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Abstract

It is well known that ¢(Z) is amenable and so its global dimension is zero. In this paper we will
investigate the cyclic and Hochschild cohomology of Banach algebra cy(Z, w™!) and its unitisation with
coefficients in its dual space, where w is a weight on Z which satisfies inf{w (i)} = 0. Moreover we show
that the weak homological bi-dimension of ¢y(Z, w™!) is infinity.

2000 Mathematics subject classification: primary 46M20, 43A15.

1. Introduction

The Banach algebra & is amenable if /' (&, £’) = 0 for every Banach /-
bimodule 2. This definition was introduced by Johnson in (1972) [8]. The Banach
algebra & is weakly amenable if J#'(«/, @’) = 0. This definition generalizes the
one which was introduced by Bade, Curtis and Dales in [1], where it was noted that a
commutative Banach algebra &/ is weakly amenable if and only if #' (&, Z) =0
for every symmetric Banach &/-bimodule Z".

Johnson in [8] proved that for an amenable Banach algebra 2, the cohomology
groups J€" (&, Z') vanish for every Banach &/-bimodule 2" and all n > 1. The
question was raised whether in general J#"(&/, &’) = 0 for a weakly amenable
Banach algebra & and all n > 1. The question was answered in the negative
in [14] by showing that J#%(¢'(F,), £°(F;)) # 0. In fact Johnson [8] showed
that s#2(¢'(F,), C) # 0 and in [14] Sinclair and Smith showed that the non-trivial
cohomology group J#2(£'(F,), C) is naturally embedded as a direct summand of
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(LY (F), £2(F)). In this paper we will give an example of a weakly amenable
Banach algebra, such that the n™ cohomology groups with coefficients in the dual
space do not vanish for all n > 1.

It is a question of general interest whether or not the n™ cohomology group is
necessarily zero. This, and closely related questions have stimulated much of the
recent development of the theory of cohomology grouyps.

Bade, Curtis and Dales in [1] showed that 5#' (£!(Z,,), £'(Z,)’) # 0. This may lead
one to believe that J#"(£'(Z.,), ¢'(Z,)") for all n > 2 are also non-zero. However,
Johnson showed in [10] that the alternating cohomology of £!(Z,) vanishes in all
dimensions strictly greater than one. Then Dales and Duncan [2, Theorem 3.2] showed
that S#%(€£'(Z,), £'(Z,)") = 0. Gourdeau and White in [4] with a complicated proof
showed that S#3(£'(Z,), £'(Z,)’) = 0. This leads to the conjecture that all the
cohomology groups of £!(Z.) with coefficients in £'(Z,)’ vanish for n > 3.

In this paper for the weakly amenable Banach algebra «/*, the unitisation of
& = c(Z, w™"), we show that the cyclic cohomology group J#%"(«/*) and the
Hochschild cohomology group J#"(&/*, (&/*)’) are non-trivial for every n > 2.

Let w be a weight sequence on Z, that is, w is a non-zero, positive valued function
on Z such that w(n) < 1 forevery n € Z. Set

@, ™) = {a —(a):neZ lim 2% _ 0},
Inl>o00 w(n)

where co(Z, w™') is a closed subalgebra of

(2Z, 0" = {a ={a,}:n€Z, |al,+ = sup {alfz:ll) ‘n e Z} < oo}

and co(Z, w™'Y (the dual space of co(Z, w™")) is equal to

(2, w) = [a ={a,}:nel, Z la,|w(n) < oo] .

n=-00

The element e; = {§;;};ez, i € Z is an idempotent, where §;; denotes the Kronecker
delta. We denote the linear span of such elements by E, which is a dense subset of
co(Z, w™'); since if a € ¢p(Z, w™"), then we define

n
a' = E ae,={...,0,a_,,...,a,0,...}

i=-n

and

a.
la — a"||,- = sup —— — 0 as |n| - o0.
lif>In) @ (I
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[3] Higher dimensional cohomology 59

Since a commutative Banach algebra which is the closed linear span of its idem-
potents is weakly amenable [9], then ¢y (Z, w~!) is weakly amenable, and by [3,
Proposition 1.4] &/*, the unitisation of & = ¢o(Z, w™") is also weakly amenable.

NOTE. In this paper every weight w on Z which we consider must satisfy the
condition inf{w (i)} = 0, because if inf{w (i)} # 0, then w~! is a bounded weight and
50 ¢o(Z, ') = ¢4(Z) which is amenable.

Throughout &/* means the unitisation of & = c¢y(Z, w~!). Let 1 be the unit element
of &/*. Suppose E is the closed linear span of {e;}"_,. Then Ey is a closed subalgebra
of &*. If a € &%, then a = a’ + a1, where @’ = {a,}nez is in ¢(Z, 0™ ') and @ € C.
The norm on &/* is defined by |lall,- = ||d’||.- + ||. Also for every a = a’ + al
and b = b’ + B1in &* we define ab = a’b’' +ab' + Ba’ +aBl. Clearly Ey = CV and
since a direct sum of amenable algebras is amenable, then Ey is an amenable closed
subalgebra of &7*.

Note that for every ¢ € 2" (&%, (&*)), the space of all bounded n-cocycles,
by [11] there exists ¥y in €" 1 (&*, (&7*)) such that

(¢ —éy¥n)(ay,...,a,) =0 ifanyoneof a),...,a, liesin Ey.

But we will show that this is not true for the whole of &*, in fact for every n > 2 we
will find a (cyclic) cocycle ¢ € Z"(*, («*)") which does not co-bound.

The weak homological bi-dimension of a Banach algebra &/, denoted by wdb &, is
the smallest integer n such that 7#" (2, X') = 0 for all Banach &/-bimodules X and
allm > n, or wdb & = o0 if there is no such n. If & is an amenable Banach algebra,
then wdb & = 0 [7, Section 2.5]. The weak homological bi-dimension of a Banach
algebra is a number that measures how much this algebra is homologically worse than
amenable. The homological bi-dimension of a Banach algebra 2/, denoted by db &,
is the smallest integer n such that 5" (&, X) = 0 for all Banach &/-bimodules X
and all m > n, or wdb & = oo if there is no such n. For every Banach algebra &,
we have wdb & < db & (see [7, VII, Section 3.4] and [13]).

A consequence of the main results of this paper (Theorem 2.2 and Theorem 3.4) is
that the weak homological bi-dimension of ¢y(Z, w™') is infinity, that is,

wdb ¢o(Z, o™ ") = o0.

The paper is organized as follows. In Section 2 we calculate the even dimensional
cyclic and Hochschild cohomology groups of &7# with coefficients in (.(z{ ”)’, the dual
space of &*. In Section 3 we will continue our argument for the odd dimensional
case.
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2. Even dimensional cohomology groups of
weighted sequence algebras

In this section we prove that S (&*, (&#*)') # 0 and H#E>"(*) # 0 for every
neN,

LEMMA 2.1. Let > °
let

i=—oo &i be an absolutely convergent series of real numbers, and
2n times
o x A x- x> (*)
be the function defined by

o0 ’

a “« e -a,
1i 2n+1)i
d(ay,...,an)(a3me1) = E - Q;,

w(l)(2n+1)

i=—00

where a, = a, + Bl and a;, = {a;;}icz (k=1,2,...,2n 4+ 1). Then ¢ is a bounded
cyclic 2n-cocycle for every n € N,

PROOF. It is easy to see that ¢ is a 2n-linear map. Also

A

= lay; - - - a22n+l)i|
|p(ar, ... , az)(azat1)] < E (i) |a;]
i=—00

I 1,| |a(2n+1)1
sup a)(l)] -SL:p w (i) ] Z_:'al

@l - - 1 @znsn Z A

i=—00

IA

IA

Thus ¢ is bounded and |¢fl < Y oo . loil. Now we want to show that ¢ is a
2n-cocycle, that is,

Sp(ay, ..., apmi1)(Qmi2) = arplay, ..., 2n41)(A2n42)

2n
+ Z(—l)‘d)(a,, ce s QiQig, .o Q2ng1)(A2n42)

i=1
+ (—1)2"+1(¢(al, N a2n)a2n+l)(a2n+2) =0

Now we calculate all terms on the right-hand side of the above equation and we obtain
the following (2n + 2) terms respectively;

o o]

a; ’ ’ ’ ’ ’ ’
z : —a)(i)z"“ {a“ C Qo T P18y Qg t Banen @yt Qgayyi
I=—00
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(5] Higher dimensional cohomology 61

! 4 7 ' A 7 7
- (ali o Qonyi T Bray; - Appiay + paayay,; - - - a(2n+2)i)

/ ’ ' ’ ! !
+ (@) - Ay + Bandl; Q18204 1% 2n 12y
! / /
+ Ban+nyay - - a(2n)ia(2n+2)i)

/ 4 4 / 7 ’ !
- (a” o Qoni T Bansn@y; - - A2 i%0ons2)i T Bansnay; - - - a(2n+1)i)}‘

So all terms in the above equation cancel in pairs. Thus ¢ is a 2n-cocycle, and
obviously it is cyclic, that is,

¢(ay, ..., an)(@nms) = (—1)2"¢(az, ey Aoy Qopi)(ay). O
THEOREM 2.2. Let w be a weight on Z such that inf{w (i)} = 0. Then
H (A, (I*) #0 andalso A" (F*) #0

for everyn € N.

PROOF. Let ¢ be the bounded cyclic 2n-cocycle which was introduced in Lemma 2.1
and let o; be defined as below. Since inf{w (i)} = 0, then there exist numbers m,,

(k = 1,2,...) such that m; # m; whenever i # j and w(m;) < 1/2*. Now we
define

1/k* ifi=m; (k=1,2,...);
0 otherwise

a; =

andso Y o _a; =Y o, 1/k? which converges. Thus by Lemma 2.1

ad al v .. a/
_ 1my Qn+1)my
¢(ay, ..., an)(a4) = ; w (m )2+ k2

is a bounded cyclic 2n-cocycle for every n € N. Now if there exists a ¥ in
€ o*, (*)) such that

dlai, ..., am)(ame) =8¥(ay, ..., an)(a2n)

=ay(ay, ..., an)(am41)
2n-1

+ ) (=DY(ar, . @i @) (@)
i=1
+ (=D (a, ..., au-1)a2.)(@2041),
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where ¢ € &* (k = 1,2,...,2n + 1), in particular, if a; = -+ = a1 = €,
G =1,2,...),then

2n times 2n—1times 1
rr—"— rmt— e—
¢(em1'1"' )em/')(eml')'_—'w(em]'"" aemj)(emj)z

w(mj )2n+1j2 )
Sosince w(j) < 1/2/

2n times

—

11 > sup { |V @m)em,, . w0n))em)@0m)en,)|
J

w { w(m;)* } .y { 1 ]> [2f] o
= - = —_— _SU o =
jp w(mj)2n+l]2 jp a)(mj)]2 jp ]2

which is a contradiction. So J#%(&*, (&*)) # 0 and also SFE*" (&*) # 0. O

3. Odd dimensional cohomology groups of
weighted sequence algebras

In this section we will show that 71 (¥, (2/*))#0 and also SPE>" ! (o7*)£0
for every n > 1. Note that the structure of the function ¢ which is a base for
Theorem 3.4, for the three dimensional case is different from the structure of the
corresponding functions in the other cases.

LEMMA 3.1. Let Zf_‘;_ o i be an absolutely convergent series of real numbers, and
letp : o* x * x of* — (A*) be the function defined by

. o= a)bidd —abcd
¢(a, b=y » - TR

[=—00 j=—00

wherea=a' +al,b=b'+Bl,c = +ylandd = d' + Al. Then ¢ is a bounded
cyclic 3-cocycle.

PROOF. It is easy to see that ¢ is a trilinear map and also

& lajbicd)| + labicd|
@b, o)d <Y D oGl

I=—00 j=—00

00 2
< 2lallo- 1bllo-licllo-t - (Z Iaz|> -

[=—00
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(71 Higher dimensional cohomology 63
2 :
Thus ¢ is bounded and ||¢|| < 2{ Y e ol I} . Now we want to show that ¢ satisfies

(1) ag(b, c,d)(h) — ¢(ab, c,d)(h) + ¢(a, bc, d)(h)
— ¢(a, b, cd)(h) + (¢(a, b, c)d)(h) =

wherea =ad +al,b=b +Bl,c=c +yl,d=d +Xland h = k' + 61. By
definition of ¢ and (1)
a a] 7 oy AN A T
ZZ w(z)zw(,)Z( (b cd;k;a; + abcdh; + 0, cd.a))
- (b’.c'.d'. '.a'. + ab’.c'.d'.h'. + Bb’.c'.d’.a’.)}
— {(aj b c;d;; + abcid;k; + Ba;c/d}h))
— (a;bjcjd B} + abicid h; + Ba;c/d; h;})}

+ (@b d K, + Ba) cd; + ya,bdK))

g et et b | sz] it

— (b, + Bacd K, + yabd k)

iYivi

— {(ajbicd K, + ya)bjdR; + ra;bic;h))

~ (abcid W, + yabd h; + Aabic; h'.)}
+ {(a;bic/d; k) + ra;bic}h; + 6abicd))

— (a;b:.c;d;h} + Aajbic; h;- + Oa;b;c| dj'.)})
. C d’ y fab.c.d;

9b b
= ZZ a)(z)za)(])Z ZZ w(l)zwj(lj)z i@ = 0

and so ¢ is a 3-cocycle. Also ¢ is cyclic, since
d;a;bic; — da;bc;
} : 2 : i*ivj

a;b; c;d; ab;c,d;

> Z w2 ,Z PG

= —¢(a, b, c,d) = (=1)’¢(a, b, c, d). O

Now we are going to construct the 2n + 1-cocycle ¢ for higher dimensions.

2n times
A —

LEMMA 3.2. Let y;; : :(z{# x & x - x .Qf; — (&*) be a 2n-linear function
defined by

2n+1

wlj (alv ceey aZn)(a2n+l) = Z a,lj e a[/g e a£2n+l)i’
k=1
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where a, = a, + Bl and a, = {a;}icz (k=1,... ,2n+ 1). Then

5‘/’:’; (@, ..., any1)(A42) = allj aéi T a22n+1)ia£2n+2)j

2n+1
k 1 ' ’
+ E (—D%aj;--- i Akvryj """ Qns)ic
k=1

PROOF. By the coboundary formula we have

2) 3!”:‘,‘ (ay, ..

s Qong1) (Q2ny2) = Vi (aa, - . ., Q2ny1)(Q2n42a1)
2n
k
+ Z(—l) llij (ai, ..., &Gy, - - - B2ns1)(Q2042)
k=1

- ‘/fij (a, ..., a2,)(A2041G2n42).

Using the definition of ¥; we obtain the value of all terms on the right-hand side of
the above equation as follows

Vfij (az, ..., ams1)(azn2a1)

2n+1
—a ...q / / + oo da . al
= Ay A0p41)i% 20+ A Ay Qo Aopy)
k=2
2n+2 2n+1

/ ’ / / / /
+ § :ﬂlaZi'“akj T Qouiy T § :132n+2a1i”'akj “Ant )it
k=2 k=1

Forl=1,...,2n,

w,-j(al,

v AUy o Qongt) (G2ny2)
2n+42

—a ...a 4d e n + oo al oo A
=y QA Aapg)i Ay Qg Qapyy
k=1

kALI+1

2n+2 2n+2

S By dy @ S Burdy oy
+ ) By --ay--diag, gt Brrray - ay - @ Qg
P

k=1
k#l1+1

where symbol = shows the element in that position is removed.

\lf,’j(al,

’ a2n) (a2n+ 1 a2n+2)
2n

! / 7 I3 ! 7 4
=a); " A3 Q0p11)j Q2ns2)j T E :a” Tyt Aoy

k=1
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2n+2 2n+1
/ / / ' / ! /
+ E : 52n+lan"'akj ©t QanyiQansni T § :.B2n+2a1i”'akj © Qonyyi
k=1 k=1
k#2n+1

Substitute the values for v; obtained above in (2). Then all summations with B,
(k=1i,...,2n + 2) coefficients cancel in pairs, and we obtain

SYrjai, ... , amy1)(@2042)

2n+1
o ! ’ —_INKA A A oo
=4y Ay 1y Bantyj T § :( 1) a;; A Arnyj " Aentyi
k=1
2n+1 2n+1 2n42
7 7 ! { ’ / ’
+ § :ali"'akj T Aanggyi T E :(_1) § : Ayt Qg0 Aoy,
k=2 I=1

k=1
k#l,1+1

and the sum of the last two terms is zero because, they contain 2n terms like
aj - @y ap,. ., forevery k = 1,...,2n + 2, half with a positive sign and the
other half with a negative sign which cancel in pairs. So this finishes the proof. O

LEMMA 3.3. Let )_, a; be an absolutely convergent series of real numbers, and let
¢: I x " x - x o* > (*) be the function defined by

2n+1 times

dlay, ..., app1)(amy42) = }: Z a)(z;”(:j(l )23%1 (@i, ..., @&np1)(@2n42),

where r;; is defined as in Lemma 3.2. Then ¢ is a bounded cyclic (2n + 1)-cocycle
for every n > 1.

PROOF. It is easy to see that ¢ is a 2n + 1-linear map and also

lp(ay, ..., amr) (@) < 2o+ 2)|a]lo-r - -+ lazngall o Z |

i

Thus ¢ is bounded and ||¢]| < 2n +2)( Do las I) Also ¢ is a (2n + 1)-cocycle,
that is,

oy _
¢ = Z Z w(i)¥w(j )? 88y =0

because 88y; = 0. Furthermore we show that ¢ is cyclic, that is, it satisfies
d(ay, ..., an1)(A0y2) = (“‘1)2n+1¢(02, ey Gng2) (@).
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For this we have to calculate the right-hand side of the above equation. We have the
following:

¢(ay, ..., apm2)(ar)

_ o; al (a/ a; . a/ a/ a/ a/ a/ a/
2. . .. 2 . . - . .t . .
§ : 2 : (1)(1)2"0)(] )2 Jj 3i n+2)i™1j 2j 73j Q@n+2)i™1i
v ' ’ / / ’ /
+ 4y a3;Q,; 0 Qg @y F o T Gy a1y Ban ), alj)}

—E E { i) (—a);ay - aopenid +ay;a5.a; - a
1j “2i 2n+1)i%Q2n+2)j 1j %2 %3 " " T % 2n+2)i
w(i)*w(j)?

/ / / / ! I3 ! !
F oo a4y Ay Aonsny Aans2yi T A1t Ay iBant ) a(2n+2)j)]

= —¢(a1, cee azn+l)(a2n+2)-

Therefore ¢ is a cyclic (2n 4 1)-cocycle. O

THEOREM 3.4. Let w be a weight on Z such that inf{w (i)} = 0. Then
%2n+l(d#’ (d#)/) # 0
and also €' (*) # 0 for everyn € N.

PROOF. Let ¢ be the bounded 2n + 1-cocycle which was introduced in Lemma 3.1
forn = 1 and in Lemma 3.3 for n > 1. Consider the sequence «; which was defined
in the proof of Theorem 2.2. Note that m; # m; whenever i # j and w(m;) < 1/2.
Alsoifi < j,since 1/2/ < 1/2/, then max{w(m;), (m;)} < 1/2".

Now if ¥ € € (&*, (&7*)’) such that ¢ = 8y, then by the definition of ¢ and the
coboundary formula we have

2n times 2n times
Y mmeed N e ettt
¢(em,-,em,-"-- aem,-)(emj) =W(em,-v--- 7em,‘)(em!')
2n—1times

N

+;p(emj, €miy » -y em,—)(emj) .- + w(emj’ €mis v em,-)(emj)
R e e’

2n—1times 2n—1times
- mis * 9 -m; m; mis Smiy vy Tm; m;
= V¥(e em,)(em;) + Y (em, € em,)(em,)
2n—1times

= "/f(emi + em!’ em,-a A em,»)(emj)'
Therefore by the definition of ¢

2n—1times

,_A__\) O, O,
W(em. + em,-a em,-9 LA ] em,' (em,) =

w(m;)*w(m;)?’
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Suppose min{w(m,), w(m;)} = C;, then
1Cyj (em, + m)llor =1 and |lw(m)e, |l = L.
If weleti < j, then

11l = sup {|1¥ (G (em, + €m,), @(Mi)em,, ..., @(m)en,) (@(m;)em)|}
LJ

= sup

{min{w(m,-), @ (M;) )0, ]
ij

w(m;)w(m;)

1 2i
= > — 3.
oF [max{w(m,-), w(mj)}i2j2] =57 {14}

In particular, for j = i + 1, we have ||| > sup,2'/(i + 1)* = oo which contradicts
¥ € € (Y, (). So " (¥, (%)) # 0 and HE (*) # 0. O

REMARK. Consider the short exact sequence 0 > & — &* — C — 0. The dual
of this short exact sequence, is the short exact sequence,

0> C— (" > o' — 0.
This gives the long exact sequence of cohomology (see [6, III. Corollary 4.11])
o> NI, C) > (I (P > (I A

From this, one can show that J#"(&/*, C) # 0 for every n > 2.

As we noticed in Section 1, Ey is an amenable closed subalgebra of «*. So &*
satisfies the conditions of [12, Theorem 2.6 and Theorem 5.1]. We can therefore
apply Theorem 2.2 and Theorem 3.4 to conclude that for each n > 2, the Ey-relative
(cyclic) cohomology of &7* does not vanish.

Acknowledgment

The author wishes to thank the referee for bringing the last Remark to his attention.

References

[1] W.G. Bade, P. C. Curtis, Jr. and H. G. Dales, ‘Amenability and weak amenability for Beurling and
Lipschitz algebras’, Proc. London Math. Soc. §5 (1987), 359-377.

Downloaded from https:/www.cambridge.org/core. IP address: 47.88.87.18, on 17 Jan 2017 at 18:09:52, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.
https://doi.org/10.1017/51446788700003475


https://doi.org/10.1017/S1446788700003475
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

68 A. Pourabbas | [12]

[2] H. G. Dales and J. Duncan, ‘Second order cohomology groups of some semigroup algebras’, in:
Banach Algebra’97 (Blaubeuren) (Walter de Gruyter, Berlin, 1998) pp. 101-117.
[3] H.G. Dales, F. Ghahramani and N. Grgnbak, ‘Derivation into iterated duals of Banach algebras’,
Studia Math. 128 (1998), 19-54.
[4] F. Gourdeau and M. C. White, ‘Vanishing of the third simplicial cohomology group of £!(Z,)’,
Trans. Amer. Math. Soc. 353 (2001), 2003-2017.
[5] N. Grgnbak, ‘Weak and cyclic amenability for non-commutative Banach algebras’, Proc. Edin-
burgh Math. Soc. 35 (1992), 315-328.
[6] A. Ya.Helemskii, The homology of Banach and topological algebras (Kluwer Academic Publish-
ers, Dordrecht, 1986).
[7] , Banach and locally convex algebras (Oxford University Press, Oxford, 1993).
[8] B.E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (Amer. Math. Soc.
Providence, 1972).
, Derivations from L'(G) into L' (G) and L*(G), Lecture Notes in Math. 1359 (Springer,
Berlin, 1988) pp. 191-198.
[10] , ‘Alternating cohomology’, preprint.
[11] B.E.Johnsona,R. V. Kadison and J. R. Ringrose, ‘Cohomology of operator algebra III. Reduction
to normal cohomology’, Bull. Soc. Math. France 100 (1972), 73-96.
[12] Z. A. Lykova, ‘Relative cohomology of Banach algebras’, J. Operator Theory 41 (1999), 23-53.
[13] Yu. V. Selivanov, ‘Weak homological bi-dimension and its values in the class of biflat Banach
algebras’, Extracta Math. 11 (1996), 348-365.
[14] A. M. Sinclair and R. R. Smith, Hochschild cohomology of von Neumann algebras, London Math.
Soc. Lecture Note Ser. 204 (Cambridge Univ. Press, Cambridge, 1995) pp. 196.

(9]

Faculty of Mathematics and Computer Science
Amir Kabir University

424 Hafez Avenue

Tehran 15914

Iran

e-mail: arpabbas@aut.ac.ir

Downloaded from https:/www.cambridge.org/core. IP address: 47.88.87.18, on 17 Jan 2017 at 18:09:52, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.
https://doi.org/10.1017/51446788700003475


https://doi.org/10.1017/S1446788700003475
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

