Abstract view
Artinian and Non-Artinian Local Cohomology Modules
|
|
Published:2011-03-11
Printed: Dec 2011
Mohammad T. Dibaei,
Faculty of Mathematical Sciences and Computer, Tarbiat Moallem University, Tehran, Iran
Alireza Vahidi,
Faculty of Mathematical Sciences and Computer, Tarbiat Moallem University, Tehran, Iran
Abstract
Let $M$ be a finite module over a commutative noetherian ring $R$.
For ideals $\mathfrak{a}$ and $\mathfrak{b}$ of $R$, the relations between
cohomological dimensions of $M$ with respect to $\mathfrak{a},
\mathfrak{b}$,
$\mathfrak{a}\cap\mathfrak{b}$ and $\mathfrak{a}+ \mathfrak{b}$ are studied. When $R$ is local, it is
shown that $M$ is generalized Cohen-Macaulay if there exists an
ideal $\mathfrak{a}$ such that all local cohomology modules of $M$ with
respect to $\mathfrak{a}$ have finite lengths. Also, when $r$ is an integer
such that $0\leq r< \dim_R(M)$, any maximal element $\mathfrak{q}$ of the
non-empty set of ideals $\{\mathfrak{a} : \textrm{H}_\mathfrak{a}^i(M)
$ is not artinian for
some $ i, i\geq r \}$ is a prime ideal, and all Bass numbers
of $\textrm{H}_\mathfrak{q}^i(M)$ are finite for all $i\geq r$.