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Abstract

It is shown that the algebra of regular sets for a finitely additive Borel measure p on a compact
Hausdorff space is a o-algebra only if it includes the Baire algebra and u is countably additive on the
o-algebra of regular sets. Any infinite compact Hausdorff space admits a finitely additive Borel
measure whose algebra of regular sets is not a g-algebra. Although a finitely additive measure with a
o-algebra of regular sets is countably additive on the Baire o-algebra there are examples of finitely
additive extensions of countably additive Baire measures whose regular algebra is not a g-algebra. We
examine the particular case of extensions of Dirac measures. In this context it is shown that all
extensions of a {0, 1}-valued countably additive measure from a o-algebra to a larger o-algebra are
countably additive if and only if the convex set of these extensions is a finite dimensional simplex,
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Introduction and synopsis

In [16], Kupka noted that if a vector-valued Borel measure on a compact
Hausdorff space X is countably additive then its algebra of regular sets is in fact a
o-algebra. In Question 3.3.1 of [16], he asked whether countable additivity is
necessary for this result. We essentially answer this question in the negative but
do show that a good deal of countable additivity is implicit in the assumption that
the algebra of regular sets of a finitely additive Borel measure is a o-algebra. More
specifically we show that, on any o-algebra contained in the algebra of regular
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(2] The algebra of regular sets for a Borel measure 375

sets of a finitely additive Borel measure p, p is countably additive (Lemma 1). If
in fact the algebra of regular sets for p is a o-algebra then it includes the
p-completion of the Baire algebra and p agrees with the canonical regular
extension of p to the Borel algebra from the Baire algebra at least on the o-algebra
of regular sets (Propositions 3 and 5). In fact, the latter statement holds even if p
is only assumed to be countably additive on the Baire algebra but with the
algebra of regular sets not necessarily a o-algebra. Corollary 3.1 answers Kupka’s
question affirmatively for completion regular compact Hausdorff spaces. Here a
finitely additive Borel measure is countably additive if and only if its algebra of
regular sets is o-algebra. Corollary 3.2 shows that on any infinite compact
Hausdorff space there is a finitely additive Borel measure which does not have a
o-algebra of regular sets. This follows from Proposition 4 which asserts that a
Boolean algebra admits a non-countably additive measure if and only if it is not
Cantor separable if and only if its Stone space is not an almost P-space, a result
of independent interest.

The latter part of the paper examines the regular algebras of finitely additive
Borel measures p whose restriction to the Baire algebra is countably additive
when p is {0, 1}-valued on the Baire algebra. Proposition 6 deals with the convex
compact set of all extensions of a countably additive {0, 1}-valued measure § on a
o-algebra 2, to a larger o-algebra Z,. It is shown that this convex compact set is
finite dimensional if and only if all extensions of § are countably additive.
Otherwise, there exist 2¢ mutually singular non-atomic purely finitely additive
extensions or ¢ {0, 1}-valued extensions where ¢ = 2%o, (Corollary 6.1). This is
applied to the case where Z, is the Baire algebra, 2, is the Borel algebra and 8 is
8, for some non-Gj-point x € X. If the extensions of §, to the Borel algebra are
all countably additive there is a countably additive extension p whose regular
algebra is just the §,-completion of the Baire algebra. However, for this to be true
X must be topologically pathological near x.

We conclude with an example which yields finitely additive Borel measures
whose regular algebras are not o-algebras yet contain the Baire algebra. If real
valued measurable cardinals exist an example is given of a countably additive
Borel measure whose regular o-algebra is properly contained in the Borel algebra
and properly contains the completed Baire algebra.

1. When is the algebra of regular sets for a finitely additive Borel measure a
o-algebra?

B, and ¥ denote, respectively, the Baire and Borel o-algebras on X. C(X)
denotes the real continuous functions on X and 9 ( X) the dual of C(X). IM(X)
is identified, as usual, with both CA(%,) the countable additive Baire measures
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and with C4,(%) the regular countably additive Borel measures. For any Boolean
algebra €, BA(@) denotes the finitely additive real measures of bounded variation
on & with CA(&) the band of countably additive elements of BA(&). If p €
BA™ (%) we denote by Reg(p) all 4 € B so that inf{u(8\K): K compact C 4
C 6 open} = 0. Note that Reg(p) is an algebra which is y-complete in % in that
whenever {A4,} is an increasing sequence and {B,} is a decreasing sequence in
Reg(p) with 4, C B, for all n and with lim,,_, ,u(B,\A,) = 0 then 4 € Reg(p)
provided 4 € ® and 4, C A C B, for all n. For any algebra @ C %, @* will
denote its completion in ¢ with respect to the finitely additive Borel measure p.
Thus, Reg(p) = (Reg(p))*. This lemma was pointed out by Douglas Dokken. It
is a generalization of Problem 7 on page 11 of [6].

LEMMA 1. If = is a o-algebra contained in Reg(p) for p € BA* (D) then p is
countably additive on Z.

PROOF. It must be shown that if {D,} C £ is a disjoint sequence with union D
then u(D) = 22_, p(D,). That u(D) = Z_, w(D,) is immediate. If we show that
p(D) < 3%, u(D,) + ¢ for any € > 0 the assertion will be established. Pick K
compact C D with u(D) < p(K) + ¢/2. Pick 8, open with D, C §, and with
n(6,\D,) < e27""". Since K C D C U%_, 6, there is an integer m so that K C 6,
U---U§,. For this m it is true that pu(K)<3I¥ () <3= w@)<
S=_,(D,) + £/2. Thus, p(D) < I3, u(D,) + ¢.

REMARK. Lemma 1 is a consequence of Proposition 1.6 in Chapter V of [4] and
of Lemma 1 of [25].

COROLLARY 1.1. a) If p € BA* (D) and Reg(n) is a o-algebra then p is
countably additive on Reg(p).

b) Reg(p) is a o-algebra if and only if p is countably additive on the o-algebra
generated by Reg(p).

PrOOF. Only b) needs to be established. This is done in the standard fashion.
Let {D,} be a disjoint sequence in Reg(p) with union D. Let §, be open with
D,C6, and p(6,\D,)<2"""'. ¢ for a given £¢>0. Let m be such that
p(U>_, . D,)<e/4 LetK, C D, forn = 1,...,m be compacts with u(D,\ K, )
< 4em~'. We have p[(U>_ g )\(U™ | K,)] <ewith U™ K, CDC U% 4,
Thus, D € Reg(p). Thus, Reg(u) is a o-algebra if p is countably additive on the
o-algebra generated by Reg(u). The converse follows from a).
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{4] The algebra of regular sets for a Borel measure 377

LEMMA 2. Let A € Reg(p).

i) There exists a Gy Ay € Reg(u) and an F, A, € Reg(p) with A, C A C A, and
B(A;7A,) = 0.

ii) There exists a G5 A®> € B, N Reg(p) and an F, A° € B, N Reg(p) with
A, C A° C A° C 4.

i) p(4) = p(4,) = p(4s) = p(A°) = p(4%) = sup{u(K): K compact Baire
C A°} = inf{u(G): G open Baire D A%}.

iv) There is an A, € B, N Reg(p) with p(AAA,y) = 0.

PROOF.

1) Immediate from the definition of regularity.

ii) Let 4, = U%_, K, and 4, = N G, where K, is compact and G, is open for
all n. By Urysohn’s Theorem there is a compact Gy, K, ,, satisfying K, C K, , C
G, foralln,m. SetK, = N>_ K, . K,isacompact G5 and K, C K C A4 for
all n. Set A° equal to the F,, U>_ K. A% is obtained analogously as a countable
intersection of open F, sets.

iii) From the definition of regularity the K, in ii) may be chosen with
p(A) = supp(K,) < supu(K,) < sup{u(K): K compact Baire C A°} < u(A4°)
= p(A). Thus, p(A) = sup{p(K): K compact Baire C A°}. Similarly, u(A4) =
inf{pu(G): G open Baire D A°}.

iv) Set 4, = A4° or A°.

Plachky, [20], shows that if » is a finitely additive probability on a Boolean
algebra @, and BA;" (@, », €,) denotes the convex compact set of extensions of »
to a probability measure on a larger algebra @, then p € BA," (&, »,@,) is
extreme if and only if for all 4, €@, and ¢ >0 there is an 4, € @, with
p(A,AA4,) <e Thus, in Lemma 2, p, on Reg(p), is an extreme extension of its
restriction to %, N Reg(p).

PROPOSITION 3. If u € BAY (D) is such that Reg(p) is a o-algebra then
B, C Reg(p).

To establish this we first consider the case X = [0,1]. Let Y denote those
x €(0,1) so that inf{u(#): x € & open} = 0. The complement of Y is at most
countably hence Y is dense. Each {x} with x € Y is in Reg(p) with u({x}) = 0.
For £ > 0 let 8 be an open set containing x € Y with p(8,) <e¢, K, = [0, x)\ 0,
and K] = (x,1]\0.. Both K, and K] are compact. It is easily verified that
lim, _ou(K; ) = p([0, x)) and lim,__op(K; ) = p(é, 1]). Thus, {[0, x). ¢, 1]} C
Reg(p). It follows that all intervals, open, closed, or half open, whose endpoints
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378 Thomas E. Armstrong I5]

are chosen from Y belong to Reg(p). The o-algebra generated by these intervals is
B, = B. Since Reg(p) is a o-algebra B, = Reg(p). This establishes this case.

Let X be arbitrary and let f: X — {0, 1] be continuous. Let v be the finitely
additive Borel measure on [0, 1] which is the image of g under f. Thus, for Borel
A C[0,1], »(A) = p(f'(A)). Just as in the countably additive case A € Reg(»)
if and only if f~'(A4) € Reg(p). Consequently, Reg(») is a o-algebra hence is
equal to the Borel algebra of [0, 1] by the special case just established. Thus, f is
measurable for the o-algebra Reg(u). Since f is arbitrary it follows that all
f € C(X) are Reg(p)-measurable. Thus, since B, is the smallest o-algebra so that
all f € C(X) are ®,-measurable, B, C Reg(p). This establishes the proposition.

In [4], Babiker and Knowles define a space X to be completion regular if and
only if every p € CA™ (%9,) is completion regular in the sense of Berberian [5].
That is, each p € CA™ (B,) has a unique extension in BA™* (). Alternatively X
is completion regular if and only if % is the p-completion of B, for all
p € CA" (%D,). Examples of completion regular spaces include all perfectly
normal compact Hausdorff spaces X. In [5] Berberian notes that if X is comple-
tion regular all points must be G;’s. Under the assumption that the continuum is
real valued measurable an example may be constructed of a non-completion
regular X each of whose points is a G;. In order that X be completion regular it is
necessary and sufficient that every Borel set be regular with respect to the paving
of compact G;’s for all countably additive Borel measures. This corollary is easily
deduced from the definition of completion regularity.

COROLLARY 3.1. Let X be completion regular. The following are equivalent for
p € BA (D)

a) Reg(p) is a o-algebra

b) Reg(n) = B

) ECAT(B) = CA} (B).

COROLLARY 3.2. If X is an infinite compact Hausdorff space there is a p € BA™
(D) so that Reg(u) is not a o-algebra.

PROOF. Any extension p to % of a member of BA™ ($H,)\ CA™ (B,) will do.
The non-emptiness of BA* (B,)\ CA™* (B,) is a special case of Proposition 4.

We are interested in determining for which infinite Boolean algebras & every
element of BA* (®) is countably additive. If no infinite strictly decreasing
sequence in @ has a lower bound then, automatically, BA* (@) = CA ™" (&). Such
Boolean algebras are termed Cantor separable in [28]. Cantor separable Boolean
algebras @ are characterized in terms of their Stone space X, by the fact that each
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[6} The algebra of regular sets for a Borel measure 379

non-empty zero set has a non-empty interior. Completely regular spaces X with
the aforementioned property are called almost P-spaces in {17] and have been
studied in [7], [10] and [27]. Thus, & is Cantor separable if X, is an almost
P-space. Notice that if @ is o-complete it is not Cantor separable if it is infinite.
BN\ N is the most familiar example of an almost P-space [9, 65.8]. Graves and
Wheeler in {10] give a method for producing a large class of almost P-spaces. The
following proposition was pointed out by R. F. Wheeler.

PROPOSITION 4. The following are equivalent for an infinite Boolean Algebra @
a) @ is Cantor separable
b) Xg is an almost P-space

¢) BAT (@) = CA™ (@)

PrOOF. We already have a) = b) = c¢). Let us assume c) and see that this
implies b). Notice that all {0, 1}-valued elements of BA* (&) are countably
additive. Phrased in terms of the corresponding ultrafilters on @ this says that if
{A,: n € N} is a decreasing sequence in an ultrafilter then & # inf, A4,. That is,
thereis an A € @ with @ # A C A4, for all n. Since every decreasing sequence
of non-empty elements of @ lies in an ultrafilter this says that no decreasing
sequence of non-empty elements of & has @ as infimum. In particular, regarding
@ as the clopen algebra of X,, the intersection of a decreasing sequence of
non-empty clopen sets (that is, a zero set) has non-empty interior. Thus, ¢)
implies both a) and b).

REMARK. We use the term &-ultrafilter for an arbitrary Boolean algebra to
denote any ultrafilter whose corresponding {0, 1}-valued measure is countably
additive.

A compact Hausdorff space X is called Borel regular [19], or Radon, [21], if and
only if CA™ (D) = C4;" (B) if and only if every p € CA™ (%,) has a unique
extension, the regular extension, to % belonging to CA™ (D). If p € CA;" (D)
CA;" (D) then Reg(p) is a super-o-algebra of %, properly contained in %. The
canonical example of a non-Borel regular space is the compact ordinal space
[0, w,] where w, is the first uncountable ordinal. There are countably additive
{0, 1}-valued extensions of the Dirac measure 8, from %, to % other than the
regular extension [9, ex. 53.10a). An example of a Borel regular space X which is
not completion regular is the one point compactification D U {cc} of a discrete
space D with uncountable non-real-valued measurable cardinal, [8, ex. 6.2]. The
Dirac measure §,, has extensions from %, to % other than the regular one but all
must be purely finitely additive [2], [13], since they induce on D finitely additive,
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diffuse [2], probability measures. We shall be primarily concerned with Reg(p)
for p non-countably additive yet with 1 countably additive on %, but occasionally
with g countably additive and non-regular on %. In any case, p,., will denote the
unique element of CA;" (%B) agreeing with p on 9.

PROPOSITION 5. Let p € BA™ (B) be countably additive on B,. On Reg(p), pn
and i, coincide.

PROOF. Let A € Reg(p). One can, in the proof of Lemma 2, find 4, an F, in
Reg(p) and 4A; a G5 in Reg(p), so that 4, C 4 C A, and so that p(A;\A,) =
Breg(AsN\A,) = 0. Let {4°, A%} C By N Reg(p) with 4, C A° C 4° C A,. Then,
B(A) = (A7) = g A°) = preg(A).

In the remainder of the paper we will be dealing fairly exclusively with
extensions p of Dirac measures §, for x € X from B, to %. All such extensions
must be {0, 1}-valued on Reg(p). If 4 € Reg(p) then p(A4) = 0 if and only if
x & A.

PROPOSITION 6. Let =, C Z, be o-algebras of subsets of a set Q. Let § € CA; (Z))
be {0, 1}-valued. Let 1 be the o-ideal in 2., of sets of outer measure O under 8.

i) If the quotient algebra =,/ is finite then BA, (2|, 8, Z,) is a finite dimen-
sional subset of CA; (Z,).

ii) If £,/7 is infinite there is a family {p') C BA; (2,8, =,) of mutually
singular, non-atomic, purely finitely additive measures whose cardinality is 2° where
¢ is the continuum.

PROOF. There is an affine bijection from BA; (£, 8, 2,) to BA; (Z,/9). If
p € BA(2,,8,2,) then u(A4) = 0 for all A € 5 hence p induces on =,/n an
element, also denoted by p, in the usual fashion. This gives the affine bijection.

ii) If 3, /7 is infinite it is an infinite F-algebra as in [3]. By Corollary 3.2.3 of
[3] there is a family {p,}, of cardinality 2¢, of mutually singular non-atomic
probability measures on X, /7 all with the same negligible sets. Pulling back
under the affine bijection from BA" (2, §, 2,) to BA;" (Z,/n) one obtains the
same sort of family in BA™ (2, 8, Z,). If u, € {p,} is countably additive there
can be no other countably additive u, € {u,} for u, L p and both have the same
nullsets. Delete p, if necessary so that no element of {g,} is countably additive.
Each p, has a non-trivial purely finitely additive part which is a multiple of a
purely finitely additive p/ which is easily verified to belong to B4," (Z,, 8, =,).
Furthermore, p), must be non-atomic for each ¢. This establishes ii).
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[8] The algebra of regular sets for a Borel measure 381

i) Suppose that £, /7 is finite and has n atoms {a,,...,a,}. Corresponding to
each a;is an A; € 2, which is such thatif 4 € =, then 4,\4 Enord N 4, €.
The {0, 1}-valued measure 8, on 2, /n or in B4, (£, 8, =,) corresponding to q, is
an extreme point of BA," (2,/n) and BA; (=,/9) = conv(§,,...,8,). To show
that BA (2,8, Z,) C CA™ (Z,) it suffices to show that each §,, considered as
an element of BA; (2,,8,2,), is in CA"(Z,). To this end let {E,} be an
increasing sequence in 2, with §,(E,) = 0 for all n. We have E, N 4, € nfor all n
hence, by the o-completeness of 1, we have (U, E,) N A4, € 9. Thus, §(U, E,)
= 0. This establishes countable additivity of 8, hence establishes i).

REMARKS. Recall from [2] that a measure p is sirongly finitely additive if and
only if there is a partition {A,: n € N} with u(A4,) = 0 for all n. Any purely
finitely additive probability measure is the sum of countably many strongly
finitely additive measures, [2]. In ii) purely finitely additive measures may be
replaced by strongly finitely additive measures.

Actually ii) asserts only that such a family of probabilities exists in BA(Z, /7).
This is true if n is replaced by the ideal generated by the null sets of a non
{0, 1}-valued measure or Z,/n by an arbitrary F-algebra.

COROLLARY 6.1. If £, /7 is infinite there exist ¢ purely finitely additive {0, 1}-val-
ued elements of BA, (2,9, 2,).

PrROOF. There is a strongly finitely additive non-atomic p € BA,' (Z,, 8, =,).
Let {A4,} C 2, be an increasing sequence with p(A4,) =0 for all n» and with
U,A4,=29. Let @ denote the algebra =,/n and let X, be its Stone space.
BA[ (2,8, =,) is affinely homeomorphic to the Bauer simplex of Radon proba-
bility measures on Xg. Let fi be the Radon measure on X, corresponding to p so
thatif 4 € 2, /q orif A € X, then u(A) = fi([ A]) where [ A} is the clopen set in
Xg corresponding to 4. We have u(A4) = [ x 4(x)i(dx) = [ x,(A)a(dx) (where
X € X are considered as ultrafiters on @). If there were a set Z with outer
measure i*(Z) > 0 of §-ultrafilters x € X, (so that each x  is countably additive
on &), it would follow that 0 =lim,_pu(4,) = lim,,_, o [ X4 (X)i(dx) =
fi*(Z) > 0. Since this is impossible fi-almost all x € X, have x, purely finitely
additive. Since {i is non-atomic there is a compact perfect set ¥ C supp(i) C X,
so that if x € Y then x, is purely finitely additive. Y contains at least ¢ elements.

COROLLARY 6.2. If @ is a Boolean algebra then u € BA," () is purely finitely
additive with corresponding measure i on the Stone space Xg only if p-almost all
x € Xy, are not 8-ultrafilters.
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We may apply the preceding results to the case where B, = 2, and % = Z,. A
{0, 1}-valued measure 8 on %, is a Dirac measure §,. n will be denoted by 7. 7,
consists of those Borel sets in X contained in a o-compact subset of X’ = X\ {x}.
We are only interested in the case where B /5, = 9B _has cardinality larger than 2
so that {x} is not a G;.

PROPOSITION 7. Let x be a non-Gg-point in X.

i) If B, is finite the elements of BA[ (%, 8,, D) form a finite dimensional
simplex in CA{ (D). In this case there is a p. € BA (%, 8., B) with Reg(p) =
B = %".

i) If %x is infinite there is a family of cardinality 2¢ of singular non-atomic purely
finitely additive elements of BA|" (B, 8,,B) and a family of cardinality ¢ of
{0, 1}-valued purely finitely additive elements.

PROOF. We need only find in case i) a u € BA, (%,, 8, B) with Reg(u) = BL.
Let {8,,8,,...,8,} denote the extreme points of BA;" (%0, ., B) where 8 is the
usual Dirac measure on %. We assert that u = 1(4, + -+ +8,) has Reg(p) = @3“.
Suppose not. Note that 635(‘)‘ = Gj?)g* is the largest subalgebra of B to which 8_has a
unique extension. Note also that §, agrees with p on Reg(u) by Proposition 5.
There is an extreme extension 8 of §, from @)5‘ to Reg(p) other than 8 _hence
other than p. This extreme extension & is the restriction of one of {§,,...,8,} to
Reg(p), say 8,. Since all extreme extensions of 8, to Reg(u) are {0, 1}-valued
there is an 4 € Reg(p) w1th 0=206,(4) = p(A4) and 8§,(4)=1. But u(4) =
1(8,(A4) + -+ - +8,(A)) = + which is impossible. Thus, Reg(p) = %“

COROLLARY 7.1. If B _ is infinite and p € BA," (B, 8,, D) has Reg(p) # B
there is a v € BA[" (B, 8., B) with Reg(v) a proper subset of Reg(p).

REMARK. We know of no case in which x is a non-Gg-point for which 1) holds
in Proposition 7. For the case X = [0, w,;] and x = w, one may set 4, equal to the
relatively closed set in [0, w,) consisting of limit ordinals, and set A, = {a + 1:
a €A, ,} for n € w. Then [0, w,) = U, A4,. Each 4, is in %\ 7, hence B, is
infinite. A similar argument shows that if D is an infinite discrete set with
uncountable cardinality then X = D U {0} has % infinite then x = co.

COROLLARY 7.2. If B_ is finite there is a closed set E C X' whose complement is
o-compact and is such that E has a partition {E,,... E,} with each E, closed.
Within each E, the set %, of non-o-compact closed sets forms a 8-ultrafilter of closed
sets. If E; U {x} = X, is considered as the one point compactification of E, then §,
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has a one dimensional simplex of extensions to the Borel sets of X,. The extreme
extension 8, is defined by 8,(A) = 1 if and only if A contains an element of F, for
i=1,....n

PROOF. Let {§,,8,,...,6,} be the extreme elements of BA;" (B,, 8 o %) with §,
the regular extension. For each i = 1,...,n there is a -ultrafilter 9, of closed
subsets of X’ so that §,(A4) = 1 if and only if A meets each element of . One
may find {F,,...,F,} so that F, € ¥, for i = 1,...,n and so that F; N F, E n, for
all i # j. One may find an open ¢-compact § C X" with F, N F, C & for all ¢, j.
Let E, = F,\@foralliand let E = U’_, E; = X'\ 0. Any extension § of §, to the
Borel sets of X, with 8(x) = 0 may be extended to an element of BA," (%, 8., B)
with 8( E;) = 1. We must have § = §, which establishes the corollary.

COROLLARY 7.3. If B, is finite every closed set in X’ contains a dense o-compact
subset.

PrROOF. We may, by Corollary 7.2, assume that BA," (%, §,, B) = (,, 8} so
that & = { F closed in X": §( F) = 1} is the set of non-o-compact closed sets in X".

Assume that X’  E for any E € 7. If this is the case then E € 1, implies that
E € ,. To see this note that if E & 7, then E € $and E° € 1,. Since X is the
closure of E U E° € n_ one has a contradiction.

Let {6} C 7, be a sequence indexed by ordinals a defmed by transfinite
induction so that 6, is a proper subset of 8, , and so that 6, = U palpif aisa
limit ordinal. The last element 8, of this sequence occurs for a limit ordinal A so
that 0_)\ € % hence so that 8, & 7,. Since 5, is o-complete A is of uncountable
cofinality. Let ¢, =8,,,\0, for a <A and let Y, = X'\0,. We have X’ =
(U a<A})U[U(36,: a <A}]. The open set U {¢,: a <A} is dense in X’
hence is not in 1,.. The closed set U {986,: a < A} is o-compact hence is in an open
0.€n,. Let D={a<A: y,\0_++ @}. The open sets {y,: a € D} together
with 8, cover X’. Thus, card(D) = 8,. If K is a compact set in X" it is covered by
6, together with finitely many ¢, with @ € D hence a o-compact set is covered by
0, together with countably many y, with a € D. Let {D,: n € N} be a countable
partition of D into uncountable sets. For each n let U, = U{{,: a € D,}. The
family {U,: n € N} is a disjoint family of open sets with U{U:n € N} = U {¢,:
a € D}. Since a o-compact F meets only countably many v, no U, is in 7. Thus,
%, is infinite which is impossible. Thus, X’ = E for some E € 7. This demon-
stration also establishes, if F € % replaces X', that F = E for some E € 1., which
establishes the corollary.
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In the unlikely event that B, be finite for some non-Gs-point x, Proposition 7
gives a countably additive u € BA[" (B, 8., B) with Reg(p) = %“ We conclude
by giving an example where Reg(u) is always larger than %“

ExXAMPLE 8. Let X be the one point compactification D U {x} of an uncounta-
ble discrete space. B, consists of countable sets in D and their complements in X,
% = 2% and 7, consists of countable sets in D hence is a maximal ideal in % and
B, is p-complete for any p € BA (B, 8., B). The u € B4 (B, 8,, B) with
p({x}) = 0 are identified with elements of BA4;" (2”/n,) or with elements of
BA;" (2P) which annihilate 7, hence are those p € BA,” (2*) with p(A4) = 0if 4 is
countable in X. If p € BA{ (%,,8,,B) then p agrees with 8, on Reg(p). If
A CD has p(A) =0 then A4 € Reg(p) since A is open whereas 4 U {x} &
Reg(p). Thus, Reg(u) consists of 4 C D with u(A4) = 0 and the complements in
X of these A. Let 5, denote the ideal in 2P of p-negligible sets. m, is a maximal
ideal in Reg(p) and 2° /1, satisfies the countable chain condition. On the other
hand 2°/m, does not satisfy the countable chain condition since D has an
uncountable partition into uncountable sets. Thus, n, # 1, and 533(‘)‘ # Reg(p).

Note that if the cardinality of D is not real-valued measurable, [1], [2], then all
elements p of BA" (B, 8., B) with p({x}) = 0 must be purely finitely additive. If
the cardinality of D is real-valued measurable any countably additive diffuse
measure m on 22 gives an element of CA;' (%, 8., ) singular to §, and Reg(p)
is guaranteed to be strictly between B, and B. If p € BA™ (B, 8., D) is purely
finitely additive it is a countable convex combination Z{A ,u,: n € N} of strongly
finitely additive {u,} C BA;" (%B). Each p, must be in BA;" (B, 8,, B). From the
definition of strong finite additivity there exist {A4}: m € N} Cn, which parti-
tion D. We have {A4): m € N} C Reg(p,). Since D & Reg(p,) it is impossible
for Reg(p,) to be g-algebra even though %, C Reg(n,,)-

REMARK. Karel Prikry and Richard Gardner pointed out Example 8.
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