
An Heuristic Approach To Object Oriented
Paradigm

Deepali Gupta * and Rakesh Kumar **

* Dean Academics, Geeta Institute of Management and Technology, Kanipla, Kurukshetra, India
** Reader, Kurukshetra University, Kurukshetra, India

deepali_gupta2000@yahoo.com

Abstract— Quality of software is increasingly important and
testing related issues are becoming crucial for software. In
order to measure and understand quality, it is necessary to
relate it to measurable quantities. Heuristics provide a link
between sets of abstract design principles and quantitative
software metrics. The aim of object oriented software
metrics is to predict quality and improve productivity of the
software products. Object-orientation (OO) allows software
to be structured in a way that helps to manage complexity
and change. This paper shows role of heuristics in object
oriented software engineering and how object oriented
paradigm differentiate from conventional function oriented
paradigm.

Keywords: Software metrics, Function-oriented paradigm,
Object-oriented paradigm, Software quality and Heuristics.

I. INTRODUCTION

Engineering is the analysis, design, construction,
verification, and management of technical (or social)
entities. Like all other types of engineering, software
engineering is not just producing products but means
producing products in most efficient and cost effective
way. Software engineering is the establishment and use of
sound engineering principles in order to obtain
economically software that is reliable and works
efficiently on real machines.

Software engineering has traditionally been an
expensive and time-intensive process. Object-oriented
analysis and design is the principal industry-proven
methodology that answers the call for a more cost-
effective, faster way to develop software and systems [2].
With the increasing use of object-oriented methods in new
software development, there is a growing need to both
document and improve current practices in object-oriented
design and development. Object-oriented paradigm
exhibits different characteristics from the procedural
paradigm. So, different software metrics have to be used.

Three important concepts differentiate the OO approach
from conventional software engineering.
• Encapsulation packages data & the operations that

manipulate the data into a single named object.
• Inheritance enables the attributes and operations of a

class to be inherited by all subclasses and the objects
that are instantiated from them.

• Polymorphism enables a number of different
operations to have the same name, reducing the

number of lines of code required to implement a
system and facilitating changes whenever made.

In object-oriented viewpoint, the problem domain is
characterized as a set of objects that have specific
attributes and behaviors. The objects are manipulated with
a collection of functions called methods, operations, or
services and communicate with one another through a
messaging protocol.

II. USE OF QUANTITATIVE APPROACHES

Measurement can be used throughout a software project
to assist in estimation, quality control, productivity
assessment, project control and to assist in tactical
decision making as a project proceeds. There are four
reasons for measuring software processes, products, and
resources: to characterize, to evaluate, to predict, or to
improve [3]. Metrics is defined as “The continuous
application of measurement based techniques to the
software development process and its products to supply
meaningful and timely management information, together
with the use of those techniques to improve that process
and its products”. The IEEE standard glossary [1] defines
metric as “a quantitative measure of the degree to which a
system, component, or process processes a given
attribute”. Software metrics is all about measurement and
these are applicable to all the phases of software
development life cycle from initiation to maintenance.

Metrics are grouped into three main categories:
• Product metrics measure the software product

properties, such as its documentation, design and
performance, regardless of its development stage.
Product metrics are indicator of external software
attributes such as cyclomatic complexity for
testability and coupling factor for maintainability.

• Process metrics emphasize on the software
development process, such as development time,
methodology used and quality assurance techniques.

• Resource metrics emphasize on the human, hardware
and software resources such as developer skill level,
hardware reliability, software component quality.

To achieve both the quality and productivity objectives,
it is always recommended to go for the software reuse that
not only saves the time taken to develop the product from
scratch but also delivers the almost error free code.
Prediction models based on software metrics, can estimate
number of faults in software modules [4].

Deepali gupta et al, Int. J. Comp. Tech. Appl., Vol 2 (4), 823-826

IJCTA | JULY-AUGUST 2011
Available online@www.ijcta.com

823

ISSN:2229-6093

mailto:deepali_gupta2000@yahoo.com

III. OBJECTIVES

Science begins with quantification; you cannot do
physics without a notion of length and time; you cannot
do thermodynamics until you measure temperature. All
engineering disciplines have metrics (such as metrics for
weight, density, wavelength, pressure and temperature) to
quantify various characteristics of their products. The
most important question you can ask is “how big is the
program?” Without defining what big it means, it is
obvious that makes no sense to say, “This program will
need more testing than that program” unless we know
how big they are relative to one another. The aim of
Object Oriented (OO) Metrics is to predict the quality of
the object oriented software products. Various attributes,
which determine the quality of the software, include
maintainability, defect density, fault proneness,
normalized rework, understandability, reusability etc. We
need them because in OO code, complexity lies in
interaction between objects, a large portion of code is
declarative, OO models real life objects: classes, objects,
inheritance, encapsulation, message passing. Heuristic
also provide valuable information to assist the designer to
design and develop better software and focuses on
improving quality of software products.

IV. HEURISTICS IN SOFTWARE ENGINEERING

Heuristics are used everyday in our daily life to solve
problem and software engineering is not an exception.
Some metric based heuristics are used in design and
development of the software in the past also. For example,
if the number of parameters in a function is more than five
gives impression that module may not be having function
cohesion.

Use of heuristics in modern OO software engineering
has also been observed [5]. Heuristics plays an important
role in software development and is widely used to
provide a link between design principles and software
measurement. They offer insightful information based
upon experience that is known to work in practice.
Heuristics are not meant to be exact; in fact, they derive
their benefits from this imprecision by providing an
informal guide to good and bad practices. They provide a
means by which knowledge and experience can be
delivered from the expert to the novice.

Design is a difficult task because it involves finding
compromises between conflicting pressure, cost and
reliability and many of these pressures ultimately arise
from human concerns, with all that implies in complexity,
diversity and changeability. Designers must find ways to
provide specific capabilities required by stakeholders,
while attaining sufficient quality in emergent properties
such as usability, efficiency, and flexibility. Software
designer’s aim is to satisfy the expectations of
stakeholders by meeting functional and non-functional
requirements. But in order to make this possible, they
must first address the needs of the software developers
themselves.

Keeping the complexity of the design in check is the
foremost among these. Object-orientation (OO) allows
software to be structured in a better way and helps to
manage complexity and change. However, as software
reuse practitioners have discovered, realizing the benefits
of OO is not straightforward. Competence with the
mechanisms of object oriented classes and objects,
attributes and methods, inheritance and polymorphism is
far from sufficient to ensure successful designs. Over
some decades, software engineers have developed a
number of approaches and principles to elevate design
considerations above programming language mechanisms.

Concepts such as abstraction, separation of concerns,
information hiding, cohesion and coupling provide
guidance to designers. On top of these general principles,
the OO design community has developed a rich doctrine
of principles and practices to inform designers. This is
supplemented by design patterns and idioms, which
provide prototypical solutions to common problems.
Some authors have collated parts of this complex web of
concepts into sets of heuristics. Johnson and Foote [6]
provide an early example, which describes design maxims
intended to promote reuse. Riel [7] documents 61 ‘golden
rules’ for OO design, while Fowler and Beck describe 22
code smells [8]. Smells evokes a subjective, subtle process
of perceiving something about a design. Beck and Fowler
note that code smells do not lend themselves to automatic
quantification [8]. The designer must form an impression
of the net product of many factors at work in the design.
This requires judgment and insight beyond the capabilities
of simple automata.

V. OBJECT-ORIENTED PARADIGM

The object-oriented paradigm uses the concepts of class
and object as basic building blocks in the formation of a
consistent model for the analysis, design, and
implementation of applications. There are many things in
the real world that we are capable of using without
knowing anything about their implementation:
refrigerators, cars, photocopy machines, and computers,
just to name a few. The reason they are easy to use
without knowledge of their implementation is that they are
designed to be used via a well-defined public interface.
This interface is heavily dependent on, but hides from its
users, the implementation of the device.

All implementation constructs in your system should be
hidden from their users behind a well-defined, consistent
public interface. Users of the construct need to know
about the public interface but are never allowed to see its
implementation. This allows the implementer to change
the implementation whenever he or she desires, so long as
the public interface remains the same. Class is a concept
that captures the notion of data and behavior in one
package. The relationship between the notion of class and
object is instantiation relationship. In addition to fixed
data and behavioral descriptions, objects have local state
(i.e., a snapshot) at runtime of the dynamic values of an
object's data descriptions. The collection of all possible
states of a class's objects, along with the legal transitions
from one state to another, is called the dynamic semantics
of the class. Dynamic semantics allow an object to
respond differently to the same message sent at two
different times in the life of the object. Classes with
interesting dynamic semantics include those classes
having a finite number of states, with well-defined
transitions from one state to another. Abstract classes are
the classes that do not know how to instantiate objects
where as classes that do know how to instantiate objects
are called concrete classes.

VI. FUNCTION-ORIENTED PARADIGM VS. OBJECT-ORIENTED
PARADIGM

In the function-oriented world, it is easy to find data
dependencies simply by examining the implementation of
functions and there does not an explicit relationship
between data and functionality.

While function-oriented software development is
involved with functional decomposition through a very
centralized control mechanism, the object-oriented
paradigm focuses more on the decomposition of data with
its corresponding functionality in a decentralized setting.

Deepali gupta et al, Int. J. Comp. Tech. Appl., Vol 2 (4), 823-826

IJCTA | JULY-AUGUST 2011
Available online@www.ijcta.com

824

ISSN:2229-6093

It is this decentralization of software that gives the object-
oriented paradigm its ability to control essential
complexity.

Many developers correctly claim that the function-
oriented paradigm focuses only on the functionality of a
system and typically ignores the data until it is required.
They then claim that the object-oriented paradigm focuses
exclusively on the data, ignoring the functionality of the
system until it is required. This is not possible, because
the behavior of a system often drives the decomposition of
data. It is preferable to think of the object-oriented
paradigm as keeping data in the front of a developer's
mind while keeping functionality in the back of his or her
mind. The result of this process is the decomposition of
our system into a collection of decentralized clumps of
data with well-defined public interfaces. The only
dependencies of functionality on data are that the
operations of the well-defined public interfaces are
dependent on their associated data (i.e., implementation).

There are two very distinct areas where the object-
oriented paradigm can drive design in a dangerous
direction. The first is a problem of poorly distributed
system intelligence, while the second is the creation of too
many classes for the size of the design problem. We refer
to these pitfalls as the god class problem and the
proliferation of class problem. The god class problem
manifests itself in two forms, the behavioral form and the
data form. The proliferation of classes’ problem is
produced by a number of factors.

The behavioral form of the god class problem is caused
by a common error among action-oriented developers in
the process of moving to the object-oriented paradigm.
These developers attempt to capture the central control
mechanism so prevalent in the function-oriented paradigm
within their object-oriented design. The result is the
creation of a god object that performs most of the work,
leaving minor details to a collection of trivial classes.
There are a number of heuristics that work together
cooperatively toward the avoidance of these classes.

Violations of these heuristics imply the creation of a
behavioral god object. Another symptom of this problem
is the creation of many get and set functions in the public
interfaces of your applications' classes. These get and set
functions are called accessor methods. Such functions
simply that some larger class is getting a great deal of data
from other classes, performing computations on this data,
and then setting the states of many objects to reflect the
updated information. These classes are examples of
behavioral god classes. Their design also violates the
heuristic stating that related data and behavior should be
kept in one place.

Some of the heuristics proposed by Riel [7] are listed in
Table I as follows:

TABLE I.
SUMMARY OF RIEL’S HEURISTICS

S.No. Function-Oriented Vs. Object-Oriented Paradigm

1 Distribute system intelligence horizontally as uniformly as
possible, i.e. the top level classes in a design should share
the work uniformly.

2 Do not create god classes/objects in your system. Be very
suspicious of an abstraction whose name contains Driver,
Manager, System, or Subsystem.

3 Beware of classes that have many accessor methods
defined in their public interface; many of them imply that
related data and behavior are not being kept in one place.

4 Beware of classes which have too much non-
communicating behavior.

5 The model should never be dependent on the interface. The
interface should be dependent on the model.

6 Model the real world whenever possible

7 Eliminate irrelevant classes from your design.

8 Eliminate classes that are outside the system.

9 Do not turn an operation into a class.

10 Agent classes are often placed in the analysis model of an
application.

The following are some of the heuristics proposed by
Riel [7] related to topologies of function-oriented vs.
object-oriented applications:

Heuristic 1: Distribute system intelligence horizontally
as uniformly as possible, i.e. the top level classes in a
design should share the work uniformly.

Heuristic 2: Do not create god classes/objects in your
system. Be very suspicious of an abstraction whose name
contains Driver, Manager, System, or Subsystem.

Heuristic 3: Beware of classes that have many accessor
methods defined in their public interface. Having many of
them imply that related data and behavior are not being
kept in one place.

Heuristic 4: Beware of classes which have too much
non-communicating behavior, i.e. methods which operate
on a proper subset of the data members of a class. God
classes often exhibit lots of non-communicating behavior.

Accessor methods give away implementation details.
Such methods are dangerous because they indicate poor
encapsulation of related data and behavior. There are two
reasonable explanations for the need for accessor
methods. Either the class performing the gets and sets is
implementing a policy between two or more classes, or it
is in the interface portion of a system consisting of an
object-oriented model and a user interface.

The second rationale for using accessor methods
revolves around domains whose architecture involves an
object-oriented model interacting with a user interface. By
definition, user interfaces display the internals of a model,
allow a user to update those internals, and put the internals
back into the model. The heuristic here is that a model
should be independent of its user interface. In order to
accomplish this goal, the interface must be allowed to
extract and replace details from the model via accessor
methods. The use of the accessor methods should be
restricted to classes within the interface portion of the
code. It is important to note that the model classes of these
types of systems rarely have any interesting behavior.

Heuristic 5: In applications which consist of an object-
oriented model interacting with a user interface, the model
should never be dependent on the interface. The interface
should be dependent on the model.

Heuristic 6: Model the real world whenever possible.
This heuristic is often violated for reasons of system

intelligence distribution, avoidance of god classes, and the
keeping of related data and behavior in one place

Heuristic 7: Eliminate irrelevant classes from your
design.

It is always better to eliminate those classes who have
no meaningful behavior in the domain of your system. A
class that has no meaningful behavior in the domain of a
system is an irrelevant class. These classes have no
operations besides set, get, and print type functions. The
reason sets, gets, and prints are not counted as meaningful
behavior is that all too often they operate solely on the
descriptive attributes of a system.

Deepali gupta et al, Int. J. Comp. Tech. Appl., Vol 2 (4), 823-826

IJCTA | JULY-AUGUST 2011
Available online@www.ijcta.com

825

ISSN:2229-6093

Heuristic 8: Eliminate classes that are outside the
system.

If a class is outside the system, it is irrelevant with
respect to the given domain. It is difficult to detect classes
that are outside the system. During successive iterations of
design, it eventually becomes clear that some classes do
not require any methods to be written for them. These are
classes that are outside of the system. The hallmark of
such classes is an abstraction that sends messages into the
system domain but does not receive message sends from
other classes in the domain. This heuristic is really a
special case of the previous heuristic.

Heuristic 9: Do not turn an operation into a class.
Be suspicious of any class whose name is a verb or is

derived from a verb, especially those that have only one
piece of meaningful behavior (i.e., do not count sets, gets,
and prints). Ask if that piece of meaningful behavior
needs to be migrated to some existing or undiscovered
class. Violations of this heuristic are a leading cause of
proliferation of classes. Classes whose names are verbs, or
are derived from verbs, are especially suspected.
Newcomers to the object-oriented paradigm are especially
prone to violations of this heuristic. It is important to note
that not all classes whose names are verbs need to be
eliminated.

Heuristic 10: Agent classes are often placed in the
analysis model of an application.

Agent classes are irrelevant classes. They simply accept
messages from other classes and resend them to the
desired target. Agent classes are the classes whose sole
purpose is to decouple two or more additional classes.
These are characterized by delegating its methods to
messages on other classes. During design time, many
agents are found to be irrelevant and should be removed.

There are inter-dependencies that exist between
heuristics and the complex nature of large object-oriented
software systems. Heuristics document common design
problems that developers encounter during software
development. The heuristic catalogue provides a
comprehensive reference point for both novice and expert
developers to apply well-documented techniques for
building maintainable software.

VII. CONCLUSION

 Software quality is an important aspect in software
development. It is widely accepted that a project with
many defects lacks quality. Methodologies and techniques
for predicting the testing effort, monitoring process costs,
and measuring results can help in increasing efficiency of
software testing.

Prediction of fault-prone modules supports software
quality engineering through improved scheduling and
project control. It is a key step towards steering the
software testing and improving the effectiveness of the
whole process thereby managing project planning.

Object oriented heuristics encapsulate software
problems and their solutions and provide a link between
sets of software development principles and quantitative
software metrics to produce high quality software.

REFERENCES

[1] IEEE Standards Collection: Software Engineering, IEEE Standard
610.12-1990, IEEE, 1993.

[2] E.V Berard, “Essays on Object-Oriented Software Engineering”,
vol. 1, Addison Wesley, 1993.

[3] R.E. Park, W.B Goethert and V. Florac, “Goal Driven Software
Measurement—A Guidebook”, CMU/SEI-96-BH-002, Software
Engineering Institute, Carnegie Mellon University, 1996.

[4] D. Giovanni, “Estimating Software Fault-Proneness for Tuning
Testing Activities”, Proceedings of the 22nd International
Conference on Software Engineering (ICSE2000), Limerick,
Ireland, 2000.

[5] N. Churcher, “Supporting OO Design Heuristics”, Proceedings of
the 2007 Australian Software Engineering Conference, IEEE
Computer Society, pp. 101—110, 2007.

[6] R. Johnson and B. Foote, “Designing reusable classes”, Journal of
Object-Oriented Programming, vol 1, no.2 , pp. 22--35 , 1988.

[7] A. Riel, Object-Oriented Design Heuristics, Addison-Wesley,
1996.

[8] M. Fowler, Refactoring: Improving the Design of Existing Code,
Addison - Wesley, 1999.

[9] M. Salehie, S. Li, L. Tahvildari, “A Metric-Based Heuristic
Framework to Detect Object-Oriented Design Flaws”,
Proceedings of 14th IEEE International Conference on Program
Comprehension, IEEE Computer Society, pp. 159—168, 2006.
.

Deepali gupta et al, Int. J. Comp. Tech. Appl., Vol 2 (4), 823-826

IJCTA | JULY-AUGUST 2011
Available online@www.ijcta.com

826

ISSN:2229-6093

	An Heuristic Approach To Object Oriented Paradigm
	I. Introduction
	II. Use of Quantitative approaches
	III. Objectives
	IV. Heuristics in Software Engineering
	V. object-oriented paradigm
	VI. Function-oriented paradigm vs. object-oriented paradigm
	VII. Conclusion

