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Abstract. The paper suggests a stationary model of the vertical distribution of the concentration of suspended sediment in the 
bottom layer of a natural water body with a flat bottom. The model explains the concentration distribution, formed jointly by the 
settling of suspended particles and turbulent diffusion. The flow is assumed geostrophic above the bottom-influenced layer, while 
in the bottom layer the effect of turbulent diffusion by the large-scale turbulence constituent is assumed to dominate over the 
diffusion effect caused by the small-scale turbulence constituent. It is shown that for the characteristic diffusion length scale of the 
eddies much smaller than the height of the Ekman bottom boundary layer the model results in an analytic expression for the 
vertical distribution of the concentration of suspended sediment, which includes also the case with the presence of the lutocline. 
The model outcome is compared with the results of a laboratory experiment with sand-injected flume flow. 
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INTRODUCTION 
 
The development of models of the vertical distribution 
of suspended sediments is essential for solving a number 
of practical tasks like the prediction of sediment transport 
and estimation of water quality in bottom layers of natural 
water bodies. Rouse (1937) initiated the activity in  
this direction. He suggested a formula for the vertical 
distribution of the concentration of suspended sediments 
formed jointly by the settling of suspended particles and 
turbulent diffusion, with the quadratic dependence of the 
coefficient of vertical turbulent diffusion on the vertical 
coordinate. Rouse�s idea has been followed in several 
investigations (e.g. Orton & Kineke 2001; Yu & Tian 
2003; Belinsky et al. 2005; Huang et al. 2008), with 
rather diverse approximations of the dependence of the 
coefficient of vertical turbulent diffusion on the vertical 
coordinate. The major disadvantage of these approaches 
has been insufficient physical justification of the adopted 
dependences, revealed mostly in attempts to explain the 
concentration distributions with the presence of the 
lutocline. The lutocline was first observed in data 
measured in the Severn Estuary and Inner Bristol 
Channel (Kirby & Parker 1983) and was thereafter 
studied in several experimental (Kirby 1986, 1992; 
Mehta 1988; E & Hopfinger 1989; Wolanski et al. 1989; 
Mehta & Srinivas 1993) and model investigations 
performed on semi-empirical background (Smith & 
Kirby 1989; Gross & Nowell 1990; Noh & Fernando 

1991; Toorman & Berlamont 1993; Michallett & Mory 
2004; Yoon & Kang 2005). 

The model suggested in the current paper differs from 
the models used in the above-mentioned publications  
in the following points: (a) the theory of rotationally 
anisotropic turbulence (the RAT theory) (Heinloo 1984, 
1999, 2004) is applied, (b) the dominant effect in the 
turbulent mixing process is attributed to the large-scale 
turbulence constituent immediately interacting with the 
average flow and (c) the concentration distribution with 
the presence of the lutocline is explained without the 
necessity to include the buoyancy effect. It is shown that 
for the characteristic diffusion length scale of the eddies 
much smaller than the height of the Ekman bottom 
boundary layer the model results in an analytic expression 
for the vertical distribution of the concentration of 
suspended sediment, which includes both cases, with 
and without the lutocline. According to this expression, 
the lutocline is present for small settling velocity and/or 
large bottom shear stress values. The concentration 
gradient in the lutocline is determined by the scale of 
diffusion of turbulent eddies. No lutocline was revealed 
for large settling velocity and/or small bottom shear 
stress. The derived formula is tested against laboratory 
data reported in Coleman (1986), where the lutocline 
was not observed. Data on detailed model testing for the 
case with the presence of the lutocline are not available, 
therefore in this case the comparison is limited to showing 
the qualitative similarity between the model-predicted 
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effects and the respective effects observed and/or 
modelled in other studies (Kirby & Parker 1983; E & 
Hopfinger 1989; Noh & Fernando 1991; Michallett & 
Mory 2004). 

Dealing with the geophysical application of the 
suggested model, the paper belongs to a series of 
works aspiring to introduce the RAT theory into the 
solution of geophysical problems (Toompuu et al. 
1989; Heinloo & Võsumaa 1992; Võsumaa & Heinloo 
1996; Heinloo & Toompuu 2004, 2006, 2007, 2008, 
2009; Heinloo 2006). 
 
 
MODEL  SETUP 
Introductory  notes 
 
The model is set up in the right-hand coordinate system 
( , , )x y z  (with z  directed upwards) for the area of a 
water body with a flat bottom. It is assumed that the 
suspension concentration is sufficiently small to not 
affect the constant water density. All considered fields 
are assumed to depend on the vertical coordinate only. 
In particular, for the average concentration of the 
suspension q  and for the average velocity field u  we 
shall assume that 
 

( ),q q z=  
 

( ( ), ( ), 0).x yu z u z=u   (1) 
 
The medium turbulence driving the turbulent diffusion is 
specified according to the model of the Ekman bottom 
boundary layer, modified by the RAT theory. 
 
The  relation  between  the  vertical  distribution  of  
the  concentration  of  suspended  sediments  and  the  
turbulence  properties  of  the  medium 
 
Within the assumptions made in introductory notes the 
equation for the concentration of suspended sediments 
q  is represented as 
 

( ),g q q⋅∇ = ∇ ⋅ ⋅∇u K   (2) 
 
where (0, 0, )g gu= −u  is the settling velocity of 
suspended sediments, (0, 0, )z∇ = ∂ ∂  and K  is the 
tensor of turbulent diffusion of suspended sediments. 
( ,q q′ ′⋅∇ = = −h vK  where h  is the turbulent flux of 
suspended sediments, q′  and ′v  denote the concentration 
fluctuation and the velocity fluctuation, respectively.) 

The basic distinguishing feature of the current model 
consists in specification of flux h  according to the RAT 
theory (Heinloo 2004). Let 

 2

,
s s

−∂ ∂
=
∂ ∂
e eR  

 
 
where v′ ′=e v  and s  is the length of the ′v  streamline 
curve, denote the curvature radius of the velocity 
fluctuation streamline. Using identity ∗′ = ×v R Ω  in 
which 2 ,R∗ ′= ×Ω v R  we have for :h  
 

0 ,q′= + ×h h RΩ   (3) 
 
where ∗=Ω Ω  and 0 ( )qΩ′ ′ ′= ×h R  ( ).∗′ = −Ω Ω Ω  
The first and the second term on the right side of Eq. (3) 
describe the transport of the suspended sediment by the 
turbulence constituents not contributing and contributing 
to ,Ω  respectively. The quantity ,Ω  having the dimension 
of angular velocity, quantifies the average effect of 
orientation of eddy rotation. Within Kolmogorov�s 
(Kolmogorov 1941) complement to Richardson�s 
conception about cascading turbulence (Richardson 1922) 
Ω  is interpreted as a characteristic of the large-scale 
turbulence constituent interacting immediately with  
the average flow. Unlike this large-scale turbulence 
constituent, the turbulence constituent which does not 
contribute to Ω  is interpreted as the small-scale turbulence 
constituent. Proceeding from the latter interpretation, we 
shall assume for 0h  that 
 

0 0 ,k q= ∇h   (4) 
 
where 0k  is constant. The expression (Heinloo 2008) 
 

1 2 ,q k q k q′ = ∇ × + ∇R Ω   (5) 
 
where 1 2, 0k k >  are constants, presents a vanishing for 

0q∇ =  approximation of q′R  linear on q∇  and .Ω  
Using Eqs (3)�(5), we shall have for K  
 

2
0 1 2

� � �[ ] ,k k kΩ= + − + ⋅1 1 EΩΩ ΩK   (6) 
 
where �1  and �E  are the unit and the Levi-Civita tensors 
and .Ω = Ω  It follows from q= ⋅∇h K  and Eq. (6) 
that for q  depending on the vertical coordinate only the 
vertical component of Ω  does not influence the vertical 
diffusion process, therefore we shall assume further that 
 

( ( ), ( ), 0),x yz zΩ Ω=Ω  
 
due to which Eq. (2) simplifies to 
 

2
0 1( ) .g

q qu k k
z z z

Ω∂ ∂ ∂ − = + ∂ ∂ ∂ 
  (7) 
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Further discussion is restricted to the constant settling 
velocity gu  and to 0k  negligibly small compared with 

2
1 .k Ω  For the boundary conditions of Eq. (7), specified 

as 
 

0q q=  at 0,z =  
 
and 
 

0q→  for ,z H>>  
 
where H  is the characteristic thickness of the layer 
containing suspended sediments, from (7) we shall have 
 

0 2
1 0

exp .
z

gu dzq q
k Ω

 
= − 

 
∫   (8) 

 
Equation (8) relates the vertical distribution of q  to the 
particular specification of the dependence ( )zΩ Ω=  
and 1.gu k  
 
Determination  of  the  Ω -field 
 
To determine Ω , we shall assume, in addition to the 
assumptions adopted in introductory notes, that 

0 0| | | |,ω>> =Ω ω  where 0ω  is the normal projection  
of the angular velocity of the Earth�s rotation. The 
equations of the RAT theory (Heinloo 2004), 
corresponding to the model conditions adopted in 
introductory notes and to Ω  specified above, are 
represented as 
 

0( )∆ 2 2 0,h zp µ γ γ ρ−∇ + + + ∇ × + × =u uΩ ω   (9) 
 
 

4( ) 2 0.zθ γ κ γ∆ − + + ∇ × =uΩ Ω   (10) 
 
Equation (9) differs from the corresponding equation  
in Heinloo (2004) by an additional (Coriolis) term.  
In Eqs (9) and (10): ( , , 0);h x y∇ = ∂ ∂ ∂ ∂ ∇z = (0,0,∂/∂z); 22 ;z∇ = ∂ ∂ µ  is the coefficient of turbulence shear 
viscosity; γ  is the coefficient of turbulence rotational 
viscosity; κ  is the coefficient quantifying the 
suppression of the average effect of prevailing 
orientation of eddy rotation by the cascading process; 
Jθ  is the diffusion coefficient of the angular momentum 

,JΩ  where J  is the effective moment of inertia the 
square root of which determines the characteristic spatial 
scale of eddies contributing to .Ω  Above the Ekman 
layer Eq. (10) vanishes and Eq. (9) reduces to the geo-
strophic balance condition 02 ,h pρ × = ∇U ω  where U  
is the geostrophic velocity. 

We shall specify the boundary conditions for u  and 
Ω  as follows: 
for Ez H>>  
 

→u U  and 0,→Ω   (11) 
 
for 0z =  
 

0
0zz

µ
=

∂
=

∂
τu  and 

0

1 .
2z= = ∇×uΩ   (12) 

 
Equation (12) states that the stress at 0z =  is determined 
by the turbulent shear stress only. 

Using notations ,x yu u iu= +!  x yiΩ Ω Ω= +!  and 
x i y∇ = ∂ ∂ + ∂ ∂!  instead of ,u  Ω  and h∇  (i  is the 

imaginary unit), we can rewrite Eqs (9) and (10) as 
 

( ) 2 ( ) 0,u i i f u Uµ γ γ Ω ρ′′ ′+ + − − =! !! !   (13) 
 
 

4( ) 2 0,i uθΩ γ κ Ω γ′′ ′− + + =! ! !   (14) 
 
where 02 0f ω= >  is the Coriolis parameter and 

.U i p fρ= − ∇! !  In Eqs (13) and (14) and hereafter the 
prime denotes derivative with respect to the vertical 
coordinate z. The solution of Eqs (13) and (14) for constant 

,µ  ,γ  ,κ  θ  and ρ  satisfying conditions (11) read as 
 

1 1 2 2exp( ) exp( ),u U C z C zλ λ= + +!!   (15) 
 
 

1 1 1 2 2 2exp( ) exp( ),a C z a C zΩ λ λ= +!   (16) 
 
where 1λ  and 2λ  are the roots of the biquadratic 
equation 
 

4 2
2 2 2 2

1 2

1 0i iλ λ
 

− + + = 
 " " " "

  (17) 

 
with negative real parts. In (16) and (17) 
 
 

1
1 2

1

2
,

4( )
ia γλ

γ κ θλ
=

+ −
2

2 2
2

2
4( )

ia γλ
γ κ θλ

=
+ −

  (18) 

 
and 
 

2

4 ( )1 ,
( )
efµ γ κ

θ µ γ
+

=
+" 2 2

1 2

1 1 ,
ef

f fρ ρ
µ γ µ

= < =
+" "

 

 
where ( ).efµ µ γκ γ κ= + +  
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Boundary conditions in Eq. (12), written in terms  
of u!  and Ω!  as 0(0)u τ µ′ =! !  and 0(0) 2 ,zi uΩ =′=! !  
determine 1C  and 2C  in Eqs (15) and (16) as 
 

0 2
1

1 2 2 1

,
b

C
b b

τ
µ λ λ

= −
−

! 0 1
2

1 2 2 1

,
b

C
b b

τ
µ λ λ

=
−

!
  (19) 

 
where 
 

1 1 1,
2
ib a λ= − 2 2 2 .

2
ib a λ= −   (20) 

 
Using Eq. (19), we have from Eqs (15) and (16) 
 

0
2 1 1 2

1 2 2 1

11 ( exp ( ) exp ( )) (21)u U b z b z
b bU

τ
λ λ

λ λµ
 

= − − − 

!!! !

 
and  
 

0
1 2 1 2 1 2

1 2 2 1

1 [ exp ( ) exp ( )].a b z a b z
b b

τ
Ω λ λ

µ λ λ
= − +

−
!!  (22) 

 
Equations (21) and (22) represent the solution for the 
Ekman bottom boundary layer, generalized by the RAT 
theory. Equation (8) together with Eq. (22) determines 

( ).q q z=  
 
 
APPROXIMATE  FORMULA  FOR  ( )q q z=  
 
Consider the situation described by Eqs (8) and (22) for 
"  restricted to 1 2, .<<" " "  In particular this inequality 
has been found holding for turbulent flows in plane 
channels, round tubes and between rotating cylinders 
(Heinloo 1999, 2004), where instead of 1"  and 2"  the 
characteristic transverse length scale of the flow region 
had been used. For 1 2, ,<<" " "  Eq. (17) simplifies to 
 

4 2 2( ) ( ) 0,iλ λ ε− + =" "  
 
where 2 ,ε = " "  from which we have 
 

1
1 ,λ = −
" 2

2

1 .
2
iλ +

= −
"

  (23) 

 
Equation (23) determines the flow in the Ekman bottom 
boundary layer through two characteristic lengths: ,"  
characterizing the turbulent diffusion, and 2 ,EH≡"  
determining the thickness of the Ekman bottom 
boundary layer for the turbulence viscosity identified 

with .efµ  Using Eq. (23), we have for 1,a  2 ,a  1b  and 
2b  in Eqs (18) and (20) 

 

1
1 ,
2

a i µ γ
γ
+

= −
" 2

2

1(1 ) ,
( ) 2 2

a i γ
γ κ

= −
+ "

 

 

1
1 ,

2
ib µ

γ
= −

" 2
2

1
2 2

ib κ
γ κ

−
= −

+"
 

 
and, consequently, 
 

expef

ef

zu U
µ µ
µµ

 −  = − −    
!! "

"
 

 
 

2 0
2 2

1 exp exp ,
4ef

z zi π τ
µ

    
+ − −          

!"
" "

  (24) 

 

( ) exp
2 ( ) ef

i zκ µ γΩ
µ γ κ µ

 +  = −   +  
!

"
 

 
 

0
2 2

exp exp .
( ) ef

z ziµγ τ
γ κ µ

   
+ −    +    

!
" "

  (25) 

 
For restriction ,µ γ<<  justified by the Richardson�
Kolmogorov turbulence conception about the cascading 
nature of turbulence, and for γ  of the order of ,κ  
Eq. (25) simplifies to 
 

0exp .
2
i zΩ τ
µ

 = − 
 

! !
"

  (26) 

 
From Eq. (26) it follows for | |Ω Ω= !  that 
 

0 exp ,
2

zτ
Ω

µ
 = − 
 "

 

 
where 0 0| |τ τ= !  and, according to Eq. (8), 
 

0
2exp 1 exp .zq q D  = −    

"
"

  (27) 

 
In Eq. (27) 
 

2

2
1 0

2
.gu

D
k

µ
τ

=  
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Equation (27) determines ( )q q z= as depending on 0q  
and on two parameters D  and ."  

If gu  is relatively large or 0τ  sufficiently small  
so that 1,D >"  then according to Eq. (27), we have 

2 2 0q z∂ ∂ >  for all z  and | |q z∂ ∂  decreases 
monotonously with z  increasing. This situation is 
typical of coarse-grained sediments like sand. For 

1D <"  the entire suspension layer can be divided into 
two layers, one with 2 2 0q z∂ ∂ <  (located immediately 
next to the boundary) and the other with 2 2 0,q z∂ ∂ >  
separated by an inflection point at 0.5 ln ( ).z D= − " "  

There is a concentration jump (lutocline) in the 
concentration distribution for 1,D <<"  explaining the 
lutocline as emerging for a relatively large bottom shear 

0τ  and/or small settling velocity ,gu  typical of fine-
grained sediments like clay or mud. Figures 1 and  
2 illustrate the presence of the indicated two types  
of vertical distributions of sediment concentrations in 
terms of 0q q  and ,q Q  where 

0
,Q qdz

∞
= ∫  as functions 

of zζ = "  for fixed "  and for different values of .D"  
For fixed D  the lutocline appears steeper for smaller "  
(Fig. 3). In Fig. 4 a modelled vertical distribution of  
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Fig. 1. Modelled distributions of 0q q  (a) and q Qξ = "  (b) as functions of zζ = " calculated according to Eq. (27). The 
calculations are performed for 1="  m and for 4D ="  (curve 1), 3D ="  (curve 2), 2D ="  (curve 3) and 1D ="  (curve 4). 
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Fig. 2. Modelled distributions of 0q q  (a) and q Qξ = "  (b) as functions of zζ = "  calculated according to Eq. (27). The
calculations are performed for 1="  m and for 110D −="  (curve 5), 210D −="  (curve 6), 310D −="  (curve 7) and 410D −="  (curve 8). 
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Fig. 3. Modelled distributions of 0q q  as functions of z  
calculated according to Eq. (27). The calculations are performed 
for 5 110 mD − −=  and for 0.5="  m (curve 1), 1="  m 
(curve 2), 1.5="  m (curve 3) and 2.2="  m (curve 4). 

 
 

normalized suspension concentration q Q  is compared 
with the laboratory data from Coleman (1986) for two 
series of 20 (Fig. 4a) and 10 (Fig. 4b) individual flume 
flow runs, each run injected with a different amount of 
suspended matter. The suspension was formed of sand 
particles with the diameter of 0.105 and 0.210 mm  
in the first (20 runs) and the second (10 runs) series, 
respectively. Due to missing lutocline data suitable  
for testing Eq. (27), we just refer to the qualitative 

resemblance of the distributions depicted in Fig. 2 with 
the similar observed and/or modelled distributions 
published in Kirby & Parker (1983), E & Hopfinger 
(1989), Noh & Fernando (1991) and Michallett & Mory 
(2004). 
 
 
CONCLUSIONS 
 
A stationary model of the vertical distribution of the 
concentration of suspended sediments in a turbulent 
boundary flow over a flat bottom is presented. The 
distinguishing feature of the suggested model consists in 
considering the concentration distribution formed by the 
large-scale turbulence, which, according to the applied 
theory of rotationally anisotropic turbulence (the RAT 
theory), is considered having a prevailing orientation of 
eddy rotation. The model results in an analytic expression 
covering both observed types of the vertical distribution 
of concentration � with and without the presence of the 
lutocline. The generation of turbulence driving the vertical 
mixing of suspended sediment is considered within the 
Ekman bottom boundary layer model generalized by the 
RAT theory. 

For the model parameters "  and ,D  estimated from 
the observed data, the derived formula for the vertical 
distribution of the concentration of suspended sediments 
can be applied in circulation models for calculation of 
the water quality and for sediment transport. In these 
calculations the vertical distribution of the concentration 
of sediments is treated as quasi-stationary, and the 
horizontal distribution as quasi-homogeneous. 
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Fig. 4. Modelled dependences of q Q  on z  (curves) compared with data (dots) of 20 runs from the first series (a) and of 10 runs 
from the second series (b) reported in Coleman (1986). The theoretical curves are calculated for 110 mD −=  and 2="  m. 
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Looduslikes  veekogudes  suspenseerunud  setete  vertikaalse  jaotuse  mudel 

 
Jaak Heinloo ja Aleksander Toompuu 

 
On esitatud mudel setete hõljumi kontsentratsiooni vertikaalse jaotuse kirjeldamiseks looduslike veekogude 
põhjakihis. Mudel põhineb hõljumiosakeste settimise ja turbulentse segunemise tasakaalutingimusel. Mudeli eripära 
seisneb keskkonna turbulentsi ja sellest põhjustatud efektide käsitlemisel pöördeliselt mitteisotroopse turbulentsi 
teooria raames ning mudeli lõpptulemuse esitamises analüütilise avaldisena hõljumi kontsentratsiooni vertikaalse 
jaotuse arvutamiseks. On näidatud, et lõpptulemuse vormilisele lihtsusele vaatamata kirjeldab tuletatud avaldis 
hõljumi vertikaalset jaotust nii lutokliini olemasolu kui selle puudumise korral. Mudelarvutusi lutokliini puudumise 
juhul on võrreldud laboratoorse katse andmetega. 
 
 




