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Abstract. Both the Local Binary Pattern (LBP) and the 
Coordinated Clusters Representation (CCR) are two methods 
used successfully in the classification and segmentation of 
images. They look very similar at first sight. In this work we 
analyze the principles of the two methods and show that the 
methods are not reducible to each other. Topologically they 
are as different as a sphere and a torus. In extracting of image 
features, the LBP uses a specific technique of binarization of 
images with the local threshold, defined by the central pixel 
of a local binary pattern of an image. Then, the central pixel 
is excluded of each local binary pattern. As a consequence, 
the mathematical basis of the LBP method is more limited 
than that of the CCR. In particular, the scanning window of 
the LBP has always an odd dimensions, while the CCR has 
no this restriction. The CCR uses a binarization as a 
preprocessing of images, so that a global or a local threshold 
can be used for that purpose. We show that a classification 
based on the CCR of images is potentially more versatile, 
even though the high performance of both methods was 
demonstrated in various applications. 
 
Keywords: Texture Image Analysis, Classification, 
Segmentation, Coordinated Clusters Representation, Local 
Binary Patterns. 
 
Resumen. La Representación de Imágenes por Cúmulos 
Coordinados (RICC) y el Local Binary Pattern (LBP) son 
métodos eficazmente usados para la clasificación y 
segmentación de imágenes. A primera vista éstos parecen 
muy similares. Con un análisis de los principios de dos 
métodos demostramos que no son reducibles uno a otro; en 
términos de topología matemática son tan diferentes como 
esfera y dona. En la etapa de extracción de características de 
una imagen, el LBP usa una técnica específica de 
binarización de imágenes con umbral local, que se define por 
el píxel central de un patrón local de la imagen. Después, el 
píxel central se excluye de cada patrón local. Por tanto, el 
sustento matemático del método de LBP es más limitado que 

el de la RICC. En particular, la ventana de barrido en LBP 
siempre tiene dimensiones impares, la de la RICC no tiene 
esta restricción. La RICC requiere la binarización como una 
etapa de preprocesado de imagen y, por tanto, puede usarse 
un umbral global o local adaptable. La clasificación basada 
en la RICC es más versátil, aunque las eficiencias terminales 
de clasificación por los dos métodos pueden ser muy 
cercanas en muchas aplicaciones. 
 
Palabras clave: Análisis de Imágenes de Textura, 
Clasificación, Segmentación, Representación de Imágenes 
por Cúmulos Coordinados, Patrones Binarios Locales. 

1   Introduction 

In general, classification implies the assignment of an 
object (image) to one of the predefined classes. 
Classification consists of learning and recognition 
phases. In the first, features are extracted from a set of 
texture images with known class labels, each class 
being characterized by its prototype feature vector. 
Then, in the recognition phase, a feature vector of test 
image is calculated and one of the known classifiers is 
used to assign the image to the class it matches best.  
Classification is related closely to the following three 
concepts. By recognition we mean the identification of 
an image among a set of test images. Clustering 
distributes images into groups of similar images. 
Segmentation is the partitioning of an image into a set 
of regions with similar visual properties. Any 
classification requires a set of features that permits the 
discrimination between the images of different type. 
So the problem of establishing an adequate set of 
characteristics is of great practical importance. The 
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techniques of feature extraction for texture description 
and analysis can be divided into the four mayor 
groups: statistical, model based, signal processing and 
structural methods (Tuceryan and Jain, 1993). Once 
the features of images are selected, a classification can 
be done by means of one of several known methods 
(Chen et al., 1996; Duda et al., 2001; Fukunaga, 1990; 
Young and Fu, 1986).    

A natural texture image has usually a significant 
statistical component in the intensity and color 
distribution that complicates its classification. Hence 
statistical techniques, based mainly on correlation 
moments and co-occurrence matrices, are widely used 
in the classification of texture images (Berry and 
Goutsias, 1989; Chetverikov, 1999; Elfadel and Picard, 
1994; Goon and Rolland, 1999; Haralick, 1979; 
Ohanian and Dubes, 1992; Soh and Tsatsoulis, 1999; 
Valkealahti and Oja, 1998). Other techniques are based 
on models of Markov random fields (see, for example 
(Chellappa and Chatterjee, 1987)), window transforms 
(Turner, 1986; Azencott and Wang, 1997; Gonzalez-
Garcia et al., 2007). Among the statistical methods of 
feature extraction and classification of images, the 
recently developed LBP/C and CCR were proven to be 
practical and efficient. At first sight they look similar. 
The purpose of this work is to analyze the principles of 
the two methods and show that they are not reducible 
to each other; then, to show limitations and potential 
advantages of each one. This analysis provides a 
deeper understanding of these methods and helps to 
find out its most efficient applications. The paper is 
organized as follows. Section 2 describes briefly the 
CCR method followed by the description of the LBP/C 
in Section 3. Comparative analysis of the LBP and the 
CCR is given in Section 4. Conclusions are presented 
in Section 5. 

2   Coordinated Clusters Representation of 
Images 

The motivating idea of the coordinated cluster 
transform is that any classification or recognition of an 
image implies a kind of comparative correlation 
analysis of image regions (neighborhoods), and those 
must overlap. An application of the coordinated cluster 
representation (CCR) to the problems of analysis and 
classification of binary images was reported in 
(Kurmyshev and Cervantes, 1996; Kurmyshev and 
Soto, 1996) for the first time. The origin of the 

transform dates back to an earlier work (Kurmyshev et 
al., 1985), though this was done for the 
characterization and analysis of amorphous solids. 
Further, the CCR was developed into an efficient 
method of analysis, recognition and classification of 
gray level and color texture images (Kurmyshev and 
Sánchez-Yáñez, 2001; Kurmyshev et al., 2003; 
Kurmyshev and Sánchez-Yáñez, 2005; Sánchez et al, 
2003a, 2003b). Note that the term “coordinated 
clusters” originates from solid state physics. We 
present here a resume of the CCR in order to facilitate 
a conceptual comparison of the CCR with the LBP. 
The matrix representation of the coordinated cluster 
transform is given also.  

Let ][ lmsS =  be a matrix of binary image 
intensities, where l = 1, 2, .., L and m = 1, 2, .., M  are 
the dimensions of the image. Each pixel can take one 
of the values (0,1). In order to calculate the CCR of a 
binary image S we first establish a rectangular window 
of size N = I x J and then scan sequentially, by means 
of this window, all over the image S with one pixel 
step. The coordinated cluster transform generates the 
histogram of occurrence of binary pattern units 
detected through the scanning window. This histogram 
is called the coordinated cluster representation of an 
image. A binary pattern unit (BPU) consists of N = I x 
J pixels. There are 2N BPU that describe an image that 
is 29

The number 2

 = 512 units for the neighborhood of 3x3 pixels. 
This number defines the length of the histogram. Every 
BPU is coded by a decimal number. To calculate the 
code, the BPU matrix is multiplied by the mask of 
potentials of 2, element by element, and results are 
summed.  

N

( ) ( )11~ +−×+−= JMILW

 defines the length of the primary 
CCR histogram that can be reduced by eliminating the 
BPUs of zero occurrences. When normalized by the 
number , the CCR 
histogram can be considered as a probability 
distribution function of occurrences: 

( ) ( ) ( )bHWbF JIJI ,
1

,
~)( −= , where W~   is the total 

number of occurrences, the subscript (I,J) indicates the 
size of the scanning window and b (= 1, 2, 2N

 

) is the 
decimal code of BPU. Figure 1 shows a step of 
scanning of a binary image and a decimal code of the 
BPU detected.  
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Fig. 1. The CCR calculation of a binary image 
 

The matrix representation of the coordinated cluster 
transform of an image S is given by the two matrices:  
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Dimensions of matrices A and B are ( ) LIL ×+− 1  and 

( )1+−× JMM , respectively. The transformed 
matrix,  
 
                                 BSAS ⋅⋅=~                              (3) 

 
has ( ) ( )11~ +−×+−= JMILW  elements and these 
are decimal codes of binary pattern units. It can be 
seen that matrices A and B provide a line and a column 
shift of the scanning window. In addition, they assign a 
decimal code to every BPU. The CCR histogram, a 
vector of 2N

S~

 components, is obtained by counting the 

number of occurrences of each element of the . The 
b-th component of ( ) ( )bH JI ,  is the number of 

occurrences of decimal code b in the matrix S~ .  
The fundamental properties of the CCR were 

established in two theorems (Kurmyshev and 
Cervantes, 1996; Sánchez et al., 2003a) that are given 
here without proof. The first theorem establishes the 
structure of the CCR of periodic images. In particular, 
it helps one to recognize a (pseudo-) periodic texture 
by means of analysis of the CCR histogram. 
 
Theorem 1. Let S  be a binary, translation invariant 
image with a primitive cell (texton) that has a size 1τ  
pixels in one and 2τ  in the other direction. Then any 
CCR histogram ( )( )bH JI ,  of image S has no more than 

21ττ=T  non-zero values. If the CCR scanning 
window has the size equal to or larger than the texton 
size, 1τ≥I  and 2τ≥J , then ( )( )bH JI ,  takes 21ττ=T  
non-zero values exactly, each peak of the histogram 
being the same size.  

 
The second theorem establishes the relation 

between ( )( )bH JI ,  and the k-th order statistics of a 
binary image.  

 
Theorem 2. Let ][ lmsS =  be a binary image and 

( )( )bH JI ,  be its CCR histogram. Then, for all il  and 

im  such that Ili
i

≤max  and Jmi
i

≤max , where 

10 −≤≤ ki  and JIk ×≤≤1 , any autocorrelation 
function of  k-th order,  
                                            
( ) ( ) ( )
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can be uniquely reconstructed from the histogram 
( ) ( )bH JI , , where MLW ×=  is an image size, 

ilLL max−=′  and imMM max−=′ .  
 

According to the theorem, the histogram ( ) ( )bH JI ,  
contains all information about the k-point correlation 
moments of a binary image S if and only if the 
separation vectors of k pixels fit into the scanning 
window. This means that a distribution function 

001011001 8910 
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( ) ( )bF JI ,  provides sufficient information about a k-
point joint probability function. Since the correlation 
moments are important features of an image, the CCR 
has proven to be highly suitable for recognition and 
classification of texture images. 

The CCR histogram is used as a feature vector in 
classification and segmentation of textures. In order to 
use the CCR for the classification of gray level and 
pseudo-color images, these must be binarized. For this 
purpose we can use different techniques using global 
or local adaptable thresholds in accordance with a 
specific application. It means that a thresholding is a 
preprocessing phase in the CCR method. A binarized 
image preserves sufficient amount of information for a 
primary gray level image to be classified efficiently. 

3 Local Binary Pattern  

In the paper (Wang and He, 1990) was proposed a 
technique that characterizes a texture image by its 
spectrum of texture units. A texture unit (TU) is 
represented by eight elements of a 3x3 pixel 
neighborhood, each of which takes one of the three 
values (0,1,2) depending on whether it is less, equal to 
or larger than the intensity of the central pixel. It is a 
three level partition of an image neighborhood, the 
central pixel being excluded. Hence, there are 38

A few years later a two level version of the Wang 
and He method had emerged. The new technique 
provides a robust description of texture in terms of 
local binary patterns (LBP) (Ojala et al., 1996a). As in 
the case of the three level model, the intensity of each 
of the eight neighboring pixels is compared with the 
intensity of the central pixel in the 3x3 neighborhood. 
Neighborhoods overlap, as in the case of the CCR. One 
of the two values (0,1) is assigned to a pixel in 
accordance with the rule: 

 = 
6561 texture units that describe three level spatial 
patterns in the 3x3 neighborhoods. The occurrence 
histogram of TU is called texture spectrum of image. 
Unfortunately the technique resulted in neither 
theoretical nor practical significance.  

0=ip  if ci II < , 1=ip  if 

ci II ≥ , where 8,..,2,1=i ,  pi is the binary value of 
the i-th pixel of the 3x3 neighborhood, Ii and Ic are 
intensities of the i-th pixel and the central pixel, 
respectively. The basic idea of the LBP method is 
explained in Figure 2, where (a) is the original pattern 
of a 3x3 neighborhood, (b) is the binary pattern of the 

8 pixel neighborhood with the central pixel excluded, 
(c) is the mask of powers of 2 used for the decimal 
codification of the binary pattern, (d) is the decimal 
code of each of the eight binary pixels resulting in the 
number 93 for the whole neighborhood. In the two 
level version of texture units, there are only 28

 

 = 256 
units, compared to 6561 as in Wang and He method. 

381
559
746

      
010
11
101

       
765

43

210

222
22
222

      
0640

168
401

 

     (a)                (b)                    (c)                     (d)   
 

Fig. 2. Calculation of the LBP = 1+4+8+16+64 = 93 and the 
contrast C = (6+7+9+5+8)/5 - (4+1+3)/3 = 9.7. 

 
As we can see, the LBP method is, in a certain 

sense, a method of binarization of neighboring pixels 
that uses the central pixel intensity of every 
neighborhood as a local threshold. In this method a 
texture image is characterized by its histogram of LBP 
code. The LBP method is invariant to the change of the 
gray level scale and easily combined with the local 
contrast measure. The latter is calculated as the 
difference between the average intensity of pixels that 
have a binary value 1 and the average value of those 
that have value 0. In Figure 2, the contrast is calculated 
as follows: C = (6+7+9+5+8)/5 - (4+1+3)/3 = 9.7. 
When the contrast is used besides the LBP, the method 
is called LBP/C. In spite of having only an empirical 
justification, the LBP/C method of texture analysis has 
demonstrated a high performance in classification and 
segmentation of texture images using the LBP/C 
histogram as a “two dimensional” feature vector (Ojala 
et al., 1996b; Ojala et al., 2000; Pietikainen et al., 
2000; Maenpaa, 2003; Maenpaa and Pietikainen, 
2004).  

In order to enhance the mathematical validation of 
the LBP method we prove here an analog of theorem 1 
of the CCR. Note that in case of the LBP there is no 
analog of Theorem 2 proven for the CCR because the 
“drilled” domains have lost a part of the information 
about the pixel statistics of different orders. 

 
Theorem 1 (LBP). Let S  be a gray scale or color, 
periodic image with a primitive cell of a size 1τ  pixels 
in one and 2τ  in the other direction. Then any LBP 
histogram ( )( )bH JI ,  of image S has no more than 
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21ττ=T  non-zero values, no matter how large is a 
scanning window.  

 
Proof.   Let start one pixel step scanning of a periodic 
image with a window of a size equal to or larger than a 
size of primitive cell. Then, after 1τ  steps in one 
direction we meet the same (simply connected) domain 
of pixels. In other direction we face with the same 
pixel configuration after 2τ  steps. None of the 
domains is repeated in between these steps. Thus, the 
number of different simply connected domains we 
meet is equal to 21ττ=T  exactly. The calculation of 
the LBPs is based on the comparison of the intensity of 
neighboring pixels with that of a central one. Because 
this calculation can transform different gray level 
neighborhoods into the same LBP, then the number of 
different LBP neighborhoods is less than or equal to

21ττ=T . When the size of a sampling window is less 
than that of a texture primitive cell, even in one of the 
two directions, then the number of different simply 
connected domains we face with is equal to 21ττ=T  
at most. The calculation of the LBPs can even reduce 
this number. That completes the proof of the theorem.   

 
As in the case of the CCR, this theorem helps one to 
recognize a (pseudo-) periodic texture analyzing its 
LBP histogram. Some simple examples of 1-D textures 
are given here in order to illustrate the theorem. Each 
digit of a sequence represents a pixel intensity.   
Example 1. The texture is given by the “infinite” 
repeating of the five pixel primitive cell (…12223…), 

5=τ . Let a 1-D scanning window be 5 pixel size. 
Then, the histogram of four pixel LBP neighborhoods 
has five peaks at (0111), (1110), (0000), (1111) and 
(1011). Those are different LBPs of the five pixel 
domains (12223), (22231), (22312), (23122) and 
(31222) respectively. In case of 3 pixel scanning 
window we have only three different LBPs (01), (11) 
and (00), because the following three domains (222), 
(223) and (312) are transformed into the same LBP 
(11).  
Example 2. The texture is generated by the five pixel 
primitive cell (…11223…), 5=τ . Let a 1-D scanning 
window be 5 pixel size. The four pixel LBPs (0011), 
(0110), (0000), (1111) and (1111) are the maps of the 
following five pixel domains (11223), (12231), 
(22311), (23112) and (31122) respectively. We see that 

the LBP histogram has only four peaks because the last 
two domains have the same LBP (1111).  

4 Comparative analyses of the CCR and 
the LBP  

In order to complete a comparison between the two 
methods, CCR and LBP, we outline the main virtues of 
both. As shown in Section 1, the intrinsic 
characteristics of a texture are expressed by virtue of 
correlation functions. To capture the essence of a 
texture, the CCR was developed as a transform of 
binary images that preserves the correlation moments 
of different orders between image pixels; this is 
expressed by the two theorems in Section 2. The CCR 
histogram is used as a feature vector for tasks of 
recognition, classification and segmentation of images. 
The extension of the CCR to the grey level and color 
images is done by means of thresholding in a 
preprocessing of an image. On the contrary, the LBP is 
a “synthesized” method in which the binarization (with 
a local one pixel threshold only) is inseparable from 
the feature extraction. Features are expressed by means 
of the spectrum of binary texture units. The CCR 
method implements the two operations separately. First 
an image is binarized (or multi thresholded, if 
necessary) and then features are extracted by means of 
the coordinated cluster transform. The separation of the 
two operations provides more flexibility to the CCR 
method, because the binarization can be done by 
means of a large variety of techniques with both local 
and global thresholds.  

The difference between the CCR and LBP methods 
is seen even greater if we apply both transforms to a 
binary image (an “asymptotic” case of grey level 
images). The coordinated cluster transform does not 
change the pattern of a binary neighborhood. In the 
case of LBP we have: 0=ip  if ci II < , 1=ip  if 

ci II ≥  (see Section 3). This rule applied to a binary 
image gives the following two vary different results. If 
the value of the central pixel of a neighborhood is 

1=cp , then the pattern of the 8 pixel vicinity does not 
change. Nevertheless, when 0=cp , then every pixel 
of the LBP vicinity takes the value 1=ip  (i = 1, 2, .., 
8). The latter result is completely different of that 
given by the CCR (see Figure 3). So, all domains that 
have the central pixel intensity 0=cp  are 
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transformed into the unique LBP neighborhood of 
white pixels only. This effect of a local one pixel 
threshold of the LBP method can cause some trouble in 
the analysis and classification of images with a 
significant number of such domains. In this case we 
expect an appreciable difference between the rate of 
classification by means of the CCR and the LBP 
methods. In practice the LBP transform is applied to 
gray level images where the variation in the intensity 
of adjacent pixels is gradual compared to that in a 
binary image. That diminishes the negative effect.  
 

 
                                                              
 
    
    
 
 

 
Fig. 3. The CCR and LBP calculation of a binary domain 

with the central pixel intensity 0=cp  

 
Another aspect distinguishing the CCR from the 

LBP is that the scanning window of the CCR can have 
any suitable dimension JI ×  and needs not be 
centrally symmetric. This gives an advantage in 
dealing with correlation moments of different ranges 
and orders (short, medium and long range 
correlations). On the contrary, only odd numbers JI =  
are used in the LBP, since there has to be a central 
pixel as a reference for the binarization. In addition, 
the central pixel is excluded from the vicinity after 
being used as a threshold; that is the vicinity is a 
“drilled” cluster, a double connected domain. In terms 
of mathematical topology, the CCR uses a sphere and 
the LBP uses a torus to cover a texture pattern. These 
are not reducible to each other, as are the CCR and the 
LBP methods.  

In order to illustrate, rather than prove differences 
between the two methods we give here an example of 
multi class classification using the CCR and the LBP. 
The same conditions are maintained for both methods. 
A minimum distance classifier is used to assign test 
images into 8 classes. Eight color images of the Rosa 
Porriño granite, which were converted to gray level 
ones, are used as source (master) images of the classes 
(see Figure 4).  

 

    
    RP2_00R1        RP2_10R1       RP2_23R1       RP2_30R1 

    
    RP2_41R1        RP2_52R1       RP2_61R1       RP2_72R1 

 
Fig. 4. Eight source images of Rosa Porriño granite 

 
Original 512x512 master images have been shrunk to 
204x204 (0.4x0.4 reduction) and 102x102 (0.2x0.2 
reduction) pixel size in order to diminish an image 
scale influence over the classification. 3x3 
neighborhoods of the LBP and the CCR are used to 
create a feature vector (histogram). Note that a 
similarity of source images is a challenging problem of 
the classification of subimages randomly extracted of 
those. Forty subimages extracted randomly from each 
master image are used to generate a class prototype 
histogram (the medium of 40 histograms) of both the 
CCR and the LBP. 300 subimages of the same size 
randomly extracted from each source image are used as 
test images, giving in total 3200 test subimages in each 
experiment.  

We made four experiments. In the first, eight 
source images were of 204x204 pixel size (0.4x0.4 
reduction), while prototype and test subimages were 
154x154 pixels. In the second, we changed the 
subimage size for 102x102 pixels remaining the size of 
source images. The third and fourth experiments were 
done with the 102x102 source images (0.2x0.2 
reduction) and 77x77 and 51x51 subimages, 
respectively. The classification of a test subimage is 
considered to be correct when it is assigned to the class 
of source image, on the contrary it is a 
misclassification. In the four experiments the average 
efficiency of classification into the 8 classes is equal 
to: 1) 97.6% LBP and 100% CCR; 2) 97.4% LBP and 
98.4% CCR; 3) 97.5% LBP and 100% CCR; 4) 96.8% 
LBP and 100% CCR. Thus, in these particular 
experiments the CCR method has proven to be slightly 
superior to the LBP.  

The algorithm of the coordinated cluster transform 
is simple and the CCR does not preserve information 
about the location of scanning window. In this respect 

CCR 

LBP 

= 1 

= 0 
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the CCR is similar to the LBP. The matrix 
representation of the coordinated cluster transform 
besides the two theorems, given in Section 3, enhances 
more the mathematical basis of the CCR. On the 
contrary, the LBP method lacks the mathematical 
foundation (at least published) that weakens its formal 
mathematical justification. The main applications of 
the two methods, the CCR and the LBP, are 
classification, recognition and segmentation of texture 
images. 

5   Conclusions 

The local binary pattern and the coordinated cluster 
representation are two methods used efficiently for the 
classification and segmentation of images. Both the 
CCR and the LBP histograms can be interpreted as a 
kind of image decomposition. The conceptual analysis 
of the two methods shows that they are not reducible 
each to the other. In terms of mathematical topology 
they are as much different as a sphere and a torus. 

The LBP is a technique of statistical feature 
extraction by means of the binarization of a 
neighborhood of every image pixel with a local 
threshold determined by the central pixel, the latter 
being excluded from the neighborhood. As a 
consequence there is no analog to Theorem 2 of the 
CCR method, though an analog to Theorem 1 was 
proven above. The scanning window of the LBP 
always has odd dimensions, the CCR does not. Since 
the CCR method requires the thresholding as a stage of 
image preprocessing, both global and local threshold 
methods can be used depending on a potential 
application. Note that an image binarization with local 
adaptable threshold can easily fail to detect visual 
defects because it is used to restore the texture of a 
defect. So it can not distinguish the real defect, caused 
by a shade variation, from the effect of non 
homogeneous illumination.  

Matrix representation of the coordinated cluster 
transform, reported in this work, enhances the 
mathematical basis of the method and facilitates the 
use of the powerful computer programs of MATLAB. 
The CCR and the LBP can be seen loosely as different 
bases in a feature space of local characteristics of an 
image. For example, in a linear vector space there exist 
an infinite set of distinct bases to span any vector of 
the space. One of the bases can be preferable in order 
to solve a given mathematical problem. Nevertheless, 

every basis will lead to the same solution. This is the 
case of the CCR and the LBP; they are “bases” of 
different kind. The efficiency of classification and 
recognition of images by both methods can be very 
similar in many cases. Each of the two methods, 
especially the advanced versions of those, has its own 
virtues (Ojala et al., 2002). The question is how to get 
more profit of that. Concerning this question we think 
that the mathematical foundations of a method provide 
a deeper understanding of its use.  
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