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Abstract--- Effectiveness means how good a test case is in finding faults. Traditional mutation testing 
considers First Order Mutants (FOM) created by injection of a single fault. We focus on Higher Order 
Mutants (HOM) and in particular on subsuming HOM. Higher Order Mutants contain more than one fault. 
We report in this paper that a strongly subsuming HOM is more effective as it kills all the FOM’s from which 
it is constructed thereby reducing testing efforts without loss of effectiveness.  
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I. INTRODUCTION 

Mutants can be classified into two types: First Order 
Mutants (FOMs) and Higher Order Mutants (HOMs). 
FOMs are generated by applying mutation operators 
only once. HOMs are generated by applying mutation 
operators more than once. This paper introduces the 
concept of subsuming HOMs. A subsuming HOMs is 
harder to kill than the FOMs from which it is 
constructed. As such, it may be preferable to replace 
the FOMs with the single HOM. In particular, the 
paper introduces the concept of a strongly subsuming 
HOMs. A subsuming HOMs is only killed by a 
subset of the intersection of test cases that kill each 
FOM from which it is constructed. 
                                                Consider a subsuming, 
h, constructed from the FOMs f1... fn. The set of test 
cases that kill h also kill each and every FOM f1... fn. 
Therefore, h can replace all of the mutants f1... fn 
without loss of test effectiveness. The converse does 
not hold; there exist test sets that kill all FOMs f1... 
fn but which fail to kill h. The FOMs cannot, even 
taken collectively, replace the HOM without possible 
loss of test effort. This is the sense in which h can be 
said to ‘strongly subsume’ f1... fn. 

 

II. CLASSIFICATION OF HIGHER 
ORDER MUTANTS 

HOMs can be classified in terms of the way that they 
are ‘coupled’ and ‘subsuming’, as shown in Figure 1. 
In Figure 1, the region area in the central Venn 
diagram represents the domain of all HOMs. The 
sub-diagrams surrounding the central region illustrate 
each category. For sake of simplicity of exposition  

 
 
these examples illustrate the second order mutant 
case; one that assumes that there are two FOMs f1 
and f2, and h denotes the HOM constructed from the 
FOMs f1 and f2. The two regions depicted by each 
sub diagram represent the test sets containing all the 
test cases that kill FOMs f1 and f2. The shaded area 
represents the test set that contains all test cases that 
kill HOM h. The areas of the regions indicate the 
proportion of the domain of HOMs for each category. 
Following the coupling effect hypothesis, if a test set 
that kills the FOMs also contains cases that kill the 
HOM, we shall say that the HOM is a ‘coupled 
HOM’, otherwise we shall say it is a ‘de-coupled 
HOM’. Therefore, in Figure 1, the sub-diagram is a 
coupled HOM if it contains an area where the shaded 
region overlaps with the unshaded regions. For 
example the sub-diagrams (a), (b) and (f). Since the 
shaded region from sub-diagrams (c) and (d) do not 
overlap with the unshaded regions, (c) and (d) are de-
coupled HOMs. Subdiagram (e) is a special case of a 
de-coupled HOM, because there is no test case that 
can kill the HOM; there is no overlap, the HOM is an 
equivalent mutant. 
 Subsuming HOMs, by definition, is harder to kill 
than their constituentFOMs. Therefore, in Figure 1, 
the subsuming HOMs can be represented as those 
where the shaded area is smaller than the area of the 
union of the two unshaded regions, such as sub-
diagrams (a), (b) and (c). By contrast, (d), (e) and (f) 
are non-subsuming. Furthermore, the subsuming 
HOMs can be classified into strongly subsuming 
HOMs and weakly subsuming HOMs. By definition, 
if a test case kills a strongly subsuming HOM, it 
guarantees that its constituent FOMs are killed as 
well. Therefore, if the shaded region lies only inside 
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the intersection of the two unshaded regions, it is a 
strongly subsuming HOM, depicted in (a), otherwise, 

it is a weakly subsuming HOM, depicted in (b) &(c). 
 

 
 
 
 
 

                                   
 

III. REASONS TO SUPPORT HOM 

1) Cost: Work on Mutant Sampling and Selective 
Mutation has shown how the number of mutants can 
be reduced with only a small impact on test 
effectiveness [1], [8], [7], [17]. 

2) Uncertainty: Work on reducing the impact of 
equivalent mutants has reduced, though not 
eradicated, this problem [6], [16], [5], [4], [1]. 
3) Realism: Empirical evidence has been provided 
that the faults denoted by mutants do, indeed, overlap 
with a class of real faults [16], [12], [5]. 
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IV. PROPOSED WORK 

In order to explain Higher Order Mutation Testing 
we take the following example. 

Original_Program 

{ 

if ( (a>b) && (a>c)) 

……… 

} 

We create a first order mutant of the 
Original_Program by adding a single fault i.e. we 
change a>b to a<b and name it FOM1 as below: 

FOM1 

{ 

if ( (a<b) && (a>c)) 

……… 

} 

We create another first order mutant of the 
Original_Program by adding a single fault i.e. we 
change a>c to a<c and name it FOM2 as below: 

FOM2 

{ 

if ( (a>b) && (a<c)) 

……… 

} 

FOM1 and FOM2 are first order mutants as they vary 
by a single fault from the Original_program. Now we 
create a HOM from FOM1 and FOM2 by having 
more than one fault from the Original_program .Our 
HOM differs from original program by 2 faults. We 
change a>b to a<b and also a>c to a<c. 

 

 

HOM 

{ 

if ((a<b) && (a<c)) 

……… 

} 

Now we prove that if we are able to find a subsuming 
HOM in particular a strongly subsuming HOM, it 
will kill all the FOM’s from which it is constructed 
thereby reducing the number of test cases without 
loss of test case effectiveness. 

We take simple example to find largest of 3 numbers 
a, b and c. Our program takes as input 3 numbers and 
as output it gives the largest of these numbers. 

Original_program 

#include<stdio.h> 

#include<conio.h> 

void main () 

{ 

int a,b,c; 

clrscr(); 

printf(“ENTER THE 3 NUMBERS”); 

scanf(“%d%d%d”,&a,&b,&c); 

if((a>b) &&(a>c)) 

printf(“A IS GREATEST”); 

else if ((b>a) &&(b>c)) 

printf(“B IS GREATEST”); 

else if ((c>a) && (c>b)) 

printf(“C IS GREATEST”); 

else printf (“ WRONG RESULT”); 

} 
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We create First Order Mutant FOM1 from the 
Original_program by changing a> b to a<b 

FOM1 

if((a<b) &&(a>c)) 

printf(“A IS GREATEST”); 

else if ((b>a) &&(b>c)) 

printf(“B IS GREATEST”); 

else if ((c>a) && (c>b)) 

printf(“C IS GREATEST”); 

else printf(“ WRONG RESULT”); 

 

We create another First Order Mutant FOM2 

from the Original_program by changing a> c to a<c 

FOM2 

if((a>b) &&(a<c)) 

printf(“A IS GREATEST”); 

else if ((b>a) &&(b>c)) 

printf(“B IS GREATEST”); 

else if ((c>a) && (c>b)) 

printf(“C IS GREATEST”); 

else printf(“ WRONG RESULT”); 

 

We create Higher order mutant HOM from First 
order mutant FOM1 and FOM2 by changing a> b to 
a<b and a>c to a<c. This differs from 
Original_program by 2 faults. 

HOM 

if((a<b) &&(a<c)) 

printf(“A IS GREATEST”); 

else if ((b>a) &&(b>c)) 

printf(“B IS GREATEST”); 

else if ((c>a) && (c>b)) 

printf(“C IS GREATEST”); 

else printf(“ WRONG RESULT”); 

 

Table 1 

      Test Cases which kill FOM1, FOM2 and HOM 

 

 

                    Figure 2 

 

 

 

 

 

 

Mutant Test Case Original_program 

RESULT 

Mutant 

RESULT 

FOM1 a>b  && a>c 

 

a<b && a>c 

A IS GREATEST 

 

WRONG RESULT 

WRONG 
RESULT 

A IS 
GREATEST 

FOM2 a>b  && a>c 

 

a>b && a<c 

A IS GREATEST 

 

WRONG RESULT 

  

WRONG 
RESULT 

A IS 
GREATEST 

HOM a>b  && a>c A IS GREATEST WRONG 
RESULT 
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From the Table-1 we find that there are 2 test cases 
which kill FOM1 and also 2 test cases which kill 
FOM2. There is one test case which kills HOM and is 
found in the intersection of FOM1 and FOM2. This 
test case kills both FOM1 and FOM2.  The converse 
is not true. The test case ((a<b) && (a>c)) which kills 
FOM1 does not kill FOM2 and HOM. Similarly the 
test case ((a>b) && (a<c)) which kills FOM2 does 
not kill FOM1 and HOM. This is shown 
diagrammatically above in Figure 2. 

                           Table 2 

 

From the Table-2 its clear that the test case a<b && 
a>c which kills FOM1 and the Original_program 
does not kill FOM2 and HOM, similarly the test case 
a>b && a<c which kills FOM2 and the 
Original_program does not kill FOM1 and HOM but 
the test case a>b &&a>c found in the intersection of 
FOM1 and FOM2 kills our HOM and also FOM1 and 
FOM2. So if use this test case automatically both 
FOM1 and FOM2 will get killed thereby reducing the 
number of test cases without leading to loss of 
effectiveness. 

 

 

 

V. CONCLUSION 

In this paper, we examine the utilities of Higher 
Order Mutation Testing by creating mutants both 
First and Higher Order. From the above work we 
conclude that though HOM’s are harder to kill but if 
we are able to find a subsuming HOM than the 
number of test cases reduces as these test cases will 
automatically kill all the FOM’s from which it is 
constructed thereby leading to reduction in test 
efforts without loss of effectiveness.   
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A IS 
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