
EFFECTS OF PRIOR DETECTIONS ON ESTIMATES OF DETECTION 

PROBABILITY, ABUNDANCE, AND OCCUPANCY

Resumen.—Los métodos de muestreo que explican la probabilidad de detección usualmente requieren detecciones repetidas de 

aves individuales o visitas repetidas a un sitio para realizar conteos o recolectar datos de presencia-ausencia. Los encuentros iniciales con 

especies individuales o individuos de una especie podrían influenciar las probabilidades de detección de encuentros subsecuentes. Por 

ejemplo, los observadores pueden tener una mayor probabilidad de detectar repetidamente una especie o un individuo una vez que están 

conscientes de la presencia de esta especie o individuo en un sitio en particular. No considerar estos efectos podría conducir a estimadores 

sesgados de la probabilidad de detección, abundancia y ocupación. Evaluamos los efectos de detecciones previas en tres bases de datos 

que difirieron dramáticamente en las especies, localización geográfica y método de conteo de las aves. Encontramos una fuerte evidencia 

(pesos del criterio de información de Akaike de % a %) a favor de modelos que permitieron incorporar los efectos de detecciones 

previas. Estos modelos produjeron estimados de la probabilidad de detección, abundancia y ocupación que difirieron substancialmente 

de aquellos producidos por los modelos que ignoraron los efectos de las detecciones previas. Discutimos las consecuencias de los efectos 

de las detecciones previas para varios métodos de muestreo y brindamos recomendaciones para evitar estos efectos a través del diseño de 

los muestreos o mediante su modelado cuando no pueden ser evitados.
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Abstract.—Survey methods that account for detection probability often require repeated detections of individual birds or repeated 

visits to a site to conduct counts or collect presence–absence data. Initial encounters with individual species or individuals of a species 

could influence detection probabilities for subsequent encounters. For example, observers may be more likely to redetect a species or 

individual once they are aware of the presence of that species or individual at a particular site. Not accounting for these effects could result 

in biased estimators of detection probability, abundance, and occupancy. We tested for effects of prior detections in three data sets that 

differed dramatically by species, geographic location, and method of counting birds. We found strong support (AIC weights from % to 

%) for models that allowed for the effects of prior detections. These models produced estimates of detection probability, abundance, 

and occupancy that differed substantially from those produced by models that ignored the effects of prior detections. We discuss the 

consequences of the effects of prior detections on estimation for several sampling methods and provide recommendations for avoiding 

these effects through survey design or by modeling them when they cannot be avoided. Received  January , accepted  July .
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Human behavior is influenced strongly by expectation of a 

specific result (e.g., Bargh et al. , Lee et al. ). This is partic-

ularly problematic in surveys involving repeated detections of indi-

viduals or species at survey locations. After detecting an individual 

or species at a survey location, an observer is likely to have in-

creased expectations of detecting that individual or species again 

at the same location. This increased expectation may result in an 

increased probability of redetection compared with the probability 
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of first detection, which could adversely affect estimates of abun-

dance (N) and occupancy (ψ) if the models do not account for it.

It is now widely acknowledged that wildlife species or indi-

viduals of species are not always detected when present at a survey 

location (Williams et al. , MacKenzie et al. , Royle and 

Dorazio ). Therefore, not accounting for detection probabil-

ity (p) can lead to underestimation of abundance and of the pro-

portion of sites occupied by a target species (occupancy). Many 

methods of incorporating detection probability rely on repeated 

detections of individuals or species in the same survey location to 

estimate abundance—for example, time-of-detection (Alldredge et 

al. ), repeated counts (Royle ), or occupancy (e.g., single-

season occupancy models; MacKenzie et al. ). However, many 

practitioners may not consider the possibility that the initial detec-

tion of an individual or species at a survey location will influence 

the probability of detecting that individual or species at a later time. 

Not accounting for the influence of these prior detections may ad-

versely affect estimates of abundance and occupancy. For example, 

consider a repeated presence–absence survey in which a site is vis-

ited  times by  observer to survey Northern Bobwhite (Colinus 

virginianus), with only  days between site visits. On the first visit, 

an individual is detected. On the second visit, the observer may have 

a higher probability of detecting Northern Bobwhites because he or 

she already knows that the site is occupied and expects to detect the 

species again. This increase in the probability of redetection could 

result in substantial underestimation of occupancy. In the case of 

the time-of-detection method, consider a point-count survey for 

Eastern Towhees (Pipilo erythrophthalmus) in which each point 

count lasts  min and is divided into four .-min intervals. If an 

observer first hears an Eastern Towhee in the second interval, they 

may focus their attention on this individual and be more likely to 

hear it in the  subsequent intervals. This increase in the probabil-

ity of redetection is analogous to a “trap-happy” response or behav-

ioral effect in traditional capture–recapture methods and is known 

to result in underestimation of abundance unless it is accounted for 

in the model (Williams et al. ). Traditionally, behavioral effects 

in capture–recapture methods are considered to be inherent to the 

animals that are being captured (i.e., it is the animal that responds 

to the trap). However, we generally use the term to refer to the ob-

server’s response to the animal. For this reason, we adopt the term 

“observer-based behavioral effects” to distinguish our use of the term 

from the more traditional use. Note that in the repeated presence–

absence example, the observer-based behavioral effect occurs at the 

species-level, but in the time-of-detection example, the observer-

based behavioral effect occurs at the level of individual birds.

Here, we provide evidence of observer-based behavioral ef-

fects in three data sets that differ substantially by species, geo-

graphic location, and sampling method. To our knowledge, this 

is the first demonstration that prior detections affect estimates of 

occupancy or abundance based on repeated count and presence–

absence data. Additionally, we provide methods for testing spe-

cies-level effects of prior detection in the program PRESENCE 

(see Acknowledgments).

METHODS

Example data.—The first data set we consider is from a landscape-

scale survey of Northern Bobwhite in eastern North Carolina. 

Data were collected by the same  observers on  farms using 

the time-of-detection method with -min point counts divided 

into four .-min intervals. Detailed descriptions of the survey 

methods and sites are provided in Riddle () and Riddle et al. 

(b).

The second data set we consider is the Northern Spotted Owl 

(Strix occidentalis caurina) data set available as part of PRES-

ENCE and described in Franklin et al. () and MacKenzie et 

al. (). Observers visited  sites in northern California up to 

 times each year, but we restricted our analysis to data from  

for simplicity.

The final data set is from a range-wide survey of the eastern 

population of Painted Bunting (Passerina ciris). Observers vis-

ited  sites up to  times. During each -min visit, observers 

recorded each individual encountered within a -m radius. The 

same observer conducted all counts at a particular site. Repeated 

visits to a site occurred either on separate days or during the same 

day but were separated by at least  h. A detailed description of 

survey methods can be found online (see Acknowledgments).

Analysis.—The Northern Bobwhite data were analyzed in the 

program MARK using the “Huggins closed captures” option (Hug-

gins , ; White and Burnham ). We considered the 

following three models for our purposes here: M
b(tod)

 (observer-

based behavioral effect at the individual level), M
t(tod)

 (time ef-

fect), and M
(tod)

 (constant detection probability). Note the “(tod)” 

component of the subscript, which indicates that these models are 

from time-of-detection data.

The Northern Spotted Owl data were analyzed in PRESENCE 

using the “single-season occupancy” option. To test for species-

level observer-based behavioral effects, we used a simple indica-

tor variable as a sampling covariate to indicate whether  or more 

individuals had been detected previously, as recommended by 

MacKenzie et al. (). For example, the site history , , , ,  for 

the Northern Spotted Owl occupancy data would have sampling 

covariates , , , ,  to indicate that prior exposure had not oc-

curred on visits – but had occurred by visits  and  because the 

species was initially detected on visit . We considered the follow-

ing  models for this data set: M
b(occ)

 (observer-based behavioral 

effect at the species level), M
t(occ)

, and M
(occ)

. Note the “(occ)” com-

ponent of these subscripts, which indicates that these models are 

from the repeated occupancy surveys.

The Painted Bunting data were analyzed in PRESENCE us-

ing the “Royle biometrics” option (Royle ). Again, we used a 

simple indicator variable as a sampling covariate to indicate prior 

detection of  or more individuals. For example, the site history 

, ,  for Painted Buntings would have sampling covariates , , 

 to indicate that prior exposure had not occurred on visit  (not 

possible) but had occurred for all subsequent visits because the 

species was initially detected on the first visit. We considered the 

following three models for this data set: M
b(rc)

 (observer-based be-

havioral effect at the species level), M
t(rc)

, and M
(rc)

. Note the “(rc)” 

component of the subscript, which indicates that these models are 

from the repeated-counts data set.

Our rationale for including an M

 and M

b
 model in each 

model set was to provide a comparison of models that assumed 

constant detection probability (M

) with those that allow subse-

quent detection probabilities to differ from initial detection prob-

abilities (M
b
). The inclusion of an M

t
 model in each model set was 
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to ensure that M
b
 models were detecting a systematic increase 

in redetection probability and not just an increase in overall de-

tection probability over the course of each survey. Again, we em-

phasize that the M
b
 model for the Northern Bobwhite data set 

represents an increase in the redetection probability for individ-

ual animals, but the M
b
 models for the Northern Spotted Owl and 

Painted Bunting data sets represent an increase in the redetection 

probability at the species level. For all model sets, we used Akai-

ke’s information criterion (AIC) for model selection and inference 

(Burnham and Anderson ).

RESULTS

Model M
b(tod)

 was the top model for the Northern Bobwhite time-

of-detection models, with % of the AIC weight (Table ). Esti-

mates of N and p are provided in Table . M
b(occ)

 was the top model 

for Northern Spotted Owl occupancy models, with % of AIC 

weight (Table ). Estimates of ψ and p for all Northern Spotted 

Owl models are provided in Table . M
b(rc)

 was the top model for 

Painted Bunting abundance models, with % of the AIC weight 

(Table ). Estimates of N and p for all Painted Bunting models are 

provided in Table .

Probability of subsequent detections increased in all data 

sets after an initial detection. In other words, the M
b
 models took 

the form of a trap-happy response in every case. The probability of 

detection increased by % from . to . for Northern Bob-

white. The probability of detection increased by % from . to 

. for Northern Spotted Owl. The probability of detection in-

creased by % from . to . for Painted Bunting. M

 models 

that did not account for observer-based behavioral effects had 

detection probability estimates of ., ., and . for North-

ern Bobwhite, Northern Spotted Owl, and Painted Bunting, 

respectively.

DISCUSSION

There was strong support for a prior detection effect on detection 

probability in all data sets. As expected, the probability of rede-

tection increased after an initial detection. The strong evidence 

of this pattern in three surveys with different methodologies, geo-

graphic locations, and target species suggests that this pattern 

may be common in surveys that use individual detection or site 

histories.

Consequences in time-of-detection surveys.—In time-

of-detection surveys, the consequences of not accounting for 

individual-level observer-based behavioral effects when they oc-

cur (i.e., not using an M
b
 model when observer-based behavioral 

effects are present) depend on whether the probability of redetec-

tion is higher or lower than the probability of initial detection. 

When the probability of redetection is higher than initial detec-

tion (as in our Northern Bobwhite example), abundance is under-

estimated. For example, the abundance estimate for Northern 

Bobwhite was ~.% lower in the M
(tod)

 model than in the M
b(tod)

model. Again, this is analogous to a trap-happy response in clas-

sic M
b
 capture–recapture models, except that in this example it 

is the observer (trap) that is responding to the organism. It is also 

possible for the probability of redetection to be lower than initial 

detection (e.g., an observer may ignore or tune out an individual 

after an initial encounter). This is analogous to a “trap-shy” re-

sponse and would result in overestimated abundance (Williams et 

al. ). However, we expect that this scenario is much less com-

mon than that of elevated redetection probabilities. For example, 

in a preliminary analysis of detection histories from  Breeding 

Bird Survey (BBS) routes in North Carolina collected by  observ-

ers using the time-of-detection method, we found strong evidence 

of elevated redetection probabilities for  of  focal species, in-

cluding American Robin (Turdus migratorius), Carolina Wren 

TABLE 1. Model-selection results for Northern Bobwhite, Northern Spotted Owl, and Painted Bunting data sets.

Data set Model AIC AIC AIC weight
Model 

likelihood
Number of 
parameters Deviance

Northern Bobwhite Mb(tod) 2,493.50 0.00 1.000 1.000 2 2,489.50
Mt(tod) 2,519.33 25.83 0.000 0.000 4 2,511.33
M0(tod) 2,523.95 30.45 0.000 0.000 1 2,521.95

Northern Spotted Owl Mb(occ) 281.16 0.00 0.9754 1.000 3 275.16
M0(occ) 289.31 8.15 0.0166 0.0170 2 285.31
Mt(occ) 290.76 9.60 0.0008 0.0082 9 272.76

Painted Bunting Mb(rc) 2,623.99 0.00 0.8338 1.0000 3 2,617.99
M0(rc) 2,627.65 3.66 0.1337 0.1604 2 2,623.65
Mt(rc) 2,630.48 6.49 0.0325 0.039 4 2,622.48

TABLE 2. Estimates (± SE) of abundance (N) and detection probability (p) for Northern Bobwhite models.

p̂

Model N̂ Initial Subsequent Interval 1 Interval 2 Interval 3 Interval 4

Mb(tod) 287.84  9.29 0.45  0.04 0.66  0.02 NA NA NA NA
Mt(tod) 268.09  2.95 NA NA 0.51  0.03 0.64  0.03 0.62  0.03 0.61  0.03
M0(tod) 268.33  3.00 0.59  0.02 NA NA NA NA NA
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at every site are corrected for the expected number of unobserved 

individuals. The consequences of ignoring effects of prior detec-

tion on repeated counts are complex. In our Painted Bunting ex-

ample, the estimate of abundance was .% lower in the M
(rc)

model than in the M
b(rc)

 model. However, preliminary simulations 

suggest that when there is an increased probability of redetection, 

the amount and direction of under- or overestimation in abun-

dance from repeated-count models depends on initial detection 

probability and site-specific abundance (R. S. Mordecai unpubl. 

data).

Species versus individual effects in repeated simple counts 

and presence–absence surveys.—With respect to repeated counts 

and presence–absence surveys, we have focused here on species-

level effects of prior detections. However, individual-level effects 

of prior detections, like those observed in the Northern Bobwhite 

example, may occur when repeated visits are closely spaced in 

time. Species-level effects occur when an observer is more likely 

to detect a species because they expect the species to occur at a 

site. Individual-level effects occur when an observer is more likely 

to detect an individual because they already know its general loca-

tion. For example, imagine a -min survey that is split into  back-

to-back -min counts. Once an observer detects an individual in a 

specific location during the first minute, the observer will expect 

to detect that individual again in the same general location.

Individual effects also could result in substantial under- or 

overestimation of occupancy and abundance from occupancy 

models. Furthermore, strong support for species-effects models 

may actually represent an individual effect. The identity of indi-

viduals is typically not known in occupancy models, and without 

information on individual identity there is no way to separate spe-

cies effects from individual effects. Separating species and individ-

ual effects is not essential for presence–absence data, because the 

approach described here essentially specifies a removal-based oc-

cupancy model (e.g., Mordecai et al. ) because data collected 

after the first detection of a species at a site are not used to esti-

mate occupancy. However, individual effects are particularly prob-

lematic for repeated-count data because our proposed approach to 

account for species effects does not remove the influence induced 

(Thryothorus ludovicianus), Common Yellowthroat (Geothlypis 

trichas), Eastern Towhee, Eastern Bluebird (Sialia sialis), Indigo 

Bunting (Passerina cyanea), Northern Mockingbird (Mimus poly-

glottos), Northern Cardinal (Cardinalis cardinalis), and Red-eyed 

Vireo (Vireo olivaceus) (J. D. Riddle et al. unpubl. data).

When repeated samples are closely spaced, as time inter-

vals in time-of-detection surveys are, other behavioral patterns 

(e.g., singing bouts) could also contribute to increased redetec-

tion probabilities. Depending on the length and frequency of the 

behavior, recurring behaviors could appear to be observer-based 

behavioral effects. However, we believe that in most cases, the 

observer-based behavioral effects are a more pervasive sampling 

issue. For example, the  aforementioned species from our BBS 

work do not have identical vocalization patterns, yet there is sub-

stantial support for M
b(tod)

 models for each species. Regardless of 

the relative contribution of observer-based behavioral effects and 

recurring behaviors (if present), when behavioral effects are pres-

ent, the M
b(tod)

 model we present is the most appropriate way to 

obtain estimates of abundance.

Consequences in repeated presence–absence surveys.—

Estimates of occupancy will be artificially low for models that 

use presence–absence data to estimate occupancy and do not ac-

count for positive behavioral effects (either observer-based or tra-

ditional) when they occur. For example, the estimate of occupancy 

for Northern Spotted Owl was .% lower in the M
(occ)

 model 

than in the M
b(occ)

 model. In occupancy models that use presence–

absence data, the probability that a site is occupied but the spe-

cies is never detected is calculated on the basis of detections at 

occupied sites. If there is a higher detection probability for rede-

tections, the overall probability of detection from those occupied 

sites will be greater than the probability of detection at occupied 

sites where the species is never detected. This will result in an ar-

tificially low estimate of the probability that no individuals are de-

tected at an occupied site.

Consequences in repeated-count surveys.—Unlike occupancy 

models, which estimate the probability of detecting a species (i.e., 

at least  individual of that species), repeated-count models esti-

mate the probability of detecting an individual. Therefore, counts 

TABLE 3. Site-level estimates (  SE) of occupancy ) and detection probability (p) for Northern Spotted Owl models.

p̂

Model ˆ Initial Subsequent Visit 1 Visit 2 Visit 3 Visit 4 Visit 5 Visit 6 Visit 7 Visit 8

Mb(occ) 0.66  0.08 0.41  0.08 0.69  0.11 NA NA NA NA NA NA NA NA
M0(occ) 0.62  0.07 0.59  0.04 NA NA NA NA NA NA NA NA NA
Mt(occ) 0.63  0.07 NA NA 0.40  0.08 0.58  0.09 0.58  0.09 0.57  0.11 0.73  0.10 0.80  0.10 0.57  0.19 1.00  0.00

TABLE 4. Site-level estimates (  SE) of abundance (N) and detection probability (p) for Painted Bunting models.

p̂

Model N̂ Initial Subsequent Visit 1 Visit 2 Visit 3

Mb(rc) 0.63  0.07 0.31  0.04 0.40  0.07 NA NA NA
M0(rc) 0.55  0.04 0.40  0.2 NA NA NA NA
Mt(rc) 0.55  0.04 NA NA 0.38  0.03 0.38  0.04 0.41  0.04
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by individual effects. In repeated-count models, all data are used 

to estimate abundance. Our approach assumes that once a species 

is detected at a site, the detection probability changes in the same 

way for all individuals. If prior knowledge of an individual’s lo-

cation results in artificially high detection-probability estimates, 

abundance estimates will be artificially low. We are currently in-

vestigating the utility of removal-based repeated-count models in 

removing potential individual effects in these circumstances.

Situations where the effect of prior detection could be par-

ticularly problematic.—The strongest individual-level effects of 

prior detection are most likely in time-of-detection surveys with 

low to moderate numbers of individuals, because observers will 

likely have difficulty in tracking individuals at survey locations 

with high densities of target species. Note that the latter situation 

also violates an important assumption of the time-of-detection 

method, that individual animals are tracked accurately. Stronger 

individual effects also are expected in environments where indi-

vidual animals are located and tracked easily. For example, All-

dredge et al. () found less support for M
b
 models for species 

sampled in heavily forested environments.

The strongest species-level effects for repeated counts will 

occur when the same observer repeatedly visits the same sites dur-

ing a given year or season to collect count data for a small number 

of rare species. Observers will expect common species to be pres-

ent at many sites; therefore, a previous detection will likely have 

a small effect on the expectation of redetection. By contrast, ob-

servers will expect rare species at only a limited number of sites, 

and a prior detection could greatly influence their expectation of 

redetection. Note that for many other reasons, rare species are of-

ten promoted as prime candidates for sampling with presence–

absence methods (Pollock ). However, we want to emphasize 

again that observer-based behavioral effects are relatively easy to 

account for (regardless of whether they occur at the species or in-

dividual level) with presence–absence methods, whereas observer-

based behavioral effects at the individual level are potentially more 

problematic when repeated counts are used.

Species effects also can occur across multiple years when the 

same observer repeatedly surveys a site. For example, in the BBS, 

the same observers typically visit the same sites for many years. 

During their first year surveying a site, observers often detect fewer 

birds than in subsequent years (Kendall et al. ). This could be 

caused by a species-level observer-based behavioral effect resulting 

from an observer’s lack of knowledge about the bird species typi-

cally present along their route during the first year of sampling.

In repeated counts or presence–absence surveys, we would 

expect the strongest individual effects to occur when visits are 

closely spaced in time. Shorter periods between repeated counts 

or presence–absence surveys could result in both a higher prob-

ability that the organism is in the same general location as the pre-

vious visit and a higher probability that the observer remembers 

that location. In the most extreme case, where surveys are back to 

back, an individual could begin vocalizing or visibly moving at the 

end of the first survey and continue into the beginning of the sec-

ond survey.

Survey-design recommendations.—There may be few practical 

survey-design recommendations that will reduce the effects of prior 

detections for time-of-detection surveys. This is especially true 

given that the very situations in which time-of-detection methods 

may be most effective (environments where individuals can easily 

be tracked and survey locations with low to moderate densities of 

each target species) are precisely the situations in which observ-

er-based behavioral effects may be most pronounced. Given the 

pervasiveness of observer-based behavioral effects in time-of-

detection data sets, practitioners may be tempted to always use re-

moval methods (e.g., Farnsworth et al. ). We would caution 

against this because there are unique situations when M
b
 models 

are not favored (e.g., Riddle et al. a). Using time-of-removal 

surveys instead of time-of-detection surveys when observer-based 

behavioral effects are not present will result in less efficient es-

timates of detection probability and abundance (Alldredge et al. 

). Fortunately, individual-level observer-based behavioral ef-

fects can be detected and dealt with easily via established M
b
 mod-

els using tools like MARK. In addition, time-of-detection data can 

always be analyzed as time-of-removal data.

Tradeoffs exist among the number of repeated counts or pres-

ence–absence surveys necessary for desired statistical power, the 

level of independence between sites due to spacing, and closure 

or constant occupancy rates during a sampling season when us-

ing repeated presence–absence methods. Certain aspects of these 

tradeoffs will depend on the species under investigation and avail-

able resources. However, there are some general recommendations 

that practitioners should follow to avoid the effects of prior detec-

tions of species on repeated-count or presence–absence data.

Ideally, practitioners should avoid protocols in which the same 

observer revisits the same survey locations. This is especially im-

portant when the number of total survey locations is small (i.e., 

fewer sites will likely make any prior detections easier to remem-

ber). Instead, observer assignments should be randomized or ro-

tated, when possible, such that each observer visits a site only once. 

Note that rotating observers has the added benefit of reducing 

observer-induced heterogeneity among sites (MacKenzie and Royle 

). In some studies, it also may be possible to reduce observer 

expectations by renaming sampling locations or providing differ-

ent approach notes for subsequent visits. In addition to the steps 

described above, researchers should take precautions to limit the 

transfer of information on species occupancy at each site to reduce 

species-level effects of prior detection. When alternating observers, 

each observer should avoid discussing the results of specific visits 

with others who may perform subsequent visits to the same site.

If logistical constraints require observers to revisit the same 

sites, it may be helpful to increase the amount of time that elapses 

between visits. Although the optimal time between visits will vary 

by species behavior (e.g., vocalization and movement rates) and 

sampling logistics, the goal should be to ensure that observers are 

not biased by knowledge of the previous locations of individuals. 

Fortunately, when species-level effects cannot be avoided via sur-

vey design, they can at least be dealt with according to the meth-

ods we have demonstrated here.

Future work.—One reviewer commented that the evidence 

we found of observer-based behavioral effects in multiple species 

sampled with multiple techniques was only circumstantial and 

that true experiments would be necessary to provide direct proof 

that prior detections can result in increased probabilities of rede-

tection. Although such experiments would be difficult with real 

bird populations, demonstrating purely observer-based behav-

ior effects would be relatively simple with a field-based system for 
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simulating bird populations (e.g., Simons et al. ). In a sim-

ulated system in which birds are singing at a constant rate, any 

increase in redetection probabilities would be attributable to 

observed-based behavioral effects.

ACKNOWLEDGMENTS

We thank the U.S. Geological Survey Status and Trends Program 

for providing funding for this research. We also thank T. Shaffer, 

D. Diefenbach, and an anonymous reviewer for many helpful com-

ments on a previous version of this manuscript. R.S.M. thanks L. 

Barnhill and K. Mordecai for insights into the detection process 

and B. Peterjohn, M. Wimer, J. Stanton, C. Drennan, L. Glover, M. 

Caudell, S. Daves, H. Barnhill, T. Raymond, M. Delany, C. Dep-

kin, J. Hilburn, M. Robinson, S. Beasley, J. Parrish, V. Carpenter, 

E. Van Otteren, E. Keferl, W. Carlisle, S. Schwikert, A. Kropp, P. 

Leary, A. Mitchell, T. Keyes, J. Rotenberg, D. Allen, S. Bland, N. 

Tarr, D. Robertson, S. Daley, E. Dombrofsky, M. Demers, and J. 

Roushdy for collecting the Painted Bunting data. J.D.R. thanks F. 

Perkins for her help in collecting the Northern Bobwhite data and 

Murphy-Brown, LLC, for allowing us to conduct research on their 

farms. J.D.R. also thanks C. Moorman, who supervised the dis-

sertation project from which the Northern Bobwhite data origi-

nated. A detailed description of survey methods for the Painted 

Bunting data set is available at www.pwrc.usgs.gov/point/pabu/.

PRESENCE . software and users’ manual are available at www.

mbr-pwrc.usgs.gov/software/presence.html.

LITERATURE CITED

Alldredge, M. W., K. H. Pollock, T. R. Simons, J. A. Collazo, 

and S. A. Shriner. . Time-of-detection method for esti-

mating abundance from point-count surveys. Auk :–.

Bargh, J. A., M. Chen, and L. Burrows. . Automaticity of 

social behavior: Direct effects of trait construct and stereotype 

activation on action. Journal of Personality and Social Psychol-

ogy :–.

Burnham, K. P., and D. R. Anderson. . Model Selection 

and Multimodel Inference: A Practical Information-Theoretic 

Approach, nd ed. Springer-Verlag, New York.

Farnsworth, G. L., K. H. Pollock, J. D. Nichols, T. R. Simons, 

J. E. Hines, and J. R. Sauer. . A removal model for esti-

mating detection probabilities from point-count surveys. Auk 

:–.

Franklin, A. B., D. R. Anderson, E. D. Forsman, K. P. Burn-

ham, and F. W. Wagner. . Methods for collecting and ana-

lyzing demographic data on the Northern Spotted Owl. Pages 

– in Demography of the Northern Spotted Owl (E. D. Fors-

man, S. DeStefano, M. G. Raphael, and R. J. Gutièrrez, Eds.). 

Studies in Avian Biology, no. .

Huggins, R. M. . On the statistical analysis of capture experi-

ments. Biometrika :–.

Huggins, R. M. . Some practical aspects of a conditional likeli-

hood approach to capture experiments. Biometrics :–.

Kendall, W. L., B. G. Peterjohn, and J. R. Sauer. . First-

time observer effects in the North American Breeding Bird Sur-

vey. Auk :–.

Lee, L., S. Frederick, and D. Ariely. . Try it, you’ll like it: The 

influence of expectation, consumption, and revelation on prefer-

ences for beer. Psychological Science :–.

MacKenzie, D. I., J. D. Nichols, J. E. Hines, M. G. Knutson, 

and A. B. Franklin. . Estimating site occupancy, coloniza-

tion, and local extinction when a species is detected imperfectly. 

Ecology :–.

MacKenzie, D. I., J. D. Nichols, J. A. Royle, K. H. Pollock, L. L. 

Bailey, and J. E. Hines. . Occupancy Estimation and Mod-

eling: Inferring Patterns and Dynamics of Species Occurrence. 

Elsevier, San Diego, California.

MacKenzie, D. I., and J. A. Royle. . Designing occupancy 

studies: General advice and allocating survey effort. Journal of 

Applied Ecology :–.

MacKenzie, D. I., J. A. Royle, J. A. Brown, and J. D. Nichols.

. Occupancy estimation and modeling for rare and elusive 

populations. Pages – in Sampling Rare or Elusive Species: 

Concepts, Designs, and Techniques for Estimating Population 

Parameters (W. L. Thompson, Ed.). Island Press, Washington, 

D.C.

Mordecai, R. S., R. J. Cooper, and R. Justicia. . A thresh-

old response to habitat disturbance by forest birds in the Choco 

Andean corridor, northwest Ecuador. Biodiversity and Conserva-

tion :–.

Pollock, J. F. . Detecting population declines over large areas 

with presence–absence, time-to-encounter, and count survey 

methods. Conservation Biology :–.

Riddle, J. D. . Maximizing the impact of field borders for quail 

and early-succession songbirds: What’s the best design for imple-

mentation? Ph.D. dissertation, North Carolina State University, 

Raleigh.

Riddle, J. D., C. E. Moorman, and K. H. Pollock. a. A com-

parison of methods for estimating Northern Bobwhite covey 

detection probabilities. Journal of Wildlife Management :–

.

Riddle, J. D., C. E. Moorman, and K. H. Pollock. b. The 

importance of habitat shape and landscape context to Northern 

Bobwhite populations. Journal of Wildlife Management :–

.

Royle, J. A. . N-mixture models for estimating population size 

from spatially replicated counts. Biometrics :–.

Royle, J. A., and R. M. Dorazio. . Hierachical Modeling and 

Inference in Ecology: The Analysis of Data from Populations, 

Metapopulations, and Communities. Academic Press, San Diego, 

California.

Simons, T. R., M. W. Alldredge, K. H. Pollock, and J. M. Wet-

troth. . Experimental analysis of the auditory detection 

process on avian point counts. Auk :–.

White, G. C., and K. P. Burnham. . Program MARK: Survival 

estimation from populations of marked animals. Bird Study  

(Supplement):S–S.

Williams, B. K., J. D. Nichols, and M. J. Conroy. . Analysis 

and Management of Animal Populations: Modeling, Estimation, 

and Decision Making. Academic Press, San Diego, California.

Associate Editor: T. L. Shaffer


