Abstract view
Rational Integer Invariants of Regular Cyclic Actions
|
|
Published:2004-03-01
Printed: Mar 2004
Abstract
Let $g\colon M^{2n}\rightarrow M^{2n}$ be a smooth map of period $m>2$ which
preserves orientation. Suppose that the cyclic action defined by $g$ is regular
and that the normal bundle of the fixed point set $F$ has a $g$-equivariant
complex structure. Let $F\pitchfork F$ be the transverse self-intersection of
$F$ with itself. If the $g$-signature $\Sign (g,M)$ is a rational integer and
$n<\phi (m)$, then there exists a choice of orientations such that $\Sign(g,M)=
\Sign F=\Sign(F\pitchfork F)$.