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Abstract

An operator A on a complex, separable, infinite-dimensional Hilbert space H is hypercyclic if there is
a vector x € H such that the orbit {x, Ax, AZx, .. .} is dense in H. Using the character of the analytic
core and quasinilpotent part of an operator A, we explore the hypercyclicity for upper triangular operator

matrix
A C
Mc = (0 B) .
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1. Introduction

Throughout this paper, let H and K be infinite-dimensional separable Hilbert spaces,
let B(H, K) denote the set of bounded linear operators from H to K, and abbreviate
B(H, H) to B(H). For an operator A € B(H), write A*, o(A), p(A), 0,(A),
iso 0 (A) for the adjoint, spectrum, resolvent set, approximate point spectrum, and
isolated points of the spectrum o (A), respectively. By n(A) and d(A) we denote
the dimension of the kernel N(A) and the codimension of the range R(A). If both
n(A) and d(A) are finite, then A is called a Fredholm operator and the index of
A 1is defined by ind(A) =n(A) —d(A). A€ B(H) is said to be a Weyl operator
if it is Fredholm of index 0. Recall that the ascent asc(A) of an operator A is
the smallest nonnegative integer p such that N(A?) = N(AP*1). If such an integer
does not exist we put asc(A) = co. Analogously, the descent des(A) of A is the
smallest nonnegative ¢ such that R(A?) = R(A9*1) and if such an integer does not
exist we put des(A) = oco. It is well known that if asc(A) and des(A) are finite then
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368 X. Cao 2]

asc(A) =des(A). If A is Fredholm with asc(A) = des(A) < oo, we call A a Browder
operator. Note that if A is Browder then A is Weyl. The Weyl spectrum o,,(A) and the
Browder spectrum o5 (A) of A are defined by 0,,(A) = {A € C: A — AI is not Weyl}
and 05, (A) = {L € C: A — AI is not Browder}.
For x € H, the orbit of x under A is the set of images of x under successive iterates
of A:
Orb(A, x) = {x, Ax, A%x, .. .}.

A vector x € H is supercyclic if the set of scalar multiples of Orb(A, x) is dense in
H, and x is hypercyclic if Orb(A, x) is dense. A hypercyclic operator is one that has a
hypercyclic vector. We define the notion of supercyclic operator similarly. We denote
by HC(H) (SC(H)) the set of all hypercyclic (supercyclic) operators in B(H) and
by HC(H) (SC(H)) the norm-closure of the class HC(H) (SC(H)). Supercyclic
operators were introduced by Hilden and Wallen in 1974 [13]. Many fundamental
results regarding the theory of hypercyclic and supercyclic operators were established
by Kitai in her thesis [14].

Hypercyclicity or supercyclicity has been studied by many authors ([2, 3, 12], and
so on). In this paper, using the character of the analytic core and quasinilpotent part of
an operator A, we explore the hypercyclicity or supercyclicity for operator A and for

upper triangular operator matrix
A C
we=(3 ).

2. Main results

For an operator A € B(H ), the analytic core of A is the subspace

K(A) ={x € H: Axpy1=xn, Ax1 = x, ||xn||

<c'|x|(n=1,2,...) forsomec >0, x, € H},

and the quasinilpotent part of A is the subspace
Ho(A) = {x € H: lim |A"x| /™ = 0}.
n—oo

The spaces K(A) and Hy(A) are hyperinvariant under A and satisfy N(A") C
Hy(A), K(A) C R(A") for all n e N and AK(A) = K(A); see [1, 15, 16] for more
information about these subspaces.

We say that A has the single-valued extension property (SVEP) at X if, for every
open neighborhood U of Xg, the only analytic function f : U — H which satisfies the
equation (A — AI) f(A) =0forall > € U is the function f = 0. We say that A has the
SVEP if A has the SVEP at every A € C.

Next, we shall consider the hypercyclicity or supercyclicity for the class of
operators A € B(H) and the operator matrices

A C
ve=(5 5)
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for which the condition dim K (A*) < oo holds. In what follows, we suppose that A
is not quasinilpotent and let H (A) be the set of all complex-valued functions that are
analytic in a neighborhood of the spectrum o (A) of A. For f € H(A), the operator
f(A) is defined by the well-known analytic calculus. We start with a lemma.

LEMMA 2.1. Suppose that K(A*) ={0}. If f € H(A) is not constant, then:

(1) o(A) =0y(A) is connected;

(2) ind(f(A) —AI) =0 for each 1€ psp(f(A)), where psp(f(A)={reC,
f(A) — Al is semi-Fredholm};

(3)  ow(f(A) = f(ow(A)) =0o(f(A)) is connected.

PROOF. (1) We only need to prove that 0 (A) C o (A). Let Ao € [0 (A)\ow(A)].
There are two cases to consider.

Case 1. Let Lo # 0. Since A* — Aol is Weyl and {0} £ N(A* — Agl) C K(A®), it
follows that K (A*) # {0}, which is a contradiction.

Case 2. Let Ao=0. Since A —Agl = A is Weyl, using the semi-Fredholm
perturbation theory, A* — A[I is Weyl if O < |A| is sufficiently small. But since

N(A* — A1) C K(A*) = {0},

it follows that A* — Al is invertible. Then 0 €isoo(A*). By [15, Theorem],
H = Hy(A*) & K(A*) = Hp(A*), which means that A* is quasinilpotent. Thus A
is quasinilpotent, contradicting the assumption that A is not quasinilpotent.

From the foregoing, we know that o (A) = o, (A). Suppose that o (A) is not
connected. Then o (A*) is not connected. Let o (A*) = o U t, where o, T are closed,
o,7#Wando N1t ={. Define f € H(A*) such that f =1ono and f =0on t. Put
P = f(A*). Then P2 =P, R(P) and N(P) are closed, A*-invariant subspaces and
o (A*|grpy) =0 and o (A*|y(p)) = 1. Since K (A*) = {0}, it follows that A*F # F
for each closed A*-invariant subspace F # {0} [17, Proposition 2]. Then 0 € 0 N 7,
which is a contradiction, since o N 7 = @. Thus o (A) = 0, (A) is connected.

(2) Since N(A* — AI) = {0} for all A #0, A has the SVEP. By [6, Theorem 1.5],
f(A*) = f(A)* has the SVEP. Therefore, ind(f(A) —AI)>0 for each A€
psr(f(A)) by [9, Corollary 12].

(3) Applying (2) and [18, Theorem 3.6], we know that

ow(f(A)) = f(ow(A)) = f(o(A) =0 (f(A))
is connected. O
If K(A*) = {0}, then for any f € H(A),
o(f(A) = f(0(A) = f(ow(A)) =0ow(f(A) =0ap(f(A))

is connected. In this case, if | f(1)| = 1 for some X € 6 (A), then f (1) € o, (f(A)) N
oD. Since o,(f(A)) and 0D are connected, o, (f(A)) UaD is connected. If
Ho(A) = H, by K(A*) € Hy(A)* [15], then K (A*) = {0}. Using [12, Theorems 2.1
and 3.3], we have the following result.
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THEOREM 2.2. Suppose that K (A*) = {0} or Hy(A) = H. Then:

(1) A e HC(H) if and only if there exists ). € o (A) such that || = 1;

2) AeSC(H);

(3) forany f € H(A), f(A) € HC(H) if and only if there exists A € o (A) such that
FO)I =1

@) f(A)eSC(H) forany f € H(A).

COROLLARY 2.3. Suppose that K(A) = {0} and K (A*) = {0}. Then:

(1) Ae HC(H) if and only if A* € HC(H), if and only if there exists L € o (A)
such that |A| = 1;

2) AeSC(H)and A* € SC(H);

(3) forany f € H(A), f(A) € HC(H) if and only if f(A*) € HC(H), if and only
if there exists A € o (A) such that | f(A)| = 1;

@) f(A)eSC(H)and f(A*) € HC(H) for any f € H(A).

The hypercyclicity (or supercyclicity) for operator matrices has been studied in [2].
In the following results, we continue this work.

THEOREM 2.4. Suppose that dim K (A*) < co. Then the following statements are

equivalent:

1 My= (13 1(;) € HC(H ® K);

(2) Mc= <A C) € HC(H @ K) for each C € B(K, H);

3) Mc= <13 g) € HC(H ® K) for some C € B(K, H).

PROOF. We only prove the equivalence between (2) and (3), and so we only need
to prove that (3) implies (2). Suppose that Mc, € HC(H © K). Using [12,
Theorem 2.1], we will prove that:

(a) oy (M) U 0D is connected for each C € B(K, H).

We claim that o, (M¢) = 0 (Mc,). If Tact, let Mc — Aol be Weyl. Then A — Aol
is upper semi-Fredholm, B — Aol is lower semi-Fredholm and d(A — Agl) < 00
if and only if n(B — Aol) < co. Using the perturbation theory of semi-Fredholm
operators and the fact that A* — Agl is lower semi-Fredholm, there exists € > 0
such that A* — AT is lower semi-Fredholm, A # 0 and ind(A* — AT) = ind(A™ — Ao[)
if 0 < |L —Ag| <e€. Since N(A* — AI) C K(A™), it follows that n(A* — AI) < oo,
which implies that A* —AI is Fredholm. Then A — iAol is Fredholm and hence
B — Aol is Fredholm. Therefore Mc, — Aol is Fredholm with ind(M¢, — Aol) =
ind(Mc — Aol) =0, that is, Mc, — Aol is Weyl. Then o, (Mc,) € oy, (Mc). The
case oy (Mc) € 0y(Mc,) has the same proof. Then o,,(M¢) U 9D = oy, (M¢,) U 9D
is connected for every C € B(K, H).

(b) o (Mc) =op(Mc) forevery C € B(K, H).

Let Mc — Aol be Browder. Then both A — Agl and B — Agl are Fredholm
and asc(A — Agl) <00, des(B — Agl) <oco. Using the perturbation theory of
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[5] Limits of hypercyclic and supercyclic operator matrices 371

semi-Fredholm operators again, there exists € > 0 such that A* — A[ is Fredholm,
A* — )1 is surjective, and ind(A* — AI) =ind(A* — Aol) if O < |A — Ag| < €. Since

N(A* —AI) C K(A*) and dim K (A*) < oo,

it follows that A* — AI is bounded from below if 0 < |A — Ag] is sufficiently small
(less than €). Then A* — A[ is invertible if 0 < |A — Ag| is sufficiently small. This
implies that Ao ¢ acc 0 (A). Then A — Aol is Browder [10, Theorem 4.7]. Therefore
B — Xl is Browder and hence Mc, — Aol is Browder. Since Mc, € HC(H ® K),
o(Mc,) =o0p(Mc,). Then A — Aol is injective and B — Ao/ is surjective. But since
both A — A9l and B — Aol are Browder, it follows that both A — Aol and B — Aol
are invertible. Then M¢c — Ao/ is invertible, which proves that o (M¢) = op(M) for
every C € B(K, H).

(c) Forevery C € B(K, H),ind(M¢c — AI) > 0 for each A € pgr(A).

In fact, if Mc — Aol is semi-Fredholm with ind(M¢ — Agl) <0, then A — Aol is
Fredholm (see the proof of (a) above). By [4, Theorem 2.1], B — Ao/ is upper semi-
Fredholm. Thus M¢, — Aol is semi-Fredholm with

ind(Mc, — Aol) =ind(M¢c — Xol) < 0.
It is in contradiction to the fact that Mc, € HC(H @ K). O

REMARK 2.1.

(1) Theorem 2.4 holds for the case of supercyclicity.

(2) The condition dim K (A*) < oo is essential in Theorem 2.4. For example, let
H=K=1¥{;and A, B, C € B({;) be defined by

A(xy, x2, x3,...)=1(0, x1,0, x2,0, x3, .. ),

B(x1, x2, x3, .. .) = (x2, X4, X6, . . .),
C(x1,x2,x3,...)=1(0,0,x1,0,x3,0,x5,...).

Then:

(i) K(A*)=K(B)=H,thendim K(A*) = o0;
(i) My= (13 g) €e HC(H & K);

(ili) Mc ¢ HC(H & K).

In fact, we can prove that M¢ is bounded from below, but M¢ is not invertible.
This means that there exists A € psg(M¢) such that ind(M¢c — AI) <0. Then we
have Mc ¢ HC(H & K).

(3) Theorem 2.4 may fail if the assumption dim K (A) < oo holds. For example,
let A€ B(H) be defined in (2) in this remark. We claim that K(A) ={0}. In
fact, let y = (y1, y2, ¥3, ...) € K(A). Using the definition of K(A), there exists
{x,} € H such that Ax,+| =x, and Ax; =y. Then A"x, =y for any n € N. Let
Xn = (Xn1, Xn2, Xp3, . ..). For any n € N, the nth component of A"x, is 0. This
proves that for n € N, y, =0. Then y =0. Therefore K(A) = {0}. But the result
in Theorem 2.4 fails.
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EXAMPLE 2.1. Let H=K ={; andlet A € B(H) and B € B(K) be defined by

A(xy, x2, x3, .. .) = (X2, X4, X6, - . -),
B(x1, x2, x3,...)=1(0,x1,0,x2,0, x3,...),

0

*y
then K(A*) = {0} and 0 B

every C € B(K, H).
The equivalent definition of K (A) is:

) € HC(H & K), therefore Mc € HC(H & K) for

K (A) = {x € H : there exists (x,)o-; € H such that Ax|; = x, Ax,41 = X,
(for any n € N), and {||x, [|//}°, is bounded}.

LEMMA 2.5. Suppose that K (A) is closed. If for each eigenspace N (A — A1) of finite
dimension, K (A) N Hy(A — AI) is closed, then asc(A — A1) < oo for any A € C such
that A — Al is upper semi-Fredholm.

PROOF. Let K(A) # {0} and suppose that A; = A|ga). Then Ay is surjective.

Let A9 € C such that A — Ao/ is upper semi-Fredholm. Without loss of generality,
let Ag ¢ 0,(A). If A9 =0, since K(A) N Hy(A) = Ho(A1) is closed, we know that A
has the SVEP at Ag. Then n(A;) <d(A;) =0 [9, Corollary 11], which means that
A1 is invertible. Then there exists € > 0 such that N(A — AI) = N(A; — Al) = {0}
if 0 <|A| <e. Since A is upper semi-Fredholm, A — LI is upper semi-Fredholm
if 0 <|A] is sufficiently small. Then A — Al is bounded from below, that is,
0 € [iso 0,(A) U p,(A)]. Therefore asc(A — Lol) < oco. In what follows, we suppose
that Ao # 0.

(@) Foranym e N, N[(A — Aol)"] C K (A).

Let x € N[(A — Aol)™], that is, (A — Aol)"x = 0. Then there exists a polynomial
P(-) such that Af'x = AP(A)x, x = A[((P(A))/(Ay))x]. Let

c=[I(PAN/GGI+ 1, x1=((PA)/AgNx,  xp=[(P(A)/)H]"x,

for all n € N. Then Ax; =x, Axy4+1 =X, and ||x,|| < c"|x||, which implies that
x € K(A). Therefore, a(A — Agl) = a(A; — Aol).

(b) K(A) N R(A — Xol) = R(A1 — Xol).

Forany y € K(A) N R(A — Agl),lety = (A — Agl)xg. Since y € K(A) = AK(A),
there exists yg € K (A) such that (A — Aql)xg = Ayg. Then

xo = A[(xo + y0)/(X0)].

Using the definition of K(A), there exist ¢ >0 and {y,}7>, € X such that

Ay1 = Y0, AYn+1 = yn and |lyull < " - [Iyoll (Vn € N).
Let

x1 = ((xo +y0)/20)s  xn = ((x0 + yo)/Ap) + (yl/)»ﬁ‘l) + -+ (Yn—-1/20)-
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Then Ax; = xg, Axa =x1, ..., AXp41 = X, and
X0 + Yo Y1 Yn—1
EAl v Y 0
W Lixoll + [Lyoll 4 Aol - Iyall =+ - -+ o™ - lyu—1ll]
1 _ _
< G ol ol + 10 - - loll £+« 4 [Aol” b ol
< Lol + 200 e e gt
[Ao|™ |Aol™
If |Ag| - ¢ <1, then
llyoll
Il = 7= - xoll + |x e
fl2c | M/ < — M | Aol 4+ — ™ (m - o)™,

Since
Jim [/ 2oD) - ol ™+ (1/120D) - G- 10D/ ™1 =2/1hol.

it follows that {||x, || (1/")} | is bounded.

If |Ag| - ¢ > 1,
1 lyoll 1 —1xol"-c"
[xnll < —— - llxoll + =—- -
[Aol [Aol I — 1ol -c
< ol + Yol 1Aol" - ¢
[Aol" [Aol™ Aol -c—1
1 llyoll
= Nixoll + ———— - ¢",
[Aol™ [Aol-c—1
then

1 (1/n)
a1 < g0 4 (20T
%ol Aol ¢ —1

Also {[lx,]|1/™}°° | is bounded. Using the equivalent definition of K (A), we know
xo € K(A). Then K(A) N R(A — Apl) = R(A1 — Xol). Hence Ay — Aol is upper
semi-Fredholm. Since Hy(A; — Aol) = K(A) N Hy(A — Aol) is closed, it follows
that A has the SVEP at Ag. Then a(A — Agl) = (A — Aol) < 0.

Suppose that K (A) = {0}. Let A — Aol be upper semi-Frehdolm. Then there exists
€ > 0 such that A — A[ is upper semi-Fredholm, A # 0, if 0 < |* — Ap| is sufficiently
small. Since N(A — AI) € K(A), N(A —AI)={0}. Then A — AI is bounded from
below, and therefore Ag € iso 0,(A). This also implies that A has the SVEP at Ag.
Then asc(A — Apl) < o0. O
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Let 047(A) denote the surjective spectrum of A. From the statements in Remark 2.1,
we know the result in Theorem 2.4 is not true if we suppose that K (A) is closed.
However, the following theorem holds.

THEOREM 2.6. Let K(A) be closed. Suppose that for each eigenspace N(A — Al) of

finite dimension, K (A) N Hy(A — A1) is closed.

(1) Ifouw(Mc) =04p(A) Uouy(B) forany C € B(K, H) and Mc, € HC(H ® K)
for some Co € B(K, H), then Mc € HC(H & K) forany C € B(K, H).

2) Ifo(A)=0,(A) or o(B) =o0,4(B), then the converse of (1) is true.

PROOF. (1) (i) oy (M) U 9D is connected for each C € B(K, H).

We claim that o, (M¢) = 0 (Mc,). If fact, let Mc — Aol be Weyl. Then A — Aol
is upper semi-Fredholm, B — Ao/ is lower semi-Fredholm and d(A — Agl) < oo if
and only if n(B — Agl) < o0o. Then asc(A — Agl) < o0o. If d(A — Aol) = o0, then
by [5, Theorem 2.1] there exists Cy € B(K, H) such that Ag ¢ o45(Mc,). Therefore
Ao € 0ap(A) U ogp(B), which implies that n(B — Agl) < oo, which is a contradiction.
Then both A — Ao/ and B — Ao/ are Fredholm. Therefore Mc, — Aol is Fredholm
with ind(Mc, — Aol) =ind(M¢c — Aol) =0, that is, Mc, — Aol is Weyl. Then
ow(Mc,) Cow(Mc). The case o, (Mc) € oy (Mc,) has the same proof. Then
ow(Mc) U 9D =0y, (Mc,) U 9D is connected for every C € B(K, H).

(i) o (M¢c) = op(Mc) for every C € B(K, H).

Let M¢c — Aol is Browder. Then both A — Agl and B — Ayl are Fredholm and
asc(A — Agl) < oo, des(B — Agl) < o00. Since Ay & o,(Mc), asc(B — Agl) < 00,
which means that B — Aol is Browder. Then A — Aol is Browder, and hence A ¢
op(Mc,). But since o (Mc,) = op(Mc,), it follows that both A — Ao/ and B — Aol
are invertible. Then M¢ — Aol is invertible. Therefore o (M¢) = op (M) for every
C e B(K, H).

(iii) For every C € B(K, H), ind(Mc — AI) > for each A € psr(A).

In fact, if Mc — Aol is semi-Fredholm with ind(M¢c — Agl) <0, then A — Ao is
upper semi-Fredholm with finite ascent. If d(A — Ao/) < 0o, then by [4, Theorem 2.1]
B — Aol is upper semi-Fredholm. Thus M¢, — Ao/ is semi-Fredholm with

ind(MCO — )»01) = ind(Mc — )»01) < 0.

This contradicts the fact that Mc, € HC(H @ K). Butif d(A — Aol) = 00, using [5,
Theorem 2.2], there exists C; € B(K, H) such that Ag ¢ 04,(Mc,). Then B — Aol
is upper semi-Fredholm. Therefore Mc¢, — Aol is semi-Fredholm and further
ind(Mc, — Agl) =ind(M¢c — Aol) < 0. This again is a contradiction.

(2) Suppose that 0 (A) = 0,(A) or o4(A) =0 (B). For every C € B(K, H), the
inclusion o, (Mc) C 04p(A) U ogp(B) is clear. For the converse inclusion, let Ay ¢
oap(Mc), then Ag ¢ 0,4 (A). Therefore A — Al is bounded from below if 0 < |A — Ag]
is sufficiently small. But since o,(A) = o (A), it follows that Ao ¢ acc 0 (A). Then
A — Aol is Browder [10, Theorem 4.7]. Using the perturbation theory of semi-
Fredholm operators and [4, Theorem 2.1], Ag ¢ 045 (B). Then Ao & 045(A) U o4 (B).
The proof is complete. O
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COROLLARY 2.7. If dim K (A) < 00 or dim K(A — AI) < oo for some )\ € C, then
the result in Theorem 2.6 is true.

In Lemma 2.5 and Theorem 2.6, we can modify the condition ‘K (A) is closed’
to ‘K (A — AI) is closed for some A € C’. It is well known that K(A — AI) = H is
closed for any A € p(A), leading to the following corollary.

COROLLARY 2.8. Suppose that for each eigenspace N (A — Al) of finite dimension,
Hy(A — A1) is closed, then the result in Theorem 2.6 is true.

One such class which has attracted the attention of a number of authors is the set
H (P) of all operators A € B(H) such that for every complex number A there exists an
integer d; > 1 for which

Ho(A — A1) = N[(A — L)% .

holds. The class H(P) contains the classes of subscalar, algebraically totally
paranormal and transaloid operators on a Banach space, s-totally paranormal,
M-hyponormal, p-hyponormal (0 < p < 1) and log-hyponormal operators on a Hilbert
space (see [7, 8, 11]). From Corollary 2.8, we have the following results.

COROLLARY 2.9. If A € H(P), then the result in Theorem 2.6 is true.

LEMMA 2.10. Suppose that A* € H(P). Then o(A)=o0,(A) and ou,(M¢c) =
0ab(A) U agp(B) for every B € B(K) and for every C € B(K, H).

PROOF. Let A — Al be bounded form below. Then A* — A[ is surjective. But since
A* has the SVEDP, it follows that A* — A[ is invertible. Then A — A[ is invertible. This
proves that o (A) = 0,(A).

For any C € B(K, H) and for any B € B(K), the inclusion

oab(Mc) € 0ap(A) U oyup(B)

is clear. For the converse inclusion, let A ¢ o, (M¢); then A ¢ o,5(A). Since A*
has the SVEP at A, A — A[ is Browder. Then B — A[ is upper semi-Fredholm with
asc(B — AI) < oo. This proves that o,,(Mc) = 045(A) U 04p(B). d

Lemma 2.5 and Theorem 2.6 lead to the following result.

COROLLARY 2.11. Suppose that A* € H(P) and B € B(K), then the following
statements are equivalent:

(1) Mye HC(H & K);

(2) Mc e HC(H & K) for some C € B(K, H);

(3) Mce HC(H & K) forevery C € B(K, H).
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