Abstract view
The Dynamics of Localized Solutions of Nonlocal Reaction-Diffusion Equations
|
|
Published:2000-12-01
Printed: Dec 2000
Abstract
Many classes of singularly perturbed reaction-diffusion equations
possess localized solutions where the gradient of the solution is
large only in the vicinity of certain points or interfaces in the
domain. The problems of this type that are considered are an
interface propagation model from materials science and an
activator-inhibitor model of morphogenesis. These two models are
formulated as nonlocal partial differential equations. Results
concerning the existence of equilibria, their stability, and the
dynamical behavior of localized structures in the interior and on
the boundary of the domain are surveyed for these two models. By
examining the spectrum associated with the linearization of these
problems around certain canonical solutions, it is shown that the
nonlocal term can lead to the existence of an exponentially small
principal eigenvalue for the linearized problem. This eigenvalue
is then responsible for an exponentially slow, or metastable,
motion of the localized structure.