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A enzima purina nucleosídeo fosforilase de Schistosoma mansoni (SmPNP) é um alvo molecular 
atrativo para o tratamento de importantes doenças infecciosas parasitárias, com especial ênfase 
para o seu papel na descoberta de novos fármacos contra a esquistossomose, uma doença tropical 
que afeta cerca de 200 milhões de pessoas em 74 áreas endêmicas no mundo todo. No presente 
trabalho, a potência inibitória foi determinada e estudos das relações quantitativas entre a estrutura 
e atividade (QSAR), baseados em descritores e fragmentos, foram desenvolvidos para uma série 
de 9-deazaguaninas que atuam como inibidores da SmPNP. Parâmetros estatísticos significantes 
(modelo baseado em descritor: r2 = 0,79; q2 = 0,62, r2

pred = 0,52; e modelo baseado em fragmento: 
r2 = 0,95; q2 = 0,81; r2

pred = 0,80) foram obtidos, indicando o potencial dos modelos para compostos 
ainda não testados. O modelo baseado em fragmento foi então usado para predizer a potência 
inibitória de um conjunto teste de compostos, e os valores preditos estão em boa concordância 
com os resultados experimentais.

The enzyme purine nucleoside phosphorylase from Schistosoma mansoni (SmPNP) is an 
attractive molecular target for the treatment of major parasitic infectious diseases, with special 
emphasis on its role in the discovery of new drugs against schistosomiasis, a tropical disease that 
affects millions of people worldwide. In the present work, we have determined the inhibitory 
potency and developed descriptor- and fragment-based quantitative structure-activity relationships 
(QSAR) for a series of 9-deazaguanine analogs as inhibitors of SmPNP. Significant statistical 
parameters (descriptor-based model: r2 = 0.79, q2 = 0.62, r2

pred = 0.52; and fragment-based model: 
r2 = 0.95, q2 = 0.81, r2

pred = 0.80) were obtained, indicating the potential of the models for untested 
compounds. The fragment-based model was then used to predict the inhibitory potency of a test 
set of compounds, and the predicted values are in good agreement with the experimental results.

Keywords: purine nucleoside phosphorylase, schistosomiasis, fragment-based, descriptors, 
QSAR

Introduction

Purine nucleoside phosphorylase (PNP, EC 2.4.2.1) 
plays an important role in the purine salvage pathway 
and has long been explored in drug design for the therapy 
of cancer and auto-immune diseases.1 More recently, the 
PNP enzyme has also been investigated as a potential 
target for the treatment of parasitic infectious diseases, 
such as malaria and schistosomiasis.2-4 In particular, 
the parasite Schistosoma mansoni, one of the etiologic 

agents of human schistosomiasis, lacks the de novo 
pathway for purine biosynthesis and depends entirely 
on the salvage pathway for its purine requirements for 
synthesis of RNA and DNA.5-9 In this context, the use of 
selective PNP inhibitors from S. mansoni (SmPNP) can 
cause purine starvation, leading to death of the parasite. 
Schistosomiasis is a major infectious disease that affects 
200 million people in 74 endemic areas worldwide.4 
Praziquantel, the only effective drug for the treatment of 
the disease, has been in use for more than two decades and 
significant resistance has emerged in different geographic 
regions.10-12
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This scenario prompted us to investigate several 
9-deazaguanine analogs, which have been described as 
promising SmPNP inhibitors.10 In the present study, we 
have collected values of IC50 for a series of ground-state 
inhibitors of SmPNP and used the data to create descriptor- 
and fragment-based quantitative structure-activity 
relationship (QSAR) models which show substantial 
predictive promise. Our strategy took advantage of previous 
structure-based drug design (SBDD) studies that revealed 
essential requirements for SmPNP binding affinity and 
selectivity (e.g., binding to the hydrophobic pocket near 

Phe161, H-bonding to Tyr201).10 The results reported 
herein revealed important molecular requirements for the 
design of new PNP inhibitors with improved potency.

Experimental

Biochemical assays and data set composition

The data set of twenty six SmPNP inhibitors (1‑26, 
Table 1) employed in this work consists of one guanine 
(18), one 9-substituted-guanine (21), one 9-substituted-

Table 1. Chemical structure and biological activity of deazaguanine analogs employed in QSAR model development
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oxadiazolo-guanine (23) and several 9-substituted-9-
deazaguanine derivatives, kindly supplied by BioCryst 
Pharmaceuticals Inc. Kinetic measurements were 
carried out spectrophotometrically with the aid of a 
Cary100 UV-Vis spectrophotometer, using a standard 
coupled assay as previously described.10,13-16 The 
reaction mixture contained 5  nmol  L-1 SmPNP (as the 
monomer), 50 mmol L-1 phosphate buffer (K3PO4, pH 7.4), 
10 μmol L-1 inosine, and xanthine oxidase 40 milliunits mL‑1. 
Uric acid formation was monitored at 293 nm, in 
triplicate at 25  oC (extinction coefficient for uric acid,  
e293 = 12.9 L mmol‑1 cm-1).15 The percentage of inhibition 
was calculated according to the following equation:

% of Inhibition = 100 × (1 − Vi / V0)

where, Vi and V0 are the initial velocities (enzyme activities) 
determined in the presence and in the absence of inhibitor, 
respectively. Compound 3, a known SmPNP inhibitor, was 
used as a positive control for enzyme inhibition.10 Values 
of IC50 (concentration of compound required for 50% 
inhibition of SmPNP) for the whole series of inhibitors were 
independently determined by making rate measurements for 
at least six inhibitor concentrations. The type of inhibition 
was determined for a subset of potent inhibitors as described 
previously. All kinetic parameters were determined from 
the collected data by nonlinear regression employing the 
SigmaPlot enzyme kinetics module. The values represent 
means of at least three individual experiments. Values of 
IC50 for inhibitors 1-3, 5-9, 11, 12, 14 and 19-26, measured 
at 10 mmol L-1 inosine, are in good agreement with those 
previously described,17 whereas comparable values are 

not available for the other inhibitors of the data set. The 
chemical structures of all SmPNP inhibitors used in the 
modeling studies were constructed in the SYBYL 8.0 
package (Tripos Inc., St. Louis, USA) and the energy was 
computed in a single point calculation using the AM1 semi-
empirical method (keywords: 1SCF XYZ ESP NOINTER 
SCALE=1.4 NSURF=2 SCINCR=0.4 NOMM) as 
implemented in the MOPAC module. A hierarchical cluster 
analysis (HCA), carried out with Pirouette 4.0 software 
(Infometrix, Washington, USA), using the complete linkage 
clustering method and Euclidean distances, guided the 
division of the complete dataset into training (compounds 
1‑19, Table 1) and test (compounds 20‑26, Table 1) sets so 
that both datasets present structural diversity and cover the 
whole dataset potency range.

Descriptor-based QSAR approach

About 2,500 2D molecular descriptors, including 
topological descriptors, connectivity indices, 2D 
autocorrelation and physicochemical descriptors and so 
forth, were computed using the DRAGON 5.5 software 
(Talette SRL, Milan, Italy) and then pre-selected as follows: 
descriptors with high inter-correlation (≥ 97%) or those 
poorly related to the biological property (r2 < 0.10) were 
discarded. This strategy yielded 218 physicochemical 
descriptors that were employed to build multiple linear 
regression models (MLR) with up to 3 descriptors per 
model, as available in MOBYDIGS 1.0 software (Talette 
SRL, Milan, Italy). The MLR models were generated by 
genetic algorithm using the following fitting criteria: QUIK 
rule (0.005), asymptotic Q2 rule (−0.005), redundancy 
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Table 1. continuation
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RP rule (0.1) and overfitting RN rule (0.01).18 Due to the 
stochastic nature of the genetic algorithm, the search was 
carried out using ten independent populations of 100 models 
each that evolved for more than 1000 generations or at least 
one million steps. The descriptors found in the 10 best 
models of each population were polled together, autoscaled 
and employed to develop partial least squares (PLS) 
models, as implemented in the PIROUETTE 4.0 software 
(Infometrix, Washington, USA).

Fragment-based QSAR strategy

Statistical HQSAR modeling was carried out as 
previously described.19-21 Briefly, each molecule in the 
dataset is broken down into several unique structural 
fragments (linear, branched, and overlapping), which 
are arranged within the bins of a fixed length array 
(53 to 401 bins) to form a molecular hologram. The bin 
occupancies can be considered as structural descriptors 
encoding compositional and topological molecular 
information. Parameters that affect hologram generation 
such as hologram length, fragment size and fragment 
distinction (atoms (A), bonds (B), connections (C), 
hydrogen atoms (H), chirality (Ch), and donor/acceptor 
(DA)) were evaluated during model development, using 
default fragment size 4-7 over the 12 default series of 
hologram lengths. Next, the influence of fragment size 
was further investigated for the best models. All models 
generated in this study were investigated using the full 
cross-validated r2 (q2) partial least squares (PLS) leave-
one-out (LOO) method.

QSAR model validation

External validation was carried out using a test set of 
seven compounds, which were not considered for the purpose 
of QSAR model development. The predictive ability of the 
models was estimated as described previously.22

Results and Discussion

In the present work, a series of twenty six structurally 
diverse compounds (Table 1, and Supplementary 
Information) was evaluated to determine the in vitro 
potency (IC50) through kinetic studies. As expected based 
on previous studies,10,17 these are competitive inhibitors of 
SmPNP. For instance, double reciprocal plots of velocity 
as a function of substrate for compounds 15 and 16 
show that Vmax (intercept value of 1/v0) is constant at all 
inhibitor concentrations, whereas the apparent value of 
KM (x-intercept, −1/KM) changes with increasing inhibitor 

concentration (Figure  1). This experimental behavior is 
observed for all SmPNP inhibitors, whose IC50 values range 
from 0.1 to 200 mM, a factor of potency of 2000.

Although structure-activity relationships (SAR) have 
been widely described in the last decades for ground-
state mammalian PNP inhibitors, the opposite situation 
is true for SmPNP inhibitors. It was only more recently 
that the first SAR studies were provided in the literature, 
describing key structural requirements for SmPNP affinity 
and selectivity.10,17 These studies suggest that hydrophobic 
interactions in the active site of SmPNP play an important 
role in the binding affinity of the inhibitors. In spite of 
their significance and usefulness, the SAR information, of 
qualitative nature, would gain strategic advantages in drug 

Figure 1. Competitive inhibition profile of compounds 15 and 16 
against SmPNP. Kinetic experiments were conducted in the presence 
of increasing concentrations of the inhibitors (upper graphic: 15: 
0.2 µmol L-1 (), 0.4 µmol L-1 () and 0.8 µmol L-1 (r); lower graphic: 
16: 2.5 µmol L-1  (), 5.0 µmol L-1  () and 10.0 µmol L-1  (r)). The 
absence of inhibitor is depicted by .
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design through the incorporation of statistical predictive 
modeling capabilities.23 In this context, QSAR models are 
useful tools for the quantitative analysis of the internal 
consistency and predictive ability of different data sets 
of compounds, with the advantage of revealing important 
molecular features associated with biological activities.24,25

The synergy between descriptor-based and fragment-
based QSAR models has been a valuable approach to boost 
SAR studies, due to the complementary nature of these 
ligand-based drug design (LBDD) strategies.26,27 Thus, 
our initial efforts focused on the development of QSAR 
models by means of topological descriptors that account 
for molecular size, shape and branching through graph 
theoretical invariants (using the DRAGON 5.5 software). 
Additional information regarding molecular charge and 
polarizability was also considered through the weighting 
of the descriptors.28 A total of 2489 descriptors were 
calculated, and the highly correlated and those that convey 
no information towards the biological activity (constant and 
r2 < 0.10) were excluded from further consideration. This 
protocol afforded 218 descriptors that were employed to 
build a number of preliminary QSAR models by multiple 
linear regression (MLR), containing up to 3 descriptors. 
While the best MLR model obtained showed good internal 
statistical parameters (n = 19, r2 = 0.82, q2 = 0.78), the 
predictive ability was poor (r2

pred = 0.17). This suggests 
that the chemical and structural features captured in the 
model do not extend beyond the chemical space of training-
set compounds, limiting its usefulness in drug design. 
Therefore, we resorted to more powerful statistical tools, 
such as PLS. For this purpose, the descriptors found in 
the 10 best models from each population were gathered, 
autoscaled and used for further independent QSAR 
modeling.

Although our initial QSAR models showed inferior 
statistical parameters (r2 = 0.64 and q2 = 0.51, and 
3 components), the iterative exclusion of the descriptors 
that presented a lower contribution to the regression vector 
led to improved models. The final QSAR model (r2 = 0.79, 
q2 = 0.62, and 2 principal components) (Table 2) showed an 
increased predictive ability (r2

pred = 0.52) when compared to 
the MLR models (Figure 2 and Table 3), though insufficient 
for guiding the design of more potent SmPNP inhibitors.

Thus, the analysis of the descriptors that have major 
contributions to the QSAR regression vector would depict 
misleading structure-activity relationships that hold true 
only for the training set compounds. In fact, the low 
predictive ability of descriptor-based QSAR models may 
suggest that compounds 22 and 24 are outliers, however, 
as can be seen below, a careful investigation indicates that 
their high residual values are a consequence of topological 

Figure 2. Plot of predicted vs. experimental values of pIC50 for the 26 
SmPNP inhibitors (training and test sets) according to the 2D descriptor-
based QSAR model.

Table 2. Descriptors considered in the final QSAR model

Symbol Definition / Description

MSD mean square distance index (Balaban)

Jhetv Balaban-type index from van der Waals weighted distance 
matrix

PW4 path/walk 4 - Randic shape index

X3A Average connectivity index chi-3

MATS6e Moran autocorrelation - lag 6 / weighted by atomic 
Sanderson electronegativities

MATS8e Moran autocorrelation - lag 8 / weighted by atomic 
Sanderson electronegativities

EEig02x eigenvalue 02 from edge adj. matrix weighted by edge 
degrees

EEig08x eigenvalue 08 from edge adj. matrix weighted by edge 
degrees

EEig01r eigenvalue 01 from edge adj. matrix weighted by resonance 
integrals

BEHv1 highest eigenvalue n. 1 of Burden matrix / weighted by 
atomic van der Waals volumes

BEHv6 highest eigenvalue n. 6 of Burden matrix / weighted by 
atomic van der Waals volumes

BELv6 lowest eigenvalue n. 6 of Burden matrix / weighted by atomic 
van der Waals volumes

GGI10 topological charge index of order 10

SEigv eigenvalue sum from van der Waals weighted distance matrix

SEige eigenvalue sum from electronegativity weighted distance 
matrix

descriptors shortcomings, such as ineffective sampling of 
the deazapurine-analogs chemical space.

As part of our strategies in medicinal chemistry, we 
employed the fragment-based hologram QSAR (HQSAR) 
approach to investigate the crucial structural features 
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related to SmPNP inhibition. HQSAR is an interesting 
method for this particular study, as no 3D structural 
information is required (e.g., macromolecular target, 
putative binding information).20,21 HQSAR investigations 
require the evaluation of parameters that specify the length 
of the hologram, as well as the size and type of fragment 
that are to be encoded. Several combinations of fragment 
distinction were considered during the QSAR modeling 
runs. The generation of molecular fragments was carried 
out using the following fragment distinctions: atoms (A), 
bonds (B), connections (C), hydrogen atoms (H), chirality 
(Ch), and donor and acceptor (DA). In order to assess the 
process of hologram generation, several combinations of 
these parameters were considered using the fragment size 
default (4-7) as follows: A/B/C, A/B/C/H, A/B/C/H/Ch, 
A/B/C/H/Ch/DA, A/B/H, A/B/Ch, A/B/DA, A/B/H/Ch, 
A/B/Ch/DA, A/B/H/DA and A/B/H/Ch/DA (Table 4). The 
patterns of fragment counts from the training set inhibitors 
were then related to the experimental biological data using 
PLS, as summarized in Table 4.

The influence of fragment distinction parameters has 
considerable effects on the quality of the models. As it can 
be seen in Table 4, the best statistical results among all 
models were obtained for models 5 (q2 = 0.79, r2 = 0.96, 
and 4 components) and 8 (q2 = 0.81, r2 = 0.95, and 
4 components). These models were derived using A/B/H 
and A/B/H/Ch as fragment distinction, respectively. The use 
of other fragment distinctions into the molecular holograms 
did not improve the statistical quality of the models as 
shown in Table 4. It is worth noting that due to the intrinsic 
nature of different and highly diverse data sets, several 
different combinations of fragments must be considered in 
order to generate the best final HQSAR model.29

Previously, it has been shown that an extensive 
H-bonding network is responsible for the binding 
affinity of the 9-deazaguanine derivatives into the active 
site of SmPNP.10 This is in good agreement with our 
present studies, in which the presence of the fragment 
distinction H is highlighted in the best models 5 and 8. 
The influence of different fragment size in the statistical 

Table 3. Predicted pIC50 values according to the descriptor-based and fragment-based QSAR models

Compound Experimental pIC50

Descriptor-based model Fragment-based modela

Predicted pIC50 Residual Predicted pIC50 Residual

20 5.85 5.73 0.12 6.13 −0.28

21 4.91 4.90 0.01 5.02 −0.11

22 6.30 7.52 −1.22 6.27 0.03

23 6.82 7.11 −0.29 6.34 0.48

24 4.41 5.53 −1.13 5.09 −0.68

25 4.41 5.89 0.42 5.01 −0.60

26 6.30 5.01 −0.61 6.31 −0.01

aModel derived using the fragment distinction A/B/H/Ch, and fragment size 4-7.

Table 4. Influence of fragment distinction over the statistical parameters of HQSAR models, using default fragment size (4-7)

Model Fragment distinction q2 r2 SEE HL N

1 A/B/C 0.54 0.91 0.68 151 3

2 A/B/C/H 0.65 0.97 0.61 401 4

3 A/B/C/H/Ch 0.74 0.95 0.53 353 4

4 A/B/C/H/Ch/DA 0.67 0.97 0.60 353 4

5 A/B/H 0.79 0.96 0.47 199 4

6 A/B/Ch 0.73 0.95 0.54 353 4

7 A/B/DA 0.72 0.96 0.55 83 4

8 A/B/H/Ch 0.81 0.95 0.46 59 4

9 A/B/Ch/DA 0.73 0.95 0.54 257 4

10 A/B/H/DA 0.73 0.97 0.54 199 4

11 A/B/H/Ch/DA 0.65 0.94 0.61 199 4

q2, cross-validated correlation coefficient; r2, noncross-validated correlation coefficient; SEE, cross-validated standard error; HL, hologram length; 
N, optimal number of components; fragment distinction: A, atoms; B, bonds; C, connections; H, hydrogen atoms; Ch, chirality; DA, donor and acceptor.
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Figure 3. Plot of predicted vs. experimental values of pIC50 for the 26 
SmPNP inhibitors (training and test sets) for the best HQSAR model 
(A/B/H/Ch).

Table 5. Influence of different fragment sizes on the statistical parameters of the two best fragment-based models

Fragment distinction Fragment size q2 r2 SEE HL N

A/B/H 2-5 0.70 0.96 0.57 199 4

3-6 0.77 0.97 0.50 199 4

4-7 0.79 0.96 0.47 199 4

5-8 0.57 0.94 0.68 199 4

A/B/H/Ch 2-5 0.70 0.95 0.56 59 4

3-6 0.49 0.95 0.73 59 4

4-7 0.81 0.95 0.46 59 4

5-8 0.68 0.94 0.58 59 4

parameters was further investigated for the two best 
HQSAR models (models 5 and 8, Table 4). Fragment size 
parameters control the minimum and maximum length 
of fragments to be included in the hologram fingerprint. 
Table 5 summarizes the statistical results for the distinct 
fragment sizes used to generate the QSAR models. As it 
can be seen, the variation of fragment size did not lead to 
the generation of better HQSAR models, and, therefore, 
the best statistical results were obtained with default 
fragment size (4-7) in both cases (A/B/H, model 5; and 
A/B/H/Ch, model 8).

It is important to note that the high q2 values obtained 
for the best HQSAR models do not imply automatically 
that these models would possess high predictive ability 
for external compounds.30 The most important test of a 
QSAR model is its ability to predict the property value for 
new structurally related compounds. The predictive power 
of the best HQSAR model derived using the training set 
molecules (model 8; fragment distinction A/B/H/Ch, and 
fragment size 4-7) was assessed by predicting pIC50 values 
for 7 test set molecules (compounds 20-26, Table 1) that 
were completely excluded during the training of the model. 
The results are listed in Table 3, and the graphic results for 
the experimental vs. predicted activities of both training set 
and test set are displayed in Figure 2. The good agreement 
between experimental and predicted values for test set 
compounds indicates the reliability of the constructed 
HQSAR model (r2

pred = 0.80). The graphic results further 
show the consistency between experimental and predicted 
pIC50 values of both training and test sets. The low residual 
values shown in Table 3 suggests that the HQSAR model 
obtained can be used to predict the biological activity 
of novel compounds within this structural class. The 
predicted values fall close to the experimental pIC50 values, 
deviating by less than 0.7 log units. The results show that 
the test set compounds are well predicted without any 
outliers (Figure 3). On the other hand, the quality of the 
results obtained for the external prediction of model 5 

(r2
pred = 0.71), under similar conditions, was not comparable 

with that of the model 8 (results not shown).
Useful fragment-based QSAR models should not only 

have statistical quality and predictive power, but also 
provide hints about which molecular fragments may be 
important to activity. Usually, the interpretation of the 
descriptors found in QSAR equations gives some clues 
about key electronic and steric components, which are 
essential for the biological property. Besides that, HQSAR 
has the advantage of offering an alternative and easier way 
to analyze the individual atomic contributions through a 
visual assessment of the different molecules of the data 
set. During the HQSAR analysis, the molecules can be 
colored to reflect their contribution (e.g., positive, neutral 
or detrimental) to the biological activity of interest. The 
colors reflecting poor contributions are at the red end 
of the spectrum (red, red orange, and orange), while the 
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Figure 4. HQSAR contribution map: 2D and 3D chemical structure of the SmPNP inhibitors 14 (IC50 = 18.28 µM), 15 (IC50 = 0.1 µM) and 26 (IC50 = 0.15 µM).

colors reflecting favorable contributions are at the green 
end (yellow, green blue, and blue). Atoms colored white 
reflect neutral contributions.31 Surprisingly, comparison of 
the contribution maps of compounds 14, 15 and 26 reveal 
that the purine ring might have opposing effects toward 
potency (Figure 4). This result can be explained by the 
H-bonding requirements in the SmPNP active site. On one 
hand, it has been proposed that compounds possessing 
aryl groups in the 9 position of the purine ring (such as 15 
and 26) can reach the hydrophobic pocket in the vicinity 
of Phe161.17 On the other hand, 9-substituted compounds 
with shorter and non-planar chains can bind loosely, being 
easily displaced by water molecules. Taken together, these 
evidences clarify the opposite role of the fragments of 
compound 14 in the H-bonding to Asn245 and Glu203 
(reddish colored, poor H-bonding capability) in comparison 
with the corresponding fragments in compounds 15 and 26 
(colored in green, stronger H-bonding network).

Conclusions

In spite of the urgent need for novel drugs for 
tropical infectious diseases, the investments in research 
and development (R&D) have been inadequate, as a 
consequence of the lack of interest shown by the major 
pharmaceutical and biotechnological companies. In order 
to circumvent this problem, most of the efforts devoted to 
the area of neglected diseases is observed in academia and 
non-governmental organizations, through public-private 
partnerships.32 However, the main focus is on the early 
efforts to identify good targets or identify new leads for 
individual diseases, leaving a crucial gap in the current 
research and development pipeline. In this work, we 
have generated important descriptor- and fragment-based 
QSAR models for a series of 9-deazaguanines as potent 

inhibitors of SmPNP, showing high internal and external 
consistency. In addition, the fragment-based model 
exhibited high predictive power for new compounds 
within this structural diversity. The molecular information 
gathered in this study should be useful for future efforts 
in the design of new inhibitors having increased affinity 
and selectivity.

Supplementary Information

Supplementary data are available free of charge at  
http://jbcs.sbq.org.br as pdf file.
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Figure S1. Hierarquical cluster analysis of all deazapurine analogs employed in QSAR model development. Test set compounds are marked with *.


