
Estimating Abundance from Bird Counts: Binomial  

Mixture Models Uncover Complex Covariate Relationships

Marc Kéry

Swiss Ornithological Institute, Luzernerstrasse 6, 6204 Sempach, Switzerland

Abstract.—���������� ����������� ��� �������� ��� ������� �������� ���� ����������� �������� ������ ������� ������������  ������ ���� ��������Abundance estimation is central to avian ecology. For replicated counts, Royle (2004) developed a model to estimate 
abundance adjusted for detectability. Hitherto, it was unknown whether the same covariate was allowed to affect both abundance and 
detectability. This situation was disconcerting, because relationships between abundance and such covariates describing, for example, 
habitat, lie at the heart of ecology. I test this by simulation and provide additional guidelines on the model as well as code to fit it in a 
Bayesian mode of analysis. I simulated 1,000 data sets mimicking the Swiss breeding-bird survey “Monitoring Häufige Brutvögel” (three 
surveys in each of 268 quadrats). Elevation affected abundance negatively and detectability positively, resulting in a hump-shaped re-
lationship between counts and elevation. I used WinBUGS to fit the model and estimate parameters, including quadrat-specific abun-
dance and total abundance, across all 268 quadrats. For every parameter, the model recovered estimates that showed no indication of 
bias. The mean error in the estimated total population size across all quadrats was only 2%, whereas the summed maximum counts, a 
conventional abundance estimate, underestimated total population size by 43%. In contrast to maximum counts, the binomial mixture 
model revealed the true negative relationship between abundance and elevation. This model is a promising new alternative to capture–
recapture or distance sampling methods to estimate bird abundance free of distorting effects of detectability. It has perhaps the fewest 
requirements, needing neither individual identification nor distance information to “convert” simple counts (“relative abundance”) into 
estimates of true abundance. It ought to be seriously considered in future bird-survey schemes. Received 2 September 2006, accepted 
17 June 2007.
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Estimación de Abundancia a Partir de Conteos de Aves: Modelos Mixtos Binomiales Revelan  
Relaciones Covariadas Complejas 

Resumen.—���� ���������� ��� ��� ��������������  ��� �������� �������� �������  �������� ��� ������ ������ ������� ����������� ��� ������� �����La estimación de la abundancia es un aspecto central en la ecología de aves. Royle (2004) desarrolló un modelo para 
estimar la abundancia ajustada por detectabilidad para conteos replicados. Hasta entonces, se desconocía si las mismas covariables 
podían afectar tanto a la abundancia como a la detectabilidad. Esta situación era desconcertante debido a que las relaciones entre 
la abundancia y covariables que describen, por ejemplo, el hábitat, son centrales en ecología. En este trabajo evalúo esto mediante 
simulaciones y proveo directrices adicionales sobre el modelo y el código para ajustarlo a un modo de análisis Bayesiano. Simulé 1000 
conjuntos de datos imitando el muestreo de aves reproductivas de Suiza “Monitoring Häufige Brutvögel” (tres muestreos en cada uno 
de 268 cuadrantes). La elevación afectó a la abundancia de forma negativa y a la detectabilidad de forma positiva, resultando en una 
relación en forma de joroba entre conteos y elevación. Utilicé WinBUGS para ajustar el modelo y estimar parámetros, incluyendo 
la abundancia específica para cada cuadrante y la abundancia total para los 268 cuadrantes. Para cada parámetro, el modelo generó 
estimados que no mostraron indicios de sesgo. El error promedio para el tamaño poblacional total fue sólo del 2%, mientras que la 
suma de los conteos máximos, un estimado de abundancia convencional, subestimó el tamaño de la población total en un 43%. De 
modo contrastante a los conteos máximos, el modelo mixto binomial reveló la relación negativa verdadera entre abundancia y 
elevación. Este nuevo modelo es una alternativa promisoria a los métodos de captura y recaptura o a los muestreos con distancias 
para estimar la abundancia de aves sin el efecto distorsionante de la detectabilidad. Este nuevo modelo tiene quizás el menor número 
de requerimientos, pues no necesita la identificación a nivel de individuo ni la información de distancia para “convertir” los conteos 
simples (“abundancia relativa”) en estimaciones de abundancia verdadera. El modelo debería ser considerado seriamente en los es-
quemas futuros de monitoreo de aves.
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To a good approximation, counting birds is the defining activ-
ity of a field ornithologist. Bird counts have produced the raw 
material for scientific studies in many branches of ecology, such 
as community dynamics (Boulinier et al. 1998), sexual selection 
(Doherty et al. 2003), population ecology (Sæther et al. 2006), and 
distribution (Guisan and Thuiller 2005). In addition, bird counts 
are among the most important organismic indicators in biodiver-
sity monitoring programs, where the population sizes of selected 
species or guilds of species (e.g., farmland birds) are used as a mea-
sure of environmental health (e.g., Fewster et al. 2000, Gillings 
and Fuller 2001). Bird counts are also frequently used to measure 
the efficacy of nature-protection actions.

In practice, birds cannot be counted with certainty. Rather, 
their numbers must be estimated, because in nearly every instance 
some individuals will be missed. This follows from the fact that 
detection probability is rarely equal to 1. In an abundance context, 
detection probability is the probability that an individual present 
and exposed to sampling is actually detected and, therefore, ap-
pears in a count (Williams et al. 2002).

Many studies merely compare abundance over time (e.g., for 
estimating trends), regions (e.g., to identify range changes), or 
habitats (e.g., to detect high-density habitats for preserve selec-
tion). Ornithologists interested in comparative studies sometimes 
claim that only relative but not absolute abundance matters and 
that, consequently, it is unnecessary to estimate the fraction of 
birds counted (= detectability) (Anderson 2001, 2003; Engeman 
2003). Simple counts are, therefore, widely used as indices of rela-
tive abundance by scientists claiming, believing, or at least hop-
ing—perhaps after controlling for covariates (e.g., Link and Sauer 
1998)—that the average detection probability is constant over di-
mensions of comparison such as time, regions, or habitats. The 
problems with this assumption have been shown repeatedly (e.g., 
Diefenbach et al. 2003, Selmi and Boulinier 2003, Kéry et al. 2005), 
perhaps nowhere so strikingly as in figure 1 of Link and Sauer 
(1998). Therefore, even when comparisons rather than absolute 
abundance are the focus of a study, it may be prudent to adjust 
for variation in detectability. This may help to avoid interpreta-
tion of patterns in counts that may reflect patterns in detectability 
rather than patterns in the underlying true abundance. One can 
adjust for detectability indirectly, by using covariates believed to 
reflect variation in detection probability (Link et al. 2006), or di-
rectly by estimating it, which will also result in an estimate of ab-
solute abundance.

Bird abundance is usually estimated using distance sampling 
or some variant of capture–recapture sampling (Nichols et al. 2000, 
Farnsworth et al. 2002, Pollock et al. 2002). Both distance sam-
pling and capture–recapture designs yield bird counts with some 
added information that enables true abundance to be estimated. 
With distance sampling, the added information is the distance 
of each bird counted from the transect or point of observation, 
whereas for all variants of capture–recapture (including removal) 
sampling, it is the unique identity of each counted bird. Very ex-
tensive literature exists on both designs, summarized in books by 
Buckland et al. (2001, 2004a) and Williams et al. (2002).

It was long believed that simple counts without information 
on identity or distance were useless for unbiased estimation of ab-
solute abundance and that, therefore, their use in comparisons 
may be risky, owing to the possible distortions induced by patterns 

in detectability (e.g., Burnham 1981; Anderson 2001, 2003; Rosen-
stock et al. 2002). For spatially and temporally replicated counts in 
a closed population, Royle (2004) developed a binomial mixture 
model for estimation of abundance that adjusts for detectability. 
Replicated counts are commonly used in bird surveys, whereby a 
large number of sites are each surveyed multiple times within an 
interval in which the population is effectively closed (e.g., within 
a breeding season). Royle’s (2004) binomial mixture model thus 
appears to be promising for estimating abundance from animal-
survey data and has performed well in first applications (Kéry et al. 
2005, Royle et al. 2005). Covariates can be introduced for both 
abundance and detectability to test for the presence of such rela-
tionships and to improve the precision of the estimates.

However, hitherto it was unknown whether Royle’s (2004) bi-
nomial mixture model was able to separate the effects of the same 
covariate acting on both abundance and detectability. Inability 
to do so might severely compromise the model’s usefulness, be-
cause such covariates are likely to occur in many practical situa-
tions. For instance, habitat could influence both bird density and 
detectability. My aims here are (1) to test whether the binomial 
mixture model can actually elucidate effects of the same covari-
ate on abundance and detectability, (2) to draw attention to this 
potentially very useful model, and (3) to provide code for fitting 
the model in a Bayesian mode of analysis using the free software 
R (R Development Core Team 2005) and WinBUGS (Spiegelhalter 
et al. 2003).

Methods

Generation of data.—I simulated data to mimic the design of 
the Swiss breeding-bird survey “Monitoring Häufige Brutvögel” 
(MHB), a program conducted annually since 1999 by the Swiss 
Ornithological Institute (Kéry and Schmid 2004, Kéry et al. 2005). 
In the MHB, a systematic random sample of 268 quadrats, each  
1 km2, is surveyed three times using territory-mapping (Bibby et 
al. 1992) during each breeding season (15 April–15 July) in Swit-
zerland along a quadrat-specific, irregular transect route averag-
ing 5 km. About 20% of quadrats above 2,000 m in elevation are 
surveyed only twice, but I did not consider this feature here. For 
each species and year, a data set thus consists of the counts cij for 
268 quadrats (indexed i) and three temporal replicates (indexed j).

Poisson-dispersed counts were simulated assuming that a 
single covariate had opposing effects on abundance and detection 
probability. Specifically, a negative relationship was assumed on 
the log scale between abundance (λ) and mean quadrat elevation: 
log(λ) = α1 + β1 * elevation, with α1 = 2 and β1 = −0.5. Similarly, a 
positive relationship was assumed on the logistic scale between 
detection probability (p) and mean quadrat elevation: logit(p) = 
α2 + β2 * elevation, with α2 = 1 and β2 = 2. For computational rea-
sons, I rescaled elevation by subtracting the mean and dividing by 
the standard deviation. Under this model specification, the rela-
tionships between elevation, abundance, and detectability partly 
cancel themselves out in the expected counts. Such a pattern may 
be attributable to effects of the habitat: A species depending on 
woodland may have greatest densities at lower elevations with 
greater forest cover, but may be more easily detectable at higher el-
evations with sparser forests. However, the details of the genesis of 
such complex relationships between one covariate and abundance 
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and detection probability, respectively, do not really matter for 
the purpose of the present study. I assumed that such covariates 
likely exist and wanted to know whether the parameters describ-
ing their relationship with abundance and detection probability 
are identifiable under the model.

The mixture model for counts.—Let Ni be the local abundance 
for quadrat i. Assuming a closed population, successive counts cij 
in quadrat i are considered binomial random variables with index 
Ni and detection probability pij, index j being for repeated surveys. 
Thus, the model for the replicate observations (the “observation 
model”) for the counts at site i is the product-binomial

analysis by Markov-chain Monte Carlo (MCMC) methods de-
scribed briefly below.

Fitting the model.—I fitted the model in a Bayesian mode of 
analysis. Compared with the maximum-likelihood analysis (see R 
code in Kéry et al. 2005), Bayesian inference via MCMC results in 
remarkably more-parsimonious code (Royle and Dorazio 2006). 
The MCMC approach uses iterative samples from a simulated Mar-
kov chain to approximate features such as the mean and the disper-
sion of complex joint probability distributions of the parameters in 
a statistical model. A certain number of initial values of the chain 
must be discarded as not representative of the stationary distribu-
tion (so-called “burn-in”). After that, summaries such as mean and 
standard deviation can be used as point estimates and standard er-
rors for the parameters of the model. The fitting of statistical mod-
els using MCMC has been made possible to many biologists mainly 
through the development of the popular free software WinBUGS. 
Link et al. (2002) give an accessible introduction to Bayesian infer-
ence, MCMC, and WinBUGS for biologists. More general infor-
mation about Bayesian statistical inference using MCMC can be 
found in Brooks (2003) and Gelman et al. (2004).

I ran an initial analysis of one simulated data set in WinBUGS 
with 100,000 iterations to assess the number of iterations required 
to reach convergence. Visual inspection of the sampled chains 
for α1, β1, α2, β2, and Ntotal suggested that convergence had been 
reached after ~250 iterations. Running multiple chains with dif-
ferent initial values yielded the same conclusion. Therefore, to be 
conservative, the first 1,000 iterations in the main simulation were 
discarded as burn-in. Thereafter, I used every fifth of 10,000 itera-
tions to reduce autocorrelation among repeated iterations; such 
thinning results in a smaller but more information-dense sample 
of the posterior distribution. As a result, I used 2,000 iterations for 
inference about parameters. For all analyses, I used conventional 
vague priors for the parameters, so that all values of α1, β1, α2, and 
β2 were distributed as normal (mean = 0, variance = 10,000; also 
see Appendix).

I used R to generate 1,000 replicate data sets containing 268 
sites with 3 replicated counts each and analyzed them using Win-
BUGS, version 1.4, executed in batch mode using the R add-on 
library R2WinBUGS (Sturtz et al. 2005). This took 72 h on a Pen-
tium M 1.6-GHz processor with 1 GB RAM. The Appendix gives 
an R function to simulate and analyze the data under the Royle 
(2004) model using WinBUGS.

Results

Features of the generated data.—In the simulated data, mean ter-
ritory density per square kilometer declined from 17 at 200 m el-
evation to 3 at 2,700 m (Fig. 1A). Conversely, detection probability 
increased from 0.09 to 0.99 across the same elevational gradi-
ent (Fig. 1B). Adding Poisson sampling variation (i.e., going from 
Fig. 1A to 1C) did not change the pattern in abundance. However, 
the counts, which were much lower than the actual abundance, 
showed a quadratic effect of elevation, with highest “apparent 
abundance” at medium elevations (Fig. 1D–F). Hence, the effect of 
elevation on detection probability completely distorts its relation-
ship with abundance.

Recovery of generating parameters.—The binomial mixture 
model succeeded in recovering the parameters for the relationships 

g c N p Bin c N pi i
j

ij i� | �� �� � | �� ��=∏
Without loss of generality, I have considered here the case where p is 
constant but recognize that, in most applications, covariates thought 
to influence p will be available. It is useful to note that the informa-
tion about detection probability p comes from the “similarity” of the 
repeated counts. Indeed, a moment estimator for p is given by the 
mean Pearson correlation coefficient among the counts.

The model as specified so far contains one abundance “param-
eter” for each quadrat. The Ni values can be regarded as random ef-
fects with (local abundance) distribution f(Ni; θ), and estimation 
and inference then focuses on the parameter(s) θ. A natural as-
sumption about Ni values is that they follow a Poisson distribution 
with mean λ (Royle et al. 2005). The Poisson distribution is the 
customary description of a random spatial point pattern. In the 
frequent case where landscape covariates explain some variation 
in abundance, λ can be considered site-specific, such that

����� ��λi k ik
k

K

x= +
=

∑α β
1

where xik is the value of the kth covariate at site i. A natural gen-
eralization is to consider Ni to be negative binomial random 
variables, in which case f is parameterized by an overdispersion 
parameter in addition to the mean. Alternatively, extra-Poisson 
variation in λ can be expressed as an additive normal random 
effect for log(λ). In either case, models that include covariates can 
again be entertained.

Detection probability can vary in response to covariates 
as well. To allow for this, a linear logistic relationship can be 
considered:

������� ��p xij ij= +α β

here shown for a single covariate xij (e.g., survey duration or some 
measure of weather).

Regardless of the abundance model considered, estimation of 
abundance and detection probability parameters can be based on 
the integrated likelihood, a standard approach for estimation and 
inference in classical random-effects models (e.g., Laird and Ware 
1982). Details can be found in Royle (2004), Kéry et al. (2005), and 
Royle et al. (2005). Alternatively, the model yields easily to Bayesian 
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between elevation and both abundance and detection probability. 
Parameter estimates showed no indication of bias with respect to 
the generating parameters (Fig. 2). Mean estimates (± SD) for the 
relationship with abundance were 2.005 ± 0.049 for α1 and −0.507 ± 
0.059 for β1 (Fig. 2A, B; remember that true values are 2.0 and 
−0.5). Mean estimates for the relationship with detection prob-
ability were 0.994 ± 0.098 for α2 and 2.010 ± 0.084 for β2 (Fig. 2C, 
D; true values 1 and 2). 

The model also succeeded well in estimating total popu-
lation size across all 268 quadrats. The total population in the 
1,000 generated data sets ranged from 2,115 to 2,398 (mean = 
2,239). The total population estimated under the binomial mix-
ture model ranged from 1,865 to 2,957 (mean = 2,274). Expressing 
estimation error as the absolute difference between the true and 
the estimated total population size for each of the 1,000 simu-
lated data sets yielded a mean estimation error of 35, a mere 1.6% 
in relation to the true values. The sum of the maximum counts 
in each quadrat, a conventional estimate of total population 
size, in the 1,000 simulated data sets ranged from 1,186 to 1,387 

(mean = 1,284), and the mean error in this estimate was –955, or 
42.7% of the true value. Therefore, not accounting for detection 
probability resulted in a greatly underestimated population size 
with a mean estimation error 27× (42.7/1.6) greater than under 
the binomial mixture model (although this, of course, depends 
on the values chosen for detection probability). The average de-
tection probability over all 268 quadrats and 1,000 simulated 
data sets was 0.57.

I used a single, randomly selected data set among those gener-
ated to illustrate the patterns in the estimates of local population 
size in the 268 quadrats. Estimates under the binomial mixture 
model showed no indication of bias with respect to the generating 
parameters. By contrast, the maximum count was severely biased 
low for larger population sizes (Fig. 3). Particularly attractive in 
the binomial mixture model is the fact that its estimates reveal 
the true negative relationship between abundance and elevation. 
By contrast, using the maximum count as an estimate of relative 
abundance wrongly identifies a quadratic relationship with maxi-
mum abundance at medium elevations (Fig. 4).

Fig. 1.  Features of a single simulated data set. (A) Mean density (e.g., number of territories) declines with increasing elevation. (B) Detection probabil-
ity p (e.g., of a territory) increases with elevation. (C) True abundance N is the realized true number of territories in each 1-km2 sample quadrat. Panels 
D–F depict the counts from surveys 1–3 in relation to elevation. Note that A and B will be virtually identical for each of the 1,000 simulated data sets, 
but the remainder will differ somewhat owing to the Poisson (in abundance) and binomial (in the counts) sampling errors.
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Fig. 2.  Distribution of parameter estimates from 1,000 simulations. Dashed vertical line indicates the true parameter value; α1 and β1 are for abun-
dance and α2 and β2 for detection probability. Note that here, the unit is a single parameter estimate from each of the total 1,000 simulations.

Fig. 3.  Comparison of the estimates of local population size at each of 
268 quadrats in a single simulated data set. Filled dots indicate mean 
posterior estimates under the mixture model, and open dots indicate 
maximum count. Line indicates the points where y = x.

Fig. 4.  Comparison of the perceived relationship between abundance 
and elevation. Filled dots indicate mean posterior estimates under the 
mixture model, and open dots indicate maximum count. The latter were 
translated 20 m along the elevation axis to improve visibility.
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Discussion

Advantages of the binomial mixture model for simple counts.—
The motivating question for this study was whether the binomial 
mixture model (Royle 2004) was able to tease apart complex co-
variate relationships or, equivalently, whether the parameters of 
this relationship are identifiable under this model. The answer to 
these questions is yes, which is very encouraging, because Royle’s 
(2004) model combines several attractive features. It provides es-
timates of abundance adjusted for variation in detectability. This 
confers protection from wrongly concluding that some pattern 
is present in true abundance when, in reality, this is just a pat-
tern in detection probability. In addition, for many applications, 
estimates of true abundance are required (e.g., to assess the vul-
nerability of populations to extinction, predation, or harvest-
ing). Simple counts or indices of “relative abundance” are then 
not sufficient.

The binomial mixture model results in efficient use of all 
abundance information. By integrating locally sparse data from 
many sites, it yields estimates of abundance where, perhaps, small 
local sample sizes might have prevented this with previously avail-
able estimation methods. One approach to the problem of small 
sample size is to pool data, but this would preclude the use of co-
variates. In mixture models, the data remain disaggregated and 
the fitting of covariates remains possible (see Royle et al. 2004).

When a model contains covariates on abundance, the func-
tion describing this relationship can be mapped to produce a true-
abundance map; see Royle et al. (2005) for one example. Such 
maps may look superficially similar to relative-density maps fa-
miliar to ornithologists from many second-generation bird atlases 
(e.g., Gibbons et al. 1993, Schmid et al. 1998). The big difference is 
that they show true abundance adjusted for any patterns in detec-
tion probability.

W. A. Link (pers. comm.) emphasized that the point of the 
present study—that abundance and detection in the Royle (2004) 
model are always separately identifiable—can be proven analyt-
ically, because site-specific replication solves the problem. He 
pointed out the following. Suppose that no structure on N and p is 
specified and that all one has are three replicate counts at a single 
site. Given the binomial assumption, N and p are estimable us-
ing moment estimators (Royle 2004). Including spatial replication 
and imposing the additional covariate structure enhances the ca-
pacity for estimating model parameters. Hence, the present study 
is an illustration of a general principle, rather than a stand-alone 
simulation study.

Practical application of the binomial mixture model.—The 
excellent performance of the model in the simple simulation ex-
ercise presented here needs to be moderated by consideration of 
several issues relevant to its application in practice. I discuss five 
here: (1) the assumption of a closed population, (2) the selection of 
covariates and of a particular functional form for the covariate re-
lationships, (3) the choice of an adequate mixture distribution for 
the unobserved abundance parameters, (4) goodness of fit, and (5) 
the consequences of using Bayesian inference.

Only for a closed population do repeated counts follow a bi-
nomial distribution with constant index Ni. If the model is applied 
to data from an open population, serious bias may result. Hence, 
the temporal scale of a study must be adapted to the scale of the 

temporal dynamics of the bird population under study. The more 
dynamic a population in terms of births, deaths, or movement, 
the more closely spaced surveys are required to meet the closure 
assumption. Alternatively, counts made during a period when a 
population was not closed could be discarded—which, in practice, 
would introduce missing values in the data. This poses no greater 
problem for the binomial mixture model than for any other statis-
tical model. For instance, counts of a migrant species conducted 
before most of the population had arrived could simply be changed 
into missing values and the model fit to the remainder of the data 
(provided there is still more than one count per site).

In practice, we will rarely know what discrete or continuous 
covariates affect abundance and detection probability, or what 
functional form these relationships may have. Multiple reason-
able models that differ in these respects will then have to be fitted 
to the data, and statistical tests or model selection criteria—such 
as Akaike’s Information Criterion (AIC) or, in a Bayesian mode, 
the deviance information criterion (DIC; Spiegelhalter et al. 
2002)—applied to pick the “right” covariates, interactions, and 
functional forms (Royle 2004, Kéry et al. 2005). However, “null” 
models with constant average abundance and constant detec-
tion probability may also be entertained and have performed well 
(Kéry et al. 2005).

Royle’s (2004) model requires specification of a weak sto-
chastic relationship among site-specific abundance parameters, 
Ni, in the form of a parametric distribution. Although the Pois-
son distribution is a natural first choice for count data, cases could 
exist where additional spatial variability in abundance must be ad-
dressed in the model to ensure an unbiased estimator. The simplest 
remedy may be to use covariates to explain such extra-Poisson 
variation. Alternatively, as explained above, more clumped distri-
butions for abundance are available (e.g., the negative binomial), 
and, in a frequentist mode of analysis, AIC (Royle 2004, Kéry et 
al. 2005) or goodness-of-fit statistics can be used as a criterion for 
selecting among them. Inference based on several or even all mod-
els considered would also be possible, by computing weighted pa-
rameter estimates with weights proportional to the support of the 
respective models (Buckland et al. 1997). One special case where 
a homogeneous Poisson process is an inadequate model for the 
latent abundance parameters is where the spatial replicates have 
unequal area. This known component of variation in abundance 
is easily handled by introducing ln(area) as an offset into the lin-
ear predictor for the Poisson parameter λ (McCullagh and Nelder 
1989), thereby making expected density per unit area, rather than 
the numbers of birds, log-linearly dependent on covariate x.

By using a model-selection criterion such as AIC or DIC, 
one implicitly assumes that at least one of the models compared 
fits the observed data adequately. For models fit by maximum 
likelihood, conventional deviance statistics (Royle 2004) or 
bootstrap techniques (Dixon et al. 1998) can be used. In a Bayes-
ian analysis, Bayesian p-values can be used to assess fit (Gelman 
et al. 2004).

Bayesian inference using MCMC has many advantages, and 
I believe that a typical biologist will feel more comfortable fitting 
a reasonably complex model by using WinBUGS than by numeri-
cally maximizing the likelihood for the same model. However, 
dangers are inherent in this approach. For instance, convergence 
must be carefully examined when using Bayesian inference by 
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MCMC. Still, inspecting chains by eye, running multiple chains 
from widely dispersed starting points, and formal convergence di-
agnostics (Gelman et al. 2004) make this perhaps not more dif-
ficult than assessment of convergence in the classical numerical 
optimization of a likelihood. In the present study, I fit a fairly sim-
ple model to a rather modest data set, and convergence was rapidly 
reached.

Some possible extensions.—Occupancy is another state vari-
able increasingly used in biological surveys and usually estimated 
from detection–nondetection data (MacKenzie et al. 2006). It is 
important to note the functional relationship between abundance 
and occupancy (Royle and Nichols 2003). Occupancy probability 
equals the probability that abundance is greater than zero; hence, 
any model of abundance is, directly, also an occupancy model (see 
Royle et al. 2005). Under the Poisson model, occupancy probabil-
ity (ψ) is given by ψ = 1 – exp(−λ). Thus, for my simulated data, the 
relationship between occupancy and elevation is described by ψ =  
1 − exp[−(2 − 0.5∗elevation)]. 

The principal goal of many bird surveys is to detect trends in 
abundance. When data are available for several years, introduc-
ing a linear trend into the binomial mixture model is straight-
forward. For example, abundance N in quadrat i and year t could 
be written as Nit ~ Pois(λit), with log(λit) = α + β∗T, where λit 
is the expected abundance in quadrat i in year t, T a covariate 
representing time, and α and β the intercept and slope param-
eters of the log-linear trend.

One exciting new avenue in the analysis of animal populations is 
the combination of several kinds of data in a single population model 
(Besbeas et al. 2002, Brooks et al. 2004, Buckland et al. 2004b). This 
enables some parameters to be estimated that are not identifiable 
when each data set is analyzed in isolation and, furthermore, yields 
estimates with greater precision for those parameters than can be 
estimated in each data set separately. Typically, ring-recovery and 
perhaps other types of data have been combined with simple-count 
survey data (Besbeas et al. 2002, Brooks et al. 2004). Using a bino-
mial mixture model for the replicated counts as one component of 
such an integrated population model would yield estimates of true 
abundance, and of true population trajectories, that are free of any 
potentially distorting effects of detection probability.
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Appendix.  R code to simulate data suitable for the counts N-mixture model of Royle (2004) and to analyze it in WinBUGS from R.

This is an R function that writes out the BUGS model code and then calls WinBUGS to fit that model. To run the model, one copies 
the function into an R session and executes it thus:

sim.rep <- Nmix.fn(11000,1000,5)

Note that the R2WinBUGS package must be installed in R. debug = FALSE can be changed to debug = TRUE so that WinBUGS 
stays open after completing analysis of one data set and can be used to produce summaries or compute autocorrelation functions. The 
path of the WinBUGS program must be given in the bugs.directory argument of the bugs function.

Nmix.fn<-function(ni=11000,nb=1000,nt=5){
# ni: number of iterations
# nb: burn-in length
# nt: thinning rate

# Default settings yield 2k iterations for inference

# Generate the data

T <- 3  # Number of temporal replicates
R <- 268  # Number of spatial replicates
ele <- runif(R, 200, 2700)  # Quadrat elevation 200 - 2700
eles <- as.vector(scale(ele))  # Elevation standardised

alpha1 <- 2  # Model for true abundance N
beta1 <- -0.5
lambda <- exp(alpha1+beta1*eles)  # Abundance negative function of eles
N <- rpois(R, lambda)
trueNtot <- sum(N[])  # Add up the true total N

alpha2 <- 1  # Model for detection probability p
beta2 <- 2
p <- 1 / (1 + exp(-(alpha2+beta2*eles)))# p positive function of eles

y <- matrix(NA,nrow=R,ncol=T)
for(i in 1:R){
y[i,] <- rbinom(3,N[i],p[i])  # Generate the counts
}

# Analyse the max. count as a simplistic approximation of N
Cmax <- apply(y,1,max)
obsCtot <- sum(Cmax[])

library("R2WinBUGS")  # Load R2WinBUGS package
sink("mlin.txt")
cat("
model {
alpha1 ~ dnorm(0, 0.0001)  # Note conventional vague priors
beta1 ~ dnorm(0, 0.0001)
alpha2 ~ dnorm(0, 0.0001)
beta2 ~ dnorm(0, 0.0001)
for (i in 1:R) {

log(lambda[i]) <- alpha1+beta1*eles[i]
N[i] ~ dpois(lambda[i])

for (j in 1:T) {
linpred[i,j] <- alpha2+beta2*eles[i]
p[i,j] <- 1 / (1 + exp(-linpred[i,j]))
y[i,j] ~ dbin(p[i,j], N[i])
}

}
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Ntot <- sum(N[])  # Total abundance across quadrats
}
",fill=TRUE)
sink()

Nst <- apply(y,1,max)+1  # Starting values for N
data <- list("R","T","y","eles")
inits <- function(){
list(alpha1=0, beta1=0, alpha2=0, beta2=0, N=Nst)}
parameters <- c("alpha1","beta1", "alpha2", "beta2", "Ntot")
out <- bugs (data, inits, parameters, "mlin.txt", n.thin=nt,n.chains=1,n.burnin=nb, 
n.iter=ni, debug = FALSE,bugs.directory = "c:/Program Files/WinBUGS14/")

 
 
 
 
 
 
 
}

 �# Package simulated data, obsCtot, Ntot 
and MCMC results
 �output <- list(ele = ele, eles = eles, 
lambda = lambda, N = N, p = p, y = y,
 �obsCtot= obsCtot, trueNtot=trueNtot, 
out=out) return(output)
 �
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