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Abstract

This paper is concerned with the numerical range and some related properties of the operator A|S:
T — AT — TB(T € §), where A4, B are (bounded linear) operators on the normed linear spaces X and
Y. respectively, and S is a linear subspace of the space £(Y,X) of all operators from Y to X. § is
assumed to contain all finite operators, to be invariant under A, and to be suitably normed (not
necessarily with the operator norm). Then the algebra numerical range of A[S is equal to the
difference of the algebra numerical ranges of A and B. When X = Y and § = £(X), A is Hermitian
(resp. normal) in £(£(X)) if and only if 4 — A and B — A are Hermitian (resp. normal) in £(X) for
some scalar A; if X := H is a Hilbert space and if S is a C*-algebra or a minimal norm ideal in £ (H),
then any Hermitian (resp. normal) operator on § is of the form A|S for some Hermitian (resp.
normal) operators A and B. AT = TB implies A*T = TB*, provided that 4 and B* are hyponormal
operators on the Hilbert spaces H, and H,, respectively, and T is a Hilbert-Schmidt operator from H,
to H,.

1980 Mathematics subject classification (Amer. Math. Soc.): 47 A 12,47 B 15, 47 B 47.
Keywords and phrases: algebra numerical range, derivation, Hermitian and normal operators, hyponor-
mal operator, normed operator ideal, Schatten p-class, C*-algebra, Hilbert-Schmidt operator.

0. Introduction

Let X be a complex normed linear space and let £(X) be the algebra of all
(bounded linear) operators on X. The spatial numerical range of an operator 4 on
X is given by W(4; £(X)) := {f(A4x); (x, f) € m(X)}, where 7(X) denotes the
set of all pairs (x, f) € X X X’ such that ||x|| = || f|| = f(x) = 1. The algebra
numerical range of 4 in £(X) is given by V(4; (X)) := {F(A); (I, F) €
7(£(X))}, where I is the identity operator. It is known that V(A4; £(X)) is compact
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(2] Numerical ranges of generalized derivations 135

and is the closed convex hull of W(A4; £(X)). When X = H is a Hilbert space with
inner product {( , ), W(4; £(X)) reduces to the classical numerical range
W(A) 1= {(Ax, x); x € H, ||x]| = 1} (see [4] for details).

If B is an operator on another normed linear space Y, then the generalized
derivation A = A, , defined by A(T') := AT — TB, is an operator on the space
£(Y,X) of all operators from Y to X. In this paper, we consider the numerical
ranges of restrictions of A to certain invariant subspaces & and some conse-
quences. First, the algebra numerical range of A|S is shown to be the difference
of V(A; £(X)) and V(B; £(Y)), provided that & contains all finite-rank operators
and is suitably normed. Then it is applied to determine when A or A|S is
Hermitian or normal, and to derive a Fuglede-Putnam theorem for hyponormal
operators. The results will extend some theorems of Kyle [8], Sourour [13] and
Berberian [3], respectively.

1. The numerical range

We will assume that & is a linear subspace of £(Y, X) equipped with a norm
[I ||| (possibly different from the operator norm || - ||) such that the following
conditions are satisfied:

MWASCSand SBCS; Q) If DeELX), TES, E € £(Y) and DTE €5,
then |||DTEY|| < 1D [JITNIIEN; () ITI <|||T1|| for all T'in §, and the equality
holds whenever T has rank one; (4) & contains all finite rank operators from Y to
X.

It follows from (1) that S is an invariant subspace of A = A, z, and from (2)
that the restriction A|S of A is a bounded linear operator on (S, |||-]||). We
consider the numerical range of A|S.

THEOREM 1.1. For operators A € £(X) and B € £(Y) let (S,]||-]|]) be the
normed linear space as mentioned above. Then

(%) V(A|S; £(S)) = V(4; (X)) — V(B; £(Y)).

PROOF. We first prove that the left side is contained in the right side. So, let A
be an arbitrary element of V(A|S; £(5)). Then A = f(A|S) for some f € (£(8))
such that || f|| = f(Igs)) = 1, where Ips, denotes the identity operator in £(5). It
is clear that the set 9 (resp. I¢N) of all D € £(X) (resp. E € £(Y)) such that
DS C & (resp. SE C &) is a linear subspace of £(X) (resp. £(Y)) containing Ip x,
and A (resp. Ipy, and B). Define a linear functional F on 9N by F(D) = f(L,|5)
(D € 9) and a linear functional G on 9 by G(E) = f(Rg|S) (E € 9), where
L, and R stand for the left multiplication by D and the right multiplication by
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E, respectively. Now the Hahn-Banach theorem guarantees the existence of F in
(E(X)) and G in (E(Y)) such that F|ON = F, || F|| = ||F|, G| = G and ||G|| =
Gl Since F(lex)) = F(lpx)) = f(Ig(s)) = 1 and since | (D) |< | fIlllLp|ol| =
sup{[||DTI||; T €S, [||TI]| = 1} <||D|| for all D in M, we have that || F|| = || F||
<1= F(IB(X)) < |||, that is, (Texys F) belongs to #(£(X)). Similarly, we have
(Teyy» G) € 7(£(Y)). Hence
A=f(AIS) =f(L4IS) — f(R5|S)
= F(A) — G(B) = F(A) — G(B)
€ V(4; £(X)) — V(B; £(Y)).
To prove the other inclusion, it suffices to show that
V(AS; £(8)) D W(4; £(X)) — W(B; £(Y))
since the closed convex hull of the set on the right side is V(4; £(X)) —
V(B; £(Y)), by an elementary proof. So, let a« = g(Ax) with (x, g) € #(X) and
let B = h(By) with (y, h) € #(Y). Using the usual notation x ® h for the
rank-one operator: z — h(z)x (z € Y), we define the linear functional P on £(&)
by
P(Q):= g([2(x @ h)]y) (2 € £(5)).

Clearly we have P(Ig(s,) = 1 and, by (3) and (4),

|P(Q)I=<1IgllI2(x ® W)yl <|||Q(x ® h)]|| <1l]]|x & Al||
= (|9[|1x ® A|| = ||,

thatis, (Ips), P) € m(E(S)). Hence V(A|S; £(5)) contains the number
P(A15) = g(A(x®h)y — (x ® h)By)
= g(Ax)h(y) — g(x)h(By) = a — B.

The proof is complete.

REMARK. Conditions (3) and (4) are used only in proving the direction “D ”
therefore the inclusion “ C ” will hold for any subspace satisfying (1) and (2)
That (4) is essential for the direction “D ” is easily seen from the example where
X=Y=C*4=B=(];),5=span{d) and [||.][| = - |

The following are some examples of qualified subspaces (S, -1

(a) Components in £(Y,X) of all the operator ideals on Banach spaces, as
studied in Chapter 1 of [9], such as the classes of finite operators, approximate
operators, compact operators, weakly compact operators, completely continuous
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operators, unconditionally summing operators, separable operators, Kato opera-
tors and Pelczynski operators.

(b) Components in £(Y, X) of all the normed operator ideals on Banach spaces,
as studied in Chapter 6 of [9], such as nuclear operators, integral operators,
absolutely summing operators and Hilbert operators. (Compare the assumptions
on (8, |||-|]|) with Definitions 6.1.1, 6.2.2 and Propositions 6.1.4, 6.1.5 of [9].)

(c) The Schatten p-class C,(H,,H;) (1 < p < o0) or approximable operators
from a Hilbert space H, to another Hilbert space H,, that is, operators T such
that ||T||, := [trace(T*T)?/?]'/? < o0, (see [9, page 216]). In the case where
p = 1 these are the operators of trace class (nuclear operators), and p = 2 yields
the Hilbert space of Hilbert-Schmidt operators (see {2, Chapter 12]).

COROLLARY 1.2. Forany A € £(X) and B € £(Y),
V(A; £(L(Y,X))) = ¥(4; (X)) — V(B; 2(Y)).

This contains Kyle’s result [8] (for the case X = Y) as a special case.

COROLLARY 1.3. Let A and B be any operators on Hilbert spaces H, and H,,
respectively, and let C,(H,, H,) be normed with || - || or || - || ,- Then

V(AIG,(H,,H,); £(C,(H,, H)))) = W(A4) —W(B) .

Thus Corollary 1.3 becomes a numerical range analogue of Fialkow’s [5]

formula for spectra: o(A | C,(H)) = 6(4) — o(B).

We end this section by deriving from Theorem 1.1 the following known
property, which will be of use in Section 2.

COROLLARY 1.4. If AT = TB holds for all rank-one operators T in £(Y, X), then
A = A%, and B = Xy y, for some scalar \.

PRrOOF. Take & to be the space of all finite rank operators. Then A|S = 0 and
so V(A4; (X)) — V(B; £(Y)) = V(A|L(2)) = {0}, or equivalently, ¥(4; £(X))
= V(B; £(Y)) = {A} for some scalar A. It follows that V(4 — Al x,; £(X)) = {0}
and

14 = Mgl < emax{|p|; p € V(A4 — Mxy3 £(X))} =0

(see [4, page 34]). Hence 4 = Alp ), and similarly B = Algy,.
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2. Hermitian and normal derivations

An operator A on a normed linear space X is said to be Hermitian if its
numerical range is contained in the real line and it is normal if 4 = H + iK for
some commuting Hermitian operators H and K. In this section we try to answer
partly the question about when the operator A |S is Hermitian or normal.

First, from the formula (*) comes immediately the following

COROLLARY 2.1. Let (S, |||-]||) be as assumed in Theorem 1.1. Then A|S is
Hermitian in £(E(Y,) if and only if A —ANI € £(X) and B — NI € £(Y) are
Hermitian for some scalar .

Kyle [8] has proved that when X = Y is a Banach space and when 4 = B, A is
normal if and only if 4 is normal in £(X). We shall extend this result under
various situations. The statement for the most general situation is as follows.

THEOREM 2.2. Let A € £(X) and B € £(Y) be of the forms A = H + iK and
B= M+ iN, where H, K, M and N are Hermitian operators. Suppose that (S, |||-][|)
satisfies HS C S, KS CS, SM C S, SN C S and conditions (2), (3), (4). Then
A2 is normal if and only if both A and B are normal.

PROOF. A4 5 can be written as Ay, ,, + iAg 5, where Ay, and Ay » and their
restrictions to & are Hermitian, by Corollary 2.1. Now, from the easily verified
identity

AH.MAK,N — A NApm= AHKAKH,MN—NM

we see that A{S is normal if and only if (HK — KH)T = T(MN — NM)forall T
in &. Since & contains all finite rank operators, the latter condition is, by
Corollary 1.4, equivalent to that HK — KH = Ay, and MN — NM = Ay, for
some scalar A. But this is possible only when A = 0, that is, 4 and B are normal
(see [10, page 332)).

It follows that for A|S to be normal it is sufficient that 4 and B are normal.
That this is also necessary in case X and Y are Hilbert spaces is already contained
in the above theorem.

COROLLARY 2.3. Ler H, and H, be Hilbert spaces. For A € £(H,) and B €
L(H,) let S C £(H,,H,) be a subspace satisfying conditions (1)—(4) ( for example,
C,(H,,H,) with norm || - ||, or operator norm || - ||). Then A|S is normal if and only
if both A and B are normal.
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REMARK. When A4 and B are normal operators on a Hilbert space H, A and
A| Cy,(H) become normal operators on the Banach space £(H) and the Hilbert
space (C,(H), || - {I,), respectively. It follows (see [6, Theorem A] or [1]) that the
null space N(A) is orthogonal to the range R(A) of A. Hence we have

R(A)Y ®N(A) D (R(A|C(H))” ®N(A|Cy(H))) = Cy(H),

where the superscripts “— and “= > denote the closure relative 1o || - || and
Il - I, respectively. Thus R(A)~ © N(A) contains all compact operators while it is
in general strictly less than £(H) [1].

Since a general operator on a normed linear space is not necessarily of the form
H + IK, with H and K Hermitian, it is not known from Theorem 2.2 whether a
normal A, 5|5 (4 € £(X), B € £(Y)) must be made of two normal 4 and B. But,
at least when X is equal to Y and when & = £(X), this is true, as is shown by the
following extension of Kyle’s result.

THEOREM 2.4. Let A and B be operators on a normed linear space X. Then A ; 5 is
normal in £(£(X)) if and only if both A and B are normal in £(X).

This will follow from Theorem 2.2 (with & = £(X)) and the next

LEMMA 2.5. A, 5 = ® + iV for some Hermitian operators ® and ¥ in £(£(X)) if
and only if A = H + iK and B = M + iN for some Hermitian operators H, K, M
and N in £(X).

PROOF. Suppose A = @ + i¥ where ® and ¥ are Hermitian. Fix a pair (x,, f)
in #(X) and define operators H,, K;, M, and N, by H\x := (®(x ® f))x,,
Kix:=(¥(x®f)x, (x €EX), M,:= H, — ®(I) and N, := K, — ¥(I), re-
spectively, where [ is the identity operator on X.

We first show that these operators are Hermitian. To show that H, is Hermi-
tian, we will prove that g( H,x) is real for any pair (x, g) in #(X). Indeed, for a
fixed (x, g) in #(X) there corresponds the linear functional G: T — g(Tx,)
(T € £(X)) on £(X) which satisfies: ||G]| = G(x ® f) =||x ® f]| = 1, that is,
(x ® f, G) € w(A(X)). This implies that

g(Hx) = g((®(x @ f))xo) = G(®(x ® f)) € W(®; £(£(X))) C R.

By a similar way one can show that K, is also Hermitian. To claim that ®(7) is
Hermitian we observe that F(®(1)) belongs to W(®, £(£(X))) for every (I, F) in
7(£(X)), or equivalently, V(®(I); £(X)) C (®; £(E(X))) C R. Similarly, ¥(7) is
Hermitian.
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Now we have, for D € £(X) and x € X,
(A4, m(D))x = (H,D — DM\)x = H,Dx — DH,x + D®(I)x
=(®(Dx®f))xqg— D(P(x ® f))x, + D®(I)x,

and similarly
(Mg, n(D))x = (¥(Dx ® f))xo — D(¥(x ® f))x, + D¥(I)x.

Thus

((App, + iBg, ) D)%
= (8,4,5(Dx ®f))xo — D(AA,B(X ®f))xo + D(A4 — B)x
= A(Dx ® f)x, — (Dx ® f)Bx,
— D(A(x®f) — (x ®f)B)xo + D(A — B)x
= ADx — DAx + D(A — B)x
=4, 5(D)x.

That is, (4 — H, — iK,)D = D(B — M, — iN,) holds for every D in £(X). It
follows from Corollary 1.4 that A = H, + iK, + Al and B = M, + iN, + Al for
some scalar A. Now we can take H = H, + (ReA\)[, K = K, + Im A)I, M = M,
+ (ReA) and N = N| + (Im A)I as the desired Hermitian operators.

So far, the question about when A , 5|5 is Hermitian in £(8) (& C £(Y, X)) has
been answered by Corollary 2.1, and the question about when A|S is normal has
been answered by Theorem 2.2 for special operators A and B on normed linear
spaces X and Y, by Corollary 2.3 for the case where X and Y are Hilbert spaces,
and by Theorem 2.4 for the case where X is the same normed linear space as Y
and & is £(X). But the latter question for the more general case where X # Y or
where X =Y and & # £(X) remain unanswered. It is unknown whether there
exist nonnormal operators 4, B such that A, ;| is normal.

On the other hand, when X =Y = H is a Hilbert space, one can deduce a
stronger result than Corollaries 2.1 and 2.3. Indeed, a result of Sinclair [12, page
213] states that a Hermitian operator on a C*-algebra (with identity) is the sum of
a left multiplication by a Hermitian element in the algebra and a *-derivation,
and a result of Kadison [7] and Sakai [11] asserts that every derivation of a
C*-algebra acting on H is spatial (that is, of the form A , ,, with 4 and element in
the weak operator closure of the algebra). These facts together with Corollary 2.1
imply that dn operator on a C*-algebra & in £(H) is Hermitian if and only if it is
of the form A, ,,|S for some Hermitian operators H and M (in the weak operator
closure of &). Recently, Sourour [13] has proved the same assertion for the case
where & is a minimal norm ideal (including the C,(H) ideals, p # 2). Thus every

Downloaded from https:/www.cambridge.org/core. IP address: 47.88.87.18, on 17 Jan 2017 at 18:20:00, subject to the Cambridge Core terms of use,
available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/51446788700027397


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1446788700027397
https:/www.cambridge.org/core

(8] Numerical ranges of generalized derivations 141

normal operator on such & has to be of the form A 5|5, with 4 = H + iK and
B = M + iN for some Hermitian H, K, M and N. Using Theorem 2.2 we obtain
the following

THEOREM 2.6. Let S be a minimal norm ideal or a C*-algebra in'C(H), which
contains all finite rank operators. Then an operator U on S is Hermitian (resp.
normal) in £(8) if and only if U= A, g|S for some Hermitian (resp. normal)
operators A and B.

3. Berberian’s theorem

As another application of Theorem 1.1, we shall derive an extension of the
Fuglede-Putnam theorem to hyponormal operators 4 and B* on Hilbert spaces
H, and H,, respectively. It is also a slight extension of a theorem of Berberian [3]
who proved in a different way the special case where H, = H,.

A natural and consistent definition for a hyponormal operator 4 on a normed
linear space X is that it can be written as A = H + iK for some Hermitian
operators H and K such that 4*4 — AA4* = 2i(HK — KH) is positive (that is,
has nonnegative numerical range). Suppose B* = M — iN is a hyponormal opera-
tor on another normed linear space Y. Then the operator A, z|S is also
hyponormal. Indeed, from the easily verified identity:

A*A — AA* = 2i(AH,MAK,N - AK,NAH,M) = 2iAHK—KH.MN*NM
= B ea-pa*.8°B-BB*

we see that the numerical range of (A|S)*(A|S) — (A|S)A|S)*, as the sum of
the numerical ranges of the two positive operators A*4 — AA* and BB* — B*B is

nonnegative.
In particular, if X = H, and Y = H, are two Hilbert spaces, then A| C,(H,,H,)
is a hyponormal operator on the Hilbert space (C,(H,,H,),|| - |I,).- Hence we

have [|AT ([, = ||A*T'|f, for all T in C,(H,, H,). Since (A4 5)* = A ,. 3., we have
proved the following

THEOREM 3.1. Let A and B* be hyponormal operators on the Hilbert spaces H,
and H,, respectively. If T is a Hilbert-Schmidt operator from H, to H, such that
AT = TB, then A*T = TB*.
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