Abstract view
On the Notion of Visibility of Torsors
|
|
Published:2011-10-05
Printed: Jun 2013
Amod Agashe,
Department of Mathematics, Florida State University, Tallahassee, FL, U.S.A.
Abstract
Let $J$ be an abelian variety and
$A$ be an abelian subvariety of $J$, both defined over $\mathbf{Q}$.
Let $x$ be an element of $H^1(\mathbf{Q},A)$.
Then there are at least two definitions of $x$ being visible in $J$:
one asks that the torsor corresponding to $x$ be isomorphic over $\mathbf{Q}$
to a subvariety of $J$, and the other asks that $x$ be in the kernel
of the natural map $H^1(\mathbf{Q},A) \to H^1(\mathbf{Q},J)$. In this article, we
clarify the relation between the two definitions.