
ORDER MUTANTS

HOMs can be classified in terms of the way that they
are ‘coupled’ and ‘subsuming’, as shown in Figure 1.
In Figure 1, the region area in the central Venn
diagram represents the domain of all HOMs. The
sub-diagrams surrounding the central region illustrate
each category. For sake of simplicity of exposition

these examples illustrate the second order mutant
case; one that assumes that there are two FOMs f1
and f2, and h denotes the HOM constructed from the
FOMs f1 and f2. The two regions depicted by each
sub diagram represent the test sets containing all the
test cases that kill FOMs f1 and f2. The shaded area
represents the test set that contains all test cases that
kill HOM h. The areas of the regions indicate the
proportion of the domain of HOMs for each category.
Following the coupling effect hypothesis, if a test set
that kills the FOMs also contains cases that kill the
HOM, we shall say that the HOM is a ‘coupled
HOM’, otherwise we shall say it is a ‘de-coupled
HOM’. Therefore, in Figure 1, the sub-diagram is a
coupled HOM if it contains an area where the shaded
region overlaps with the unshaded regions. For
example the sub-diagrams (a), (b) and (f). Since the
shaded region from sub-diagrams (c) and (d) do not
overlap with the unshaded regions, (c) and (d) are de-
coupled HOMs. Subdiagram (e) is a special case of a
de-coupled HOM, because there is no test case that
can kill the HOM; there is no overlap, the HOM is an
equivalent mutant.
 Subsuming HOMs, by definition, is harder to kill
than their constituentFOMs. Therefore, in Figure 1,
the subsuming HOMs can be represented as those
where the shaded area is smaller than the area of the
union of the two unshaded regions, such as sub-
diagrams (a), (b) and (c). By contrast, (d), (e) and (f)
are non-subsuming. Furthermore, the subsuming
HOMs can be classified into strongly subsuming
HOMs and weakly subsuming HOMs. By definition,
if a test case kills a strongly subsuming HOM, it
guarantees that its constituent FOMs are killed as
well. Therefore, if the shaded region lies only inside

Shalini Kapoor, Int. J. Comp. Tech. Appl., Vol 2 (5), 1206-1211

IJCTA | SPT-OCT 2011
Available online@www.ijcta.com

1206

ISSN:2229-6093

mailto:get_shalini@rediffmail.com�

the intersection of the two unshaded regions, it is a
strongly subsuming HOM, depicted in (a), otherwise,

it is a weakly subsuming HOM, depicted in (b) &(c).

III. REASONS TO SUPPORT HOM

1) Cost: Work on Mutant Sampling and Selective
Mutation has shown how the number of mutants can
be reduced with only a small impact on test
effectiveness [1], [8], [7], [17].

2) Uncertainty: Work on reducing the impact of
equivalent mutants has reduced, though not
eradicated, this problem [6], [16], [5], [4], [1].
3) Realism: Empirical evidence has been provided
that the faults denoted by mutants do, indeed, overlap
with a class of real faults [16], [12], [5].

Shalini Kapoor, Int. J. Comp. Tech. Appl., Vol 2 (5), 1206-1211

IJCTA | SPT-OCT 2011
Available online@www.ijcta.com

1207

ISSN:2229-6093

IV. PROPOSED WORK

In order to explain Higher Order Mutation Testing
we take the following example.

Original_Program

{

if ((a>b) && (a>c))

………

}

We create a first order mutant of the
Original_Program by adding a single fault i.e. we
change a>b to a<b and name it FOM1 as below:

FOM1

{

if ((a<b) && (a>c))

………

}

We create another first order mutant of the
Original_Program by adding a single fault i.e. we
change a>c to a<c and name it FOM2 as below:

FOM2

{

if ((a>b) && (a<c))

………

}

FOM1 and FOM2 are first order mutants as they vary
by a single fault from the Original_program. Now we
create a HOM from FOM1 and FOM2 by having
more than one fault from the Original_program .Our
HOM differs from original program by 2 faults. We
change a>b to a<b and also a>c to a<c.

HOM

{

if ((a<b) && (a<c))

………

}

Now we prove that if we are able to find a subsuming
HOM in particular a strongly subsuming HOM, it
will kill all the FOM’s from which it is constructed
thereby reducing the number of test cases without
loss of test case effectiveness.

We take simple example to find largest of 3 numbers
a, b and c. Our program takes as input 3 numbers and
as output it gives the largest of these numbers.

Original_program

#include<stdio.h>

#include<conio.h>

void main ()

{

int a,b,c;

clrscr();

printf(“ENTER THE 3 NUMBERS”);

scanf(“%d%d%d”,&a,&b,&c);

if((a>b) &&(a>c))

printf(“A IS GREATEST”);

else if ((b>a) &&(b>c))

printf(“B IS GREATEST”);

else if ((c>a) && (c>b))

printf(“C IS GREATEST”);

else printf (“ WRONG RESULT”);

}

Shalini Kapoor, Int. J. Comp. Tech. Appl., Vol 2 (5), 1206-1211

IJCTA | SPT-OCT 2011
Available online@www.ijcta.com

1208

ISSN:2229-6093

We create First Order Mutant FOM1 from the
Original_program by changing a> b to a<b

FOM1

if((a<b) &&(a>c))

printf(“A IS GREATEST”);

else if ((b>a) &&(b>c))

printf(“B IS GREATEST”);

else if ((c>a) && (c>b))

printf(“C IS GREATEST”);

else printf(“ WRONG RESULT”);

We create another First Order Mutant FOM2

from the Original_program by changing a> c to a<c

FOM2

if((a>b) &&(a<c))

printf(“A IS GREATEST”);

else if ((b>a) &&(b>c))

printf(“B IS GREATEST”);

else if ((c>a) && (c>b))

printf(“C IS GREATEST”);

else printf(“ WRONG RESULT”);

We create Higher order mutant HOM from First
order mutant FOM1 and FOM2 by changing a> b to
a<b and a>c to a<c. This differs from
Original_program by 2 faults.

HOM

if((a<b) &&(a<c))

printf(“A IS GREATEST”);

else if ((b>a) &&(b>c))

printf(“B IS GREATEST”);

else if ((c>a) && (c>b))

printf(“C IS GREATEST”);

else printf(“ WRONG RESULT”);

Table 1

 Test Cases which kill FOM1, FOM2 and HOM

 Figure 2

Mutant Test Case Original_program

RESULT

Mutant

RESULT

FOM1 a>b && a>c

a<b && a>c

A IS GREATEST

WRONG RESULT

WRONG
RESULT

A IS
GREATEST

FOM2 a>b && a>c

a>b && a<c

A IS GREATEST

WRONG RESULT

WRONG
RESULT

A IS
GREATEST

HOM a>b && a>c A IS GREATEST WRONG
RESULT

Shalini Kapoor, Int. J. Comp. Tech. Appl., Vol 2 (5), 1206-1211

IJCTA | SPT-OCT 2011
Available online@www.ijcta.com

1209

ISSN:2229-6093

From the Table-1 we find that there are 2 test cases
which kill FOM1 and also 2 test cases which kill
FOM2. There is one test case which kills HOM and is
found in the intersection of FOM1 and FOM2. This
test case kills both FOM1 and FOM2. The converse
is not true. The test case ((a<b) && (a>c)) which kills
FOM1 does not kill FOM2 and HOM. Similarly the
test case ((a>b) && (a<c)) which kills FOM2 does
not kill FOM1 and HOM. This is shown
diagrammatically above in Figure 2.

 Table 2

From the Table-2 its clear that the test case a<b &&
a>c which kills FOM1 and the Original_program
does not kill FOM2 and HOM, similarly the test case
a>b && a<c which kills FOM2 and the
Original_program does not kill FOM1 and HOM but
the test case a>b &&a>c found in the intersection of
FOM1 and FOM2 kills our HOM and also FOM1 and
FOM2. So if use this test case automatically both
FOM1 and FOM2 will get killed thereby reducing the
number of test cases without leading to loss of
effectiveness.

V. CONCLUSION

In this paper, we examine the utilities of Higher
Order Mutation Testing by creating mutants both
First and Higher Order. From the above work we
conclude that though HOM’s are harder to kill but if
we are able to find a subsuming HOM than the
number of test cases reduces as these test cases will
automatically kill all the FOM’s from which it is
constructed thereby leading to reduction in test
efforts without loss of effectiveness.

VI. REFERENCES

[1] A. T. Acree. On Mutation. Phd thesis, Georgia
Institute of Technology, Atlanta, Georgia, 1980.
[2] T. A. Budd. Mutation Analysis of Program Test
Data. Phd thesis, Yale University, New Haven,
Connecticut, 1980.
[3] W. E.Wong. On Mutation and Data Flow. Phd
thesis, Purdue University, West Lafayette, Indiana,
1993.
[4] A. P. Mathur and W. E. Wong. An Empirical
Comparison of Mutation and Data Flow Based Test
Adequacy Criteria. Technique report, Purdue
University, West Lafayette, Indiana, 1993.
[5] A. S. Namin and J. H. Andrews. On Sufficiency
of Mutants. In Proceedings of the 29th International
Conference on Software Engineering (ICSE
COMPANION’07), pages 73–74, Minneapolis,
Minnesota, 20-26 May 2007.
[6] A. P. Mathur. Performance, Effectiveness, and
Reliability Issues in Software Testing. In Proceedings
of the 5th International Computer Software and
Applications Conference (COMPSAC’79), pages
604–605, Tokyo, Japan, 11-13 September 1991.
[7] M. Sahinoglu and E. H. Spafford. A Bayes
Sequential Statistical Procedure for Approving
Software Products. In Proceedings of the IFIP
Conference on Approving Software Products
(ASP’90), pages 43–56 Garmis Partenkirchen,
Germany, September 1990. Elsevier Science.
[8] R. A. DeMillo, D. S. Guindi, K. N. King, W. M.
McCracken, and A. J. Offutt. An Extended Overview
of the Mothra Software Testing Environment. In
Proceedings of the 2nd Workshop on Software
Testing, Verification, and Analysis (TVA’88), pages
142–151, Banff Alberta, Canada, July 1988. IEEE
Computer society.
[9] A. J. Offutt, G. Rothermel, and C. Zapf. An
Experimental Evaluation of Selective Mutation. In

Test Data

a,b,c

Original_program

Result

FOM1

Result

FOM2

Result

HOM

Result

15,10,5

a>b && a>c

A IS GREATEST INVALID
RESULT

INVALID
RESULT

INVALID
RESULT

25,20,10

a>b && a>c

A IS GREATEST INVALID
RESULT

INVALID
RESULT

INVALID
RESULT

20,25,10

a<b && a>c

INVALID
RESULT

A IS
GREATEST

INVALID
RESULT

INVALID
RESULT

25,20,50

a>b && a<c

INVALID
RESULT

INVALID
RESULT

A IS
GREATEST

INVALID
RESULT

Shalini Kapoor, Int. J. Comp. Tech. Appl., Vol 2 (5), 1206-1211

IJCTA | SPT-OCT 2011
Available online@www.ijcta.com

1210

ISSN:2229-6093

Proceedings of the 15th International Conference on
Software Engineering (ICSE’93), pages 100–107,
Baltimore, Maryland, May 1993. IEEE Computer
Society Press.
[10] W. E. Wong and A. P. Mathur. Reducing the
Cost of Mutation Testing: An Empirical Study.
Journal of Systems and Software, 31(3):185–196,
December 1995.
[11] K. N. King and A. J. Offutt. A Fortran Language
System for Mutation- Based Software Testing
Software: Practice and Experience, 21(7):685–718,
October 1991
[12] E. S. Mresa and L. Bottaci. Efficiency of
Mutation Operators and Selective Mutation
Strategies: An Empirical Study. Software Testing,
Verification and Reliability, 9(4):205–232, December
1999.
[13] A. S. Namin and J. H. Andrews. Finding
Sufficient Mutation Operators via Variable
Reduction. In Proceedings of the 2nd Workshop on
Mutation
Analysis (MUTATION’06), page 5, Raleigh, North
Carolina, November
2006. IEEE Computer Society.
[14] A. S. Namin and J. H. Andrews. On Sufficiency
of Mutants. In Proceedings of the 29th International
Conference on Software Engineering (ICSE
COMPANION’07), pages 73–74, Minneapolis,
Minnesota, 20-26 May 2007.

[15] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch,
and C. Zapf. An Experimental Determination of
Sufficient Mutant Operators. ACM Transactions on
Software Engineering and Methodology, 5(2):99–
118, April 1996.

VII. AUTHORS PROFILE

.
Shalini Kapoor received the
bachelor degree in Computer
Science and Engineering
from Haryana Engineering
College, Jagadhri, India in
2003. She received her
Master degree in Information
Technology from Karnataka
State University, Mysore,
India in 2011. She has 2.5

years industrial experience and 4.5 years teaching
experience. Presently she is working in Computer
Science and Engineering Department of Guru Nanak
Institutions Mullana

Shalini Kapoor, Int. J. Comp. Tech. Appl., Vol 2 (5), 1206-1211

IJCTA | SPT-OCT 2011
Available online@www.ijcta.com

1211

ISSN:2229-6093

