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Abstract.—�������������� ���������� �������� ���� ��������������� ������������� ������������� ��� ����� ������ ����� ������� ����� ��������� ����Macronutrient (protein, lipids, and carbohydrates) assimilation efficiencies of wild birds have rarely been studied, but 
they may be particularly important for estimating the optimal diet. We assessed experimentally the energy and macronutrient assimi-
lation efficiencies of captive Snowy Plover (Charadrius alexandrinus) feeding on the polychaete ragworm Nereis diversicolor, a major 
natural prey for migratory shorebirds (Charadrii) along intertidal habitats worldwide. Overall, Snowy Plover consumed 8.64 ± 1.54 (SD) g 
of dry ragworms per day, and the apparent metabolizable energy was 136.59 ± 27.69 kJ·day–1 (3.5–4.0 times the basal metabolic rate). 
Assimilation efficiencies were 80.04 ± 2.04%, 93.48 ± 1.08%, 84.75 ± 2.01%, and 89.23 ± 2.61% for energy, proteins, lipids, and carbohy-
drates, respectively. Macronutrient assimilation efficiencies were similar during early winter and premigration and between male and 
female Snowy Plover. Relatively high protein assimilation by Snowy Plover may be associated with their specialized high-protein diet. 
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Eficiencia en la Asimilación de Energía y Macronutrientes en Charadrius alexandrinus al Alimentarse del  
Poliqueto Nereis diversicolor

Resumen.—��� ����������� ��� ������������ ��� ���������������� ������������ ����������  ��������������� ���� ������ ��� ���� ����� �����������La eficiencia de asimilación de macronutrientes (proteínas, lípidos y carbohidratos) por parte de las aves silvestres 
ha sido raramente estudiada, pero puede ser particularmente importante para estimar la dieta óptima. Evaluamos experimentalmente 
la asimilación de energía y macronutrientes por parte de individuos cautivos de la especie Charadrius alexandrinus alimentados con 
el poliqueto Nereis diversicolor, una de las presas naturales principales para las aves playeras migratorias (Charadrii) en ambientes in-
termareales a nivel mundial. En general, las aves consumieron 8.64 ± 1.54 (DE) g de poliquetos secos por día, y la energía metabolizable 
aparente fue de 136.59 ± 27.69 kJ·día–1 (3.5–4.0 veces la tasa metabólica basal). Las eficiencias de asimilación fueron de 80.04 ± 2.04%, 93.48 ± 
1.08%, 84.75 ± 2.01% y 89.23 ± 2.61% para energía, proteínas, lípidos y carbohidratos, respectivamente. Las eficiencias de asimilación de 
macronutrientes fueron similares durante el inicio del invierno y antes de la migración, y entre machos y hembras de C. alexandrinus. 
La asimiliación de proteínas relativamente alta documentada para esta especie podría estar asociada con su dieta especializada de alto 
contenido proteico.
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Estimating food requirements of individuals and popula-
tions requires accurately assessing the food (energy) acquisition 
rate and digestive efficiency of individuals (Castro et al. 1989, 
Karasov 1990). Digestive efficiency (i.e., the efficiency at which in-
gested food is converted to metabolizable energy) is, therefore, an 

important measure for studies on the influence of individuals—
and, hence, populations—on habitat energy flow. Ingested bio-
mass (intake rate), the length of time food is in the gastrointestinal 
tract (retention time), and the ability of the intestinal tract to ab-
sorb nutrients (assimilation efficiency) are the major components 
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of digestive efficiency (Karasov 1996). Inaccurate estimates of any 
of these components lead to errors in estimating food or energy 
requirements of individuals and, hence, to poor predictive models 
for assessing ecological energetics of populations and communi-
ties (Karasov 1986).

Energy assimilation efficiency depends on the nutrient com-
position of the prey consumed, as well as the ability of the intes-
tines to absorb the nutrients (nutrient assimilation efficiency) and 
to transform them into energy through the various metabolic 
pathways (Murphy 1996). It has been suggested that nutrient as-
similation efficiency influences dietary selection, in that individu-
als select prey on the basis of its nutritional composition and their 
ability to efficiently digest it (Witmer and Van Soest 1998). How-
ever, little information exists on macronutrient assimilation effi-
ciencies for wild birds, except for some groups of nectarivorous 
and frugivorous birds for which assimilation of carbohydrates and 
lipids has been widely studied (Hainsworth 1974, López-Calleja et al. 
1997, Levey and Martínez del Rio 2001). 

Polychaete worms are among the most common prey of mi-
gratory shorebirds (Charadrii) and other waterbirds in estuaries 
worldwide (Piersma 1996, Skagen and Oman 1996, Moreira 1997), 
but no empirical data on the energy or macronutrient assimilation 
efficiencies of polychaetes eaten by a shorebird have been reported. 
Zwarts and Blomert (1990) measured nutrient assimilation effi-
ciency of Whimbrels (Numenius phaeopus) fed Fiddler Crabs (Uca 
tangeri). Crabs and other hard-bodied prey are difficult to digest 
(Speakman 1987), so extrapolation of the results from Whimbrels 
to other bird species that feed on soft-body invertebrates such as 
polychaete worms would not be appropriate. Snowy Plover (Cha-
radrius alexandrinus) are small migratory shorebirds that prey 
mainly on polychaete worms in intertidal areas (Skagen and Oman 
1996, Pérez-Hurtado et al. 1997, Amat 2003), though they also eat 
some insects, seeds, crustaceans, and molluscs (Piersma 1996, Amat 
2003). We assessed experimentally the energy and macronutri-
ent assimilation efficiencies of Snowy Plover fed ragworms (Nereis  
diversicolor). In studies on seabirds (Hilton et al. 2000a, b) and birds 
of prey (Barton and Houston 1993), it was found that generalist spe-
cies with a wide dietary spectrum had longer intestines and higher 
assimilation efficiencies than specialist species with a narrow di-
etary spectrum (Barton and Houston 1993; Hilton et al. 2000a, b). 
Accordingly, we predicted high energy and macronutrient assimila-
tion efficiencies for Snowy Plover fed ragworms because of the spe-
cies’ generalist diet and the low inorganic content of ragworms.

Many models that estimate prey acquisition by declining 
shorebird populations feeding on polychaetes in estuaries use a 
theoretical value of 80% for energy assimilation efficiency (Zwarts 
and Blomert 1990, Moreira 1997, Stillman et al. 2000, Masero and 
Pérez-Hurtado 2001, Masero 2003, Goss-Custard et al. 2006). 
Therefore, our study provides the first published estimates of as-
similation efficiency for a shorebird eating polychaetes, which will 
allow more accurate assessments of the number of prey necessary 
to sustain these populations. 

Methods

Capture and housing conditions�.—�������� ������ ������ �����Twenty Snowy Plover were 
captured under license at Cádiz Bay in southern Spain (36°23′N, 
6°8′W). (1) Five females and six males and (2) five females and 

four males were captured and held in captivity during October– 
November 1998 (early winter) and February–March 1999 (premi-
gratory period), respectively. All birds were adults and nonmolt-
ing. Most overwintering Snowy Plover leave the study area in late 
March (Masero et al. 2000), though there is a small resident popu-
lation (Hortas 1997). 

We detected no seasonal differences in body mass of Snowy 
Plover (early winter = 38.81 ± 2.87 [SD] g; premigration = 41.14 ± 
3.29 g; t = –1.69, df = 1 and 18, P = 0.11), and the birds maintained 
constant body mass during experiments. Thus, we assume that the 
captive birds were resident or were in a non-fattening state. 

Birds were transported to Cádiz Marine Science Faculty, located 
10 km from the sites of capture. Birds were acclimated to an aviary for 
one week and then housed individually in outdoor plastic-mesh cages 
(1 × 1 × 1 m). Each bird had ad libitum access to ragworms in plastic 
trays, with seawater and freshwater in a separate tray. 

Energy and macronutrient assimilation efficiencies�.—������ ���Prior to 
the experiment, we estimated that Snowy Plover (n = 4) required 
3.5–4.0 h to empty their digestive tract when fed ragworms (see 
methods in Dekinga and Piersma 1993). For each individual, we 
estimated the daily assimilation efficiencies during four consec-
utive days. Each trial began at 0900 hours (Greenwich Mean Time 
+ 1 h), when the birds were fasted for 4 h and then weighed. We 
then replenished the water and supplied each bird with a known 
quantity of food. Total daily intake was the difference between dry 
food offered and dry food that remained. The remaining prey and 
excreta were removed daily after the fasting period. Total daily ex-
creta of each individual was combined, homogenized, and stored 
frozen (−80°C). 

Gross energy intake (GEI) per bird per day was estimated as the 
amount (g dry) of total protein (Pf), lipids (Lf), and carbohydrates 
(Cf) ingested, multiplied by the energy density of these macronu-
trients (Ep was 23.65 kJ g–1 dry protein; El was 39.55 kJ g–1 dry lipid; 
Ec was 17.16 kJ g–1 dry carbohydrate; Crisp 1984). The gross energy 
output (GEO) per bird per day was estimated as the amount (g dry) 
of total protein (Pe), lipids (Le), and carbohydrates (Ce) excreted, 
multiplied by the energy density of these macronutrients plus the 
amount (g dry) of excreta composed of uric acid (Ae) and urea (Ue) 
times their energy density (Ea was 11.5 kJ g–1 dry uric acid; Eu was 
10.5 kJ g–1 dry urea; Bell 1990).

Energy assimilation efficiency (AE) was calculated, following 
Castro et al. (1989), as

AE (%) = 100 × (GEI – GEO) / GEI

GEI = Pf × Ep + Lf × El + Cf × Ec

GEO = Pe × Ep + Le × El + Ce × Ec + Ae × Ea + Ue × Eu

Assimilation efficiency for each macronutrient was cal-
culated in the same way as the energy assimilation efficiency. 
Apparent metabolizable energy (AME; kJ·day–1) was the difference 
between the total energy ingested and the energy excreted in a day 
(Miller and Reinecke 1984). 

Protein content was determined by the Folin-phenol-reagent 
method, according to Lowry et al. (1951). Total lipid content was 
determined gravimetrically after extraction of a homogenized 
sample in chloroform and methanol (2:1, v/v) (Folch et al. 1957). 
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Carbohydrate content was determined by a colorimetric method 
using the phenol–sulphuric acid reagent (Dubois et al. 1956). Ash 
content was measured gravimetrically after total combustion in a 
furnace at 550°C.

Total N in the excreta was determined using a Carlo Erba 
1106 elemental analyzer (SerCon, Crewe, United Kingdom). We 
assumed that 75% of excreted N was uric acid and 25% was urea 
(Karasov 1990). 

Temperature.—Temperatures were recorded every hour. An 
estimation of the time the ambient temperature remained below the 
thermoneutral zone of the species was calculated by using the index 

Macronutrient composition of ragworms was similar between 
seasons (Table 1). 

Assimilation efficiencies.—The birds (n = 20) consumed 8.64 ± 
1.54 g dry ragworms per day (dry mass/wet mass = 0.18 ± 0.07 g; 
wet mass/AFDM = 5.42 ± 0.21 g; n = 20) or 169.13 ± 29.99 kJ day–1. No 
correlation was found between daily food intake and body mass 
of birds (r = 0.26, P = 0.25, n = 80). The birds excreted 32.4 ± 6.9 
kJ day–1, which yields an AME of 136.59 ± 27.69 kJ day–1 and a mean 
assimilation efficiency of 80.04 ± 2.04% for energy, 93.48 ± 1.08% 
for proteins, 84.75 ± 2.01% for lipids, and 89.23 ± 2.61% for carbo-
hydrates. Energy and macronutrient assimilation efficiencies were 
similar during early winter and premigration, and between males 
and females (Tables 2 and 3). 

Temperature�.—������ ������������ ������� ���� ������������Daily temperature during the experiments 
varied between 6.75°C and 23.88°C. Mean temperature was sig-
nificantly different between the two seasons (October–Novem-
ber: 17.99 ± 3.28°C; February–March: 14.87 ± 1.88°C; t = 2.95, 
df = 1 and 23, P < 0.007). There was also a significant difference 
between seasons in the number of days colder than the LCT of 
Snowy Plover: in early winter, the mean difference between mean 
hourly temperature and LCT was 10.38 ± 3.21°C, and in premi-
gration it was 6.6 ± 3.28°C (t = –2.97, df = 1 and 23, P < 0.006). 
The temperature coefficient for a Snowy Plover of 36.26 g is 0.024 
(Watts °C–1) according to the allometric relation of Aschoff (1981). 
This means that estimated thermoregulation costs for Snowy Plo-
ver in the present study were significantly higher in early winter 
(22.11 ± 6.75 kJ day–1; n = 9) than during premigration (14.26 ± 6.69 
kJ day–1; t = 2.95, df = 1 and 18, P < 0.018, n = 11).

Discussion

Snowy Plover feeding on ragworms showed high values of en-
ergy and macronutrient assimilation efficiencies, as expected for 
a generalist feeder eating soft-bodied prey. Research on shore-
birds feeding on soft-bodied invertebrates yielded values of en-
ergy assimilation between 72% and 84% (Hockey and Underhill 
1984, Kersten and Visser 1996), depending on the non-organic-
matter content of the prey. We fed ragworms to Snowy Plover in 
seawater so that the birds could remove sediment adhering to the 
ragworms. Thus, our estimate of energy assimilation efficiency is 
likely similar to what would be found for Snowy Plover feeding on 
ragworms in the wild.

Temperature differed, on average, 3°C between seasons, 
which yielded a difference of ~8 kJ day–1 in energy expenditure for 
temperature maintenance. We did not measure the daily activ-
ity of Snowy Plover in the cages, but this cost should be bal-
anced by the heat increment of feeding and the heat generated 
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where Thi is the temperature at hour i (from 0 to 24) and Tlc is the 
lower critical temperature (LCT; 24.6°C, following the equation of 
Kendeigh et al. [1977] and assuming a mean body mass for Snowy 
Plover of 36.26 ± 2.69 g; n = 20).

The duration of daylight hours was similar in both periods 
(early winter: 11.18 ± 0.50 h of light; premigratory period: 11.01 ± 
0.74 h of light; t = −0.71, df = 1 and 23, P = 0.48).

Statistical analyses.—The data were inspected for normality 
and homoscedasticity and normalized using arcsine transforma-
tion if needed. P values were adjusted with the Bonferroni test to 
control for type-I errors when needed (Rice 1989). An analysis of 
variance (ANOVA) for repeated measures, using mean air tem-
perature as covariate (Klaassen et al. 1990), was used to test the 
effect of season and sex on energy and macronutrient assimilation 
efficiencies. The effect of season and sex on assimilation variables 
was analyzed because seasonal variation in nutrient assimilation 
efficiencies has been shown (Lepczyk et al. 2000), and a require-
ment for energy or nutrients or both could exist, associated with 
gender but independent of fattening state (Piersma and Morrison 
1994, Egeler and Williams 2000). Mean daily values for each of 
the four-day trials were used for calculations, except for the cor-
relation between gross ingested food and body mass, in which the 
value of food ingested every day and body mass of the correspond-
ing day were used. Unless stated otherwise, results are presented 
as means ± SD. 

Results

Prey composition�.—������� �������� ��� ��������� �����������������   Energy density of ragworms was 21.48 ± 2.73 
kJ g–1 of ash-free dry mass (AFDM) (n = 20). Protein, lipid, car-
bohydrate, and ash contents of ragworms were 54.58 ± 4.38%, 
13.96 ± 3.43%, 17.79 ± 1.99%, and 13.65 ± 1.65%, respectively. 

Table 1.  Macronutrient composition (percentage ± SD) of ragworms provided to captive Snowy Plover in 1998 (early winter) 
and 1999 (premigration). Number of ragworm composite samples analyzed per season is indicated in parentheses.

Protein (%) Lipids (%) Carbohydrates (%) Ash (%)

Early winter (10)   54.12 ± 4.26  14.31 ± 2.00 17.82 ± 0.76 13.76 ± 1.62
Premigration (10) 54.94 ± 4.65 13.83 ± 4.53  17.78 ± 0.88 13.45 ± 1.79
t18 1.85 1.85 1.86 1.37
P 0.08 0.09 0.08 0.18
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through activity, given that we did not record an increase in the 
ingested food or assimilation efficiency. 

We found that Snowy Plover assimilated at least 80% of pro-
teins, lipids, and carbohydrates, which suggests little digestive (en-
zymatic) limitation. It is noteworthy that Snowy Plover processed 
proteins more efficiently than lipids and carbohydrates. Protein 
is costly to digest compared with fat or carbohydrate digestion, 
so a protein-rich diet requires more energy for digestion than 
a lipid or carbohydrate-rich diet (Crisp 1984, Murphy 1996). In 
birds, nitrogen resulting from deamination is excreted mainly as 
uric acid and urea. The energetic costs of forming and disposing of 
these nitrogenous waste products (11.5 kJ g–1 dry mass in uric acid 
and 10.5 kJ g–1 dry mass in urea) reduce the value of protein as a 
substrate for energy metabolism (Murphy 1996). 

A nutrient-based digestive specialization has been proposed 
among passerines. Cedar Waxwings (Bombycilla cedrorum) and 
thrushes (Turdus migratorius, Hylocichla mustelina, Catharus 
minimus, and C. guttatus) showed digestive specialization for 
efficient utilization of sugars and lipids, respectively, which cor-
responded with the more common macronutrients in their diets 
(Witmer and Van Soest 1998). Snowy Plover and other small shore-
bird species that feed on polychaete worms may show a nutrient-
based digestive specialization, in that their assimilation efficiency 
of protein is higher than that of other macronutrients and they 
commonly feed on a high-protein diet. 

The AME of Snowy Plover was 3.5–4.0 times the basal met-
abolic rate (BMR). This value is generally accepted as the maxi-
mum sustained energy-expenditure for birds (Drent and Daan 

Table 2.  Mean (± SD) daily body mass, food ingested, excreta produced, and energy assimilation efficiency of captive Snowy Plover (sample size in 
parentheses; AFDM = ash-free dry mass).

Body 
mass (g)

Gross  
ingested  

food 
(g AFDM)

Excreta 
(g AFDM)

Net
ingested  

food 
(g AFDM)

Gross
ingested  
energy 

(kJ day–1)

Energy in  
excreta 

(kJ day–1)

Apparent  
metabolizable 

energy 
(kJ day–1)

Energy  
assimilation 
efficiency 

(%)

Early winter
Males (6) 	35.89 ± 2.51 8.60 ± 0.73 2.29 ± 0.43 6.31 ± 0.85 169.72 ± 14.90 30.60 ± 5.13 137.36 ± 25.57 83.37 ± 2.05
Females (5) 	35.69 ± 2.32 9.44 ± 1.37 2.57 ± 0.19 6.87 ± 1.24 184.68 ± 26.04 34.52 ± 2.27 142.03 ± 27.20 82.79 ± 1.04

Premigration
Males (4) 	    37.76 ± 3.54 8.34 ± 0.62 2.61 ± 0.38 5.73 ± 0.81 162.60 ± 12.15 34.48 ± 4.59 134.58 ± 24.84 82.38 ± 1.03
Females (5) 	35.65 ± 1.58 8.38 ± 0.91 2.45 ± 0.23 5.92 ± 0.90 163.30 ± 17.89 32.17 ± 2.48 125.37 ± 26.13 81.28 ± 2.03
Statistical effects
Season
F a P 1.34  0.26 1.12  0.30 0.02  0.96 0.55  0.47 0.59  0.45 1.11  0.31 0.83  0.30 0.04  0.88
Season × sex
F b P 1.26  0.28 0.21  0.66 0.01  0.99 0.20  0.66 0.09  0.76 0.02  0.88 0.24  0.63 0.41  0.53

adf = 1 and 17.
bdf = 1 and 15.

Table 3.  Mean (± SD) daily ingested and excreted protein, lipids, carbohydrates, and assimilation efficiency of these macronutrients of captive Snowy 
Plover (sample size in parentheses; AFDM = ash-free dry mass).

Gross  
ingested  
protein 

(g AFDM)

Protein in 
excreta 

(g AFDM)

Protein 
efficiency 

(%)

Gross  
ingested  

lipids 
(g AFDM)

Lipids in 
excreta 

(g AFDM)

Lipid  
assimilation  
efficiency 

(%)

Gross  
ingested  

carbohydrates 
(g AFDM)

Carbohydrates  
in excreta 
(g AFDM)

Carbohydrate 
 assimilation  
efficiency 

(%)

Early winter

Males (6) 4.52 ± 0.38 0.27 ± 0.05 94.01 ± 1.07 1.08 ± 0.09 0.12 ± 0.02 89.73 ± 2.04 1.17 ± 0.16 0.14 ± 0.03 90.21 ± 2.49
Females (5) 4.95 ± 0.71 0.33 ± 0.01 93.47 ± 1.03 1.17 ± 0.01 0.13 ± 0.01 89.42 ± 1.01 1.25 ± 0.16 0.16 ± 0.02 90.24 ± 1.61

Premigration

Males (4) 4.37 ± 0.32 0.31 ± 0.05 93.22 ± 0.89 1.03 ± 0.08 0.13 ± 0.02 88.67 ± 1.58 1.09 ± 0.08 0.19 ± 0.04 86.69 ± 2.98
Females (5) 4.38 ± 0.48 0.28 ± 0.05 93.64 ± 1.37 1.03 ± 0.11 0.12 ± 0.01 89.06 ± 1.91 1.09 ± 0.12 0.17 ± 0.01 88.50 ± 1.43

Statistical effects
Season
F a P 0.13  0.72 2.37  0.14 0.55  0.47 1.12  0.31 0.57  0.46 0.01  0.91 1.12  0.31 0.06  0.81 0.01  0.94

Season × sex
F b P 2.50  0.14 0.13  0.72 0.46  0.51 0.21  0.66 0.14  0.71 0.02  0.88 0.21  0.66 0.21  0.65 0.32  0.58

adf = 1 and 17.
bdf = 1 and 15.
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1980, Piersma 2002) but is not expected for a captive bird with 
constant body mass, no tissue synthesis, and low thermoregula-
tion costs (<1× BMR). Nonetheless, a study on migrating shore-
birds found that Red Knot (Calidris canutus), Ruff (Philomachus 
pugnax), European Golden-Plover (Pluvialis apricaria), Common 
Greenshank (Tringa nebularia), and Common Sandpiper (Actitis 
hypoleucos) can sustain a maximum energy expenditure ≥7× BMR 
(Kvist and Lindström 2003). 

Some migratory shorebird populations are globally endan-
gered (Stroud et al. 2002, Thomas et al. 2006). Inaccurate estimates 
of energy assimilation efficiency can lead to erroneous estimates 
of food consumption and, hence, to erroneous assessments of how 
many prey are necessary to maintain declining shorebird popula-
tions. Our results empirically confirm what modelers of ecologi-
cal energetics have long assumed: shorebirds that eat soft-bodied 
prey assimilate, on average, 80% of dietary energy. However, more 
studies such as ours are needed to determine whether assimila-
tion efficiency varies among bird species that eat different types 
of prey. 
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