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ABSTRACT

The purpose of this paper is to incorporate imprecise information into solute transport process modeling using interval arithmetic. In this
paper, we propose a new method for an analytical solution of one-dimensional advection-diffusion equation involving interval parameters of
longitudinal dispersion in porous media without converting them to classical models.
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1. Introduction

A pollutant or leachate may enter the groundwater zone directly to a landfill site from an industrial site such as
Nuclear power plants, Chemical industries, Construction industries etc by dumping of toxic waste, agriculture and
waste disposal. Radioactive waste is disposed under the ground and gets released into groundwater because of
advection, dispersion and diffusion.

In recent year’s groundwater flow and contaminant transport model play an important role in many projects
dealing with groundwater exploitation, protection and remediation. A groundwater flow model is essential for
the development of a contaminant transport model. Groundwater flow models are used to calculate the rate and
direction of movement of groundwater through aquifers and confining units in the subsurface. Scientists facing
lot of problems in assessing extend of groundwater pollution and effectiveness remedial action.

In developing a groundwater flow or solute transport model the analyst begins by preparing a conceptual model
consisting of a list of physical and chemical processes of the system under study (solute transport by advection,
dispersion and diffusion).The next step is to translate the conceptual model into mathematical model consisting of
one or more partial differential equations and set of initial and boundary conditions. Advection-diffusion equation
describes the solute transport due to combined effect of diffusion and convection in a medium. Environmentalists,
hydrologists, civil engineers and mathematical modelers concentrate more on the advection-diffusion equations
to ensure the safe hydro-environment. The analytical and numerical solution of the advection-diffusion equations
are useful to assess the time and position at which the concentration level of the pollutants will start affecting
the health of the habitats in the polluted water eco-system. Also such solutions help estimate and examine the
rehabilitation process and management of a polluted water body after elimination of the pollution. The analytical
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solution of dispersion problems in ideal conditions, is obtained by reducing the advection-diffusion equation into
a diffusion equation by eliminating the convective term(s).

The analytical solutions of advection-dispersion equation have been discussed by many researchers like Bastian
and Lapidus [6], Ogata and Banks [22], Banks and Ali [5], Ogata [? ], Lai and Jurinak [17], Marino [18], Al-Niami
and Rushton [2], Atul Kumar et al. [4], Dilip Kumar et al [8] etc.

It is assumed that the porous medium is homogeneous and isotropic and that no mass transfer occurs between the
solid and liquid phases. Also it is assumed that the flow in the medium is unidirectional and the average velocity is
taken to be constant throughout the length of the flow field. Further it is assumed that the solute transport, across
any fixed plane, due to microscopic velocity variations in the flow tubes, may be quantitatively expressed as the
product of a dispersion coefficient and the concentration gradient.

For finding the analytical or numerical solutions of dispersion problems, the decision parameters of the model
must have crisp values. But in groundwater hydrology, uncertainties are arise due to insufficient data or imprecise
information in the identification and classification of aquifer properties. Also in real-world applications certainty,
reliability and precision of data is often not possible and it involves high information costs. These uncertainties
are due to insufficient data or imprecise information. In this paper, we model the uncertain parameters as interval
numbers.

The rest of this paper is organized as follows. In section 2, we recall the basic concepts of interval numbers
and interval arithmetic and related results for our future discussions. In section 3, we introduce a new method
for analytical solution of one dimensional advection-diffusion equation involving interval parameters. Finally, in
section 4, numerical examples are given to illustrate the method developed in this paper.

2. Preliminaries

The aim of this section is to present some notations, notions and results which are of useful in our further consid-
erations.

Let IR = {x̃ = [x1, x2] : x1 ≤ x2 and x1, x2 ∈ R} be the set of all proper intervals and IR = {x̃ = [x1, x2] :
x1 > x2 and x1, x2 ∈ R} be the set of all improper intervals on the real line R. If x1 = x2 = x, then x̃ = [x, x] is
a real number (or a degenerate interval). We shall use the terms ”interval” and ”interval number” interchangeably.
The mid-point and width (or half-width) of an interval number x̃ = [x1, x2] are defined as

m(x̃) =

(
x1 + x2

2

)
and w(x̃) =

(
x2 − x1

2

)

Algebraic properties of classical interval arithmetic defined on IR (Moore, 1995) are often insufficient if we
want to deal with real world problems involving interval parameters. Because, intervals with nonzero width do not
have inverses in IR with respect to the classical interval arithmetical operations. This ”incompleteness” stimulated
attempts to create a more convenient interval arithmetic extending that based on IR. In this direction, several
extensions of the classical interval arithmetic have been proposed. Kaucher [14–16] proposed a new method,
in which the set of proper intervals is extended by improper intervals and the interval arithmetic operations and
functions are extended correspondingly. We denote the set of generalized intervals (proper and improper) by
D = IR ∪ IR = {[x1, x2] : x1, x2 ∈ R}. The set of generalized intervals D is a group with respect to addition
and multiplication operations of zero free intervals, while maintaining the inclusion monotonicity. The algebraic
properties of the generalized interval arithmetic create a suitable environment for solving algebraic problems
involving interval numbers. However, the efficient solution of some interval algebraic problems is hampered by
the lack of well studied distributive relations between generalized intervals. Ganesan and Veeramani [10] proposed
a new interval arithmetic which satisfies the distributive relations between intervals.
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2.1 Comparing Interval Numbers

We extend the interval ranking method proposed by Sengupta and Pal [3] on IR to the set of all generalized
intervals D.

Definition 2.1. Let � be an extended order relation between the interval numbers x̃ = [x1, x2] and ỹ = [y1, y2]
in D, then for m(x̃) < m(ỹ), we construct a premise (x̃ � ỹ) which implies that x̃ is inferior to ỹ (or ỹ is superior
to x̃). Here, the term ‘inferior to’ (‘superior to’) is analogous to ‘less than’ (‘greater than’).

Definition 2.2. An acceptability function A� : D× D −→ [0,∞) is defined as:

A�(x̃, ỹ) = A(x̃ � ỹ) =
(m(ỹ)−m(x̃))

(w(ỹ) + w(x̃))

where w(ỹ) + w(x̃) 6= 0. A� may be interpreted as the grade of acceptability of the ’first interval number x̃ to
be inferior to the second interval number ỹ’.

For any two interval numbers x̃ and ỹ in D, either A(x̃ � ỹ) > 0 or A(ỹ � x̃) > 0 or A(x̃ � ỹ) = A(ỹ �
x̃) = 0andA(x̃ � ỹ) + A(ỹ � x̃) = 0. Also the proposed A-index is transitive; for any three interval num-
bers x̃, ỹ and z̃ in D, if A(x̃ � ỹ) ≥ 0 and A(ỹ � z̃) ≥ 0, then A(x̃ � z̃) ≥ 0. But it does not mean that
A(x̃ � z̃) ≥ max{A(x̃ � ỹ),A(ỹ � z̃)}.

If A(x̃ � ỹ) = 0 with w(x̃) = w(ỹ) or w(x̃) 6= w(ỹ), then we say that the interval numbers x̃ and ỹ are
equivalent (or non-inferior to each other) and we denote it by x̃ ≈ ỹ. In particular, whenever A(x̃ � ỹ) = 0 and
w(x̃) = w(ỹ), then x̃ = ỹ. Also if A(x̃ � ỹ) ≥ 0, then we say that x̃ � ỹ and if A(ỹ � x̃) ≥ 0, then we say that
ỹ � x̃.

Remark 2.1. For any two interval numbers x̃, ỹ ∈ D, we have A(x̃ � ỹ) +A(ỹ � x̃) = 0.

2.2 A New Interval Arithmetic

The ”dual” is an important monadic operator that reverses the end-points of the intervals and expresses an element-
to-element symmetry between proper and improper intervals in D.

For x̃ = [x1, x2] ∈ D , its dual is defined by dual(x̃) = dual [x1, x2] = [x2, x1] . The opposite of an

interval x̃ = [x1, x2] is opp{[x1, x2]} = [−x2,−x1] which is the additive inverse of [x1, x2] and
[

1

x1
,

1

x2

]
is the

multiplicative inverse of [x1, x2], provided 0 /∈ [x1, x2] . That is,

x̃+ (−dual x̃) = x̃− dual (x̃)

= [x1, x2]− dual ([x1, x2])

= [x1, x2]− [x2, x1]

= [x1 − x1, x2 − x2] = [0, 0]

and

x̃×
(

1

dual x̃

)
= [x1, x2]×

(
1

dual ([x1, x2])

)

= [x1, x2]× 1

[x2, x1]

= [x1, x2]×
[

1

x1
,

1

x2

]

Darbose
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=

[
x1
x1
,
x2
x2

]
= [1, 1].

We incorporate the concept of dual in the interval arithmetic defined by Ganesan and Veeramani [10] on the
set of generalized interval numbers D: For x̃ = [x1, x2], ỹ = [y1, y2] ∈ D and for ∗ ∈ {+,−, ·,÷}, we define
x̃ ∗ ỹ = [m(x̃) ∗m(ỹ)−k,m(x̃) ∗m(ỹ) +k], where k = min {(m(x̃) ∗m(ỹ))− α, β − (m(x̃) ∗m(ỹ))}, α and
β are the end points of the interval x̃� ỹ under the existing interval arithmetic. In particular

(i) Addition:

x̃+ ỹ = [x1, x2] + [y1, y2]

= [(m(x̃) +m(ỹ))− k, (m(x̃) +m(ỹ)) + k] ,

where k =

{
(y2 + x2)− (y1 + x1)

2

}
.

(ii) Subtraction:

x̃− ỹ = [x1, x2]− [y1, y2]

= [(m(x̃)−m(ỹ))− k, (m(x̃)−m(ỹ)) + k] ,

where k =

{
(y2 + x2)− (y1 + x1)

2

}

Also if x̃ = ỹ i.e. [x1, x2] = [y1, y2], then

x̃− ỹ = x̃− dual(x̃) = [x1, x2]− [x2, x1]

= [x1 − x1, x2 − x2] = [0, 0] = 0

(If x̃ = ỹ, then x̃− ỹ = 0̃ = 0, may be taken as dual subtraction)

(iii) Multiplication:

x̃ · ỹ = [x1, x2] · [y1, y2]

= [m(x̃)m(ỹ)− k,m(x̃)m(ỹ) + k] ,

where k = min {(m(x̃)m(ỹ))− α, β − (m(x̃)m(ỹ))},
α = min(x1y1, x1y2, x2y1, x2y2) and

β = max(x1y1, x1y2, x2y1, x2y2).

(iv) Division:

1÷ x̃ =
1

x̃
=

1

[x1, x2]

=

[
1

m(x̃)
− k, 1

m(x̃)
+ k

]
,

where k = min

{
1

x2

(
x2 − x1
x1 + x2

)
,

1

x1

(
x2 − x1
x1 + x2

)}
and 0 6∈ [x1, x2].

Darbose



Int. J. of Applied Mathematics and Computation, 4(3), 2012 273

Also if x̃ = ỹ i.e. [x1, x2] = [y1, y2], then

x̃

ỹ
=
x̃

x̃
=

x̃

dual(x̃)
= [x1, x2] .

1

[x2, x1]

= [x1, x2] .

[
1

x1
,

1

x2

]

=

[
x1
x1
,
x2
x2

]
= [1, 1] = 1.

(If x̃ = ỹ, then
x̃

ỹ
= 1̃ = 1, may be taken as dual division)

(v) Exponential:
exp x̃ = exp [x1, x2] = [expx1, expx2]

(vi) Square Root: The square root of an interval is given by√
x̃ =

√
[x1, x2] =

[√
x1,
√
x2
]
, for x1 ≥ 0.

(vii) Complementary Error Function:

The complementary error function of an interval is given by

erfc(x̃) = erfc [x1, x2] = {min[erfc(x1), erfc(x2)],max[erfc(x1), erfc(x2)]}

From (iii), it is clear that

λx̃ =

{
[λx1, λx2], for λ ≥ 0
[λx2, λx1], for λ < 0.

It is to be noted that x̃∗ỹ ⊆ x̃~ỹ = {x~y/x ∈ x̃, y ∈ ỹ},where ~ is the existing interval arithmetic. For ex-
ample if x̃ = [−1, 2] and ỹ = [3, 5], then x̃~ỹ = [−1, 2]~[3, 5] = [min(−3,−5, 6, 10),max(−3,−5, 6, 10)] =
[−5, 10] and x̃ ∗ ỹ = [−1, 2] ∗ [3, 5] = [−5, 9] so that x̃ ∗ ỹ ⊆ x̃~ ỹ.

It is also important to note that by using this modified interval arithmetic we are able to prove the distributive
law for interval numbers.

Example 2.1. Let c̃ = [2, 3], x̃ = [−1, 2] and ỹ = [2, 5]. By existing arithmetic operations for interval numbers,
we have x̃ + ỹ = [1, 7] ⇒ c̃(x̃ + ỹ) = [2, 21]. So m(c̃(x̃ + ỹ)) = 11.5 and w(c̃(x̃ + ỹ)) = 9.5. Now c̃x̃ =
[2, 3][−1, 2] = [−3, 6] and c̃ỹ = [2, 3][2, 5] = [4, 15] and therefore (c̃x̃+ c̃ỹ) = [1, 21]. So that m(c̃x̃+ c̃ỹ) = 11
and w(c̃x̃ + c̃ỹ) = 10. We see that m(c̃(x̃ + ỹ)) 6= m(c̃x̃ + c̃ỹ) and w(c̃(x̃ + ỹ)) 6= w(c̃x̃ + c̃ỹ). Hence,
c̃(x̃ + ỹ) 6≈ c̃x̃ + c̃ỹ. But according to the modified interval arithmetic, we have c̃(x̃ + ỹ) = [2, 18], c̃x̃ =[
−3,

11

2

]
, c̃ỹ =

[
4,

27

2

]
, c̃x̃ + c̃ỹ = [1, 19]. So that m(c̃(x̃ + ỹ))=10 and w(c̃(x̃ + ỹ)) = 8. We see that

m(c̃(x̃+ ỹ)) = m(c̃x̃+ c̃ỹ) and w(c̃(x̃+ ỹ)) + w(c̃x̃+ c̃ỹ) 6= 0. Hence, c̃(x̃+ ỹ) ≈ (c̃x̃+ c̃ỹ)

3. Main Results

In this section we shall derive the analytical solution of one-dimensional advection-diffusion equation with interval
parameters without converting them to classical forms. By the principle of conservation of mass using Fick’s
law, the governing interval differential equation of the one-dimensional solute transport problem whose decision
parameters are interval numbers is given by

D̃∇2C̃ = ũ
∂C̃

∂x
+
∂C̃

∂t
(3.1)
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where∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

D̃ = dispersion coefficient(interval number),
C̃ =concentration of solute in the fluid (interval number),
ũ =average velocity of fluid or superficial velocity/porsity of medium (interval number),
x = coordinate parallel to flow,
y, z =coordinates normal to flow and t=time. In the event that mass transfer takes place between the liquid and
solid phase, the differential equation becomes

D̃∇2C̃ = ũ
∂C̃

∂x
+
∂C̃

∂t
+
∂F̃

∂t
(3.2)

where F̃ is the concentration (interval number) of the solute in the solid phase.
If we consider a semi infinite media having plane source at x = 0, then equation (3.1) becomes

D̃
∂2C̃

∂x2
− ũ∂C̃

∂x
=
∂C̃

∂t
(3.3)

which describe the one-dimensional transport and dispersion of a given nonreactive dissolved chemical species in
flowing groundwater for a homogeneous and isotropic aquifer. Initially, the solute concentration throughout the
aquifer is zero. For times greater than or equal to zero (t ≥ 0), the concentration at the left edge of the aquifer
becomes a constant C0. These initial and boundary conditions could simulate the sudden dumping of non-reactive
(conservative) constituent into the groundwater flow. The equation (3.3) is the governing equation to be used to
predict the change in concentrations with time at different distances x through the aquifer. In mathematical terms,
the initial and boundary condition of this problem are

C̃(0, t) = C̃0; t ≥ 0

C̃(x, 0) = 0; x ≥ 0

C̃(∞, t) = 0; t ≥ 0.

Now the problem expresses the concentration as a function of x and t alone.

To modify the equation (3.1) to a more familiar form, let us assume that

C̃(x, t) = Γ̃(x, t) exp

(
ũx

2D̃
− ũ2t

4D̃

)
(3.4)

From equation (3.4), we have

∂C̃

∂x
= Γ̃(x, t) exp

(
ũx

2D̃
− ũ2t

4D̃

)(
ũ

2D̃

)
+
∂Γ̃

∂x
exp

(
ũx

2D̃
− ũ2t

4D̃

)

∂2C̃

∂x2
= Γ̃(x, t) exp

(
ũx

2D̃
− ũ2t

4D̃

)(
ũ2

4D̃2

)

+

(
ũ

D̃

)
∂Γ̃

∂x
exp

(
ũx

2D̃
− ũ2t

4D̃

)
+
∂2Γ̃

∂x2
exp

(
ũx

2D̃
− ũ2t

4D̃

)

∂C̃

∂t
= Γ̃(x, t) exp

(
ũx

2D̃
− ũ2t

4D̃

)(−ũ2
4D̃

)
+
∂Γ̃

∂t
exp

(
ũx

2D̃
− ũ2t

4D̃

)
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ũ
∂C̃

∂x
= Γ̃(x, t) exp

(
ũx

2D̃
− ũ2t

4D̃

)(
ũ2

2D̃

)
+ ũ

∂Γ̃

∂x
exp

(
ũx

2D̃
− ũ2t

4D̃

)

D̃
∂2C̃

∂x2
= D̃Γ̃(x, t) exp

(
ũx

2D̃
− ũ2t

4D̃

)(
ũ2

4D̃2

)

+ D̃

(
ũ

D̃

)
∂Γ̃

∂x
exp

(
ũx

2D̃
− ũ2t

4D̃

)
+ D̃

∂2Γ̃

∂x2
exp

(
ũx

2D̃
− ũ2t

4D̃

)

Applying the concept of dual division, we have

D̃
∂2C̃

∂x2
= Γ̃(x, t) exp

(
ũx

2D̃
− ũ2t

4D̃

)(
ũ2

4D̃

)

+ ũ
∂Γ̃

∂x
exp

(
ũx

2D̃
− ũ2t

4D̃

)
+ D̃

∂2Γ̃

∂x2
exp

(
ũx

2D̃
− ũ2t

4D̃

)

By the distributive law,

D̃
∂2C̃

∂x2
=

[
ũ2

4D̃
Γ̃(x, t) + ũ

∂Γ̃

∂x
+ D̃

∂2Γ̃

∂x2

]
exp

(
ũx

2D̃
− ũ2t

4D̃

)

ũ
∂C̃

∂x
=

[
ũ2

2D̃
Γ̃(x, t) + ũ

∂Γ̃

∂x

]
exp

(
ũx

2D̃
− ũ2t

4D̃

)

∂C̃

∂t
=

[
−ũ2
4D̃

Γ̃(x, t) +
∂Γ̃

∂t

]
exp

(
ũx

2D̃
− ũ2t

4D̃

)

Therefore by dual subtraction, we have

D̃
∂2C̃

∂x2
− ũ∂C̃

∂x
=

[
ũ2

4D̃
Γ̃(x, t) + ũ

∂Γ̃

∂x
+ D̃

∂2Γ̃

∂x2

− ũ2

2D̃
Γ̃(x, t)− ũ∂Γ̃

∂x

]
exp

(
ũx

2D̃
− ũ2t

4D̃

)

=

[
D̃
∂2Γ̃

∂x2
− ũ2

4D̃
Γ̃(x, t)

]
exp

(
ũx

2D̃
− ũ2t

4D̃

)
.

Again by dual subtraction and dual division, we have

D̃
∂2C̃

∂x2
− ũ∂Γ̃

∂x
=
∂C̃

∂t

⇒
[
D̃
∂2Γ̃

∂x2
− ũ2

4D̃
Γ̃(x, t)

]
exp

(
ũx

2D̃
− ũ2t

4D̃

)
=

[
−ũ2
4D̃

Γ̃(x, t) +
∂Γ̃

∂t

]
exp

(
ũx

2D̃
− ũ2t

4D̃

)
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⇒ D̃
∂2Γ̃

∂x2
− ũ2

4D̃
Γ̃(x, t) +

ũ2

4D̃
Γ̃(x, t) =

∂Γ̃

∂t

Hence,

D̃
∂2Γ̃

∂x2
=
∂Γ̃

∂t
(3.5)

The boundary conditions are transformed to

Γ̃(0, t) = C̃0exp

(
ũ2t

4D̃

)
; t ≥ 0

Γ̃(x, 0) = 0; x ≥ 0

Γ̃(∞, t) = 0; t ≥ 0.

Equation (3.5) can be solved for a time-dependent influx of fluid at x = 0 by applying the Duhamel’s theorem:

”If C = F (x, y, z, t) is the solution of the diffusion equation for semi-infinite media in which the initial concen-
tration is zero and its surface is maintained at concentration unity, then the solution of the problem in which the
surface is maintained at temperature φ(t) is

C =

∫ t

0

φ(λ)
∂

∂t
F (x, y, z, t− λ)dλ”.

We know that the Duhamel’s theorem is used for heat conduction problems in general, but Equation (3.5) is
suitable to fit this specific case of interest. Hence the above initial and boundary conditions becomes

Γ̃(0, t) = 1; t ≥ 0

Γ̃(x, 0) = 0;x ≥ 0

Γ̃(∞, t) = 0; t ≥ 0

The Laplace transform of Γ(x, t) is defined as

Γ(x, p) =

∫ ∞

0

e−ptΓ(x, t)dt.

Taking Laplace transform on both sides of equation (3.5), we get

d2Γ

dx2
=

p

D̃
Γ (3.6)

and its solution is given by
Γ̃ = Ae−q̃x +Beq̃x

where q̃ =
√
p/D̃.

By applying the boundary conditions in the above solution, we get B = 0 and A = 1/p and hence the particular
solution of the Laplace transformed equation is

Γ̃ =
1

p
e−q̃x

Taking inverse Laplace transform for the above function, we get

Γ̃ = 1− erf
(

x

2
√
D̃t

)
=

2√
π

∫ ∞
x

2
√
D̃t

e−η
2

dη (3.7)
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Applying Duhamel’s theorem, the solution of the problem with initial concentration zero and the time-dependent
surface condition at x = 0 is

Γ̃ =

∫ t

0

φ(τ)
∂

∂t


 2√

π

∫ ∞
x

2
√
D̃(t−τ)

e−η
2

dη


 dτ

Since e−η
2

is a continuous function, it is possible to differentiate under the integral, which gives

2√
π

∂

∂t

∫ ∞
x

2
√
D̃(t−τ)

e−η
2

dη =
xe−x

2/4D̃(t−τ)

2
√
πD̃(t− τ)3/2

Thus,

Γ̃ =
x

2
√
πD̃

∫ t

0

φ(τ)e−x
2/4D̃(t−τ) dτ

(t− τ)3/2

Assume that λ̃ = x

2
√
D̃(t−τ)

, the solution becomes

Γ̃ =
2√
π

∫ ∞
x

2
√
D̃t

φ

(
t− x2

4D̃λ̃2

)
e−λ̃

2

dλ̃ (3.8)

Since φ(t) = C̃0exp

(
ũ2t

4D̃

)
, the particular solution of the problem becomes

Γ̃(x, t) = C̃0
2√
π
e

ũ2t

4D̃

{∫ ∞

0

exp

(
−λ̃2 − ε̃2

λ̃2

)}
dλ̃

−
{∫ α̃

0

exp

(
−λ̃2 − ε̃2

λ̃2

)}
dλ̃

(3.9)

where ε̃ =
ũx

4D̃
and α̃ =

x

2
√
D̃t

.

Consider the first integration in (3.9), we get
∫ ∞

0

exp

(
−λ̃2 − ε̃2

λ̃2

)
dλ̃ =

√
π

2
e−2ε̃.

For convenience the second integral may be expressed in terms of error function, because this function is well
tabulated. Let

−λ̃2 − ε̃2

λ̃2
= −

(
λ̃+

ε̃

λ̃

)2

+ 2ε̃

= −
(
λ̃− ε̃

λ̃

)2

− 2ε̃

The second integral of (3.9) becomes

I =

∫ α̃

0

exp

[
−λ̃2 − ε̃2

λ̃2

]
dλ̃ =

1

2

{
e2ε̃
∫ α̃

0

exp

[
−
(
λ̃+

ε̃

λ̃

)2
]

dλ̃

+ e−2ε̃
∫ α̃

0

exp

[
−
(
λ̃− ε̃

λ̃

)2
]

dλ̃

}
=

1

2
{I1 + I2}

(3.10)
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Now assuming z̃ =
ε̃

λ̃
and using

e2ε̃
∫∞
ε̃/α̃

exp

[
−
(
ε̃

z̃
+ z̃

)2
]

dz̃ in I1 of equation (3.10), we get

I1 = e2ε̃
∫ α̃

0

exp

[
−
(
λ̃+

ε̃

λ̃

)2
]

dλ̃

= −e2ε̃
∫ ∞

ε̃/α̃

(
1− ε̃

z̃2

)
exp

[
−
(
ε̃

z̃
+ z̃

)2
]
dz̃

+ e2ε̃
∫ ∞

ε̃/α̃

exp

[
−
(
ε̃

z̃
+ z̃

)2
]
dz̃

Let, β̃ =

(
ε̃

z̃
+ z̃

)
in the first term of the above equation, then

I1 = −e2ε̃
∫ ∞

α̃+
ε̃

α̃

e−β̃
2

dβ̃ + e2ε̃
∫ ∞

ε̃/α̃

exp

[
−
(
ε̃

z̃
+ z̃

)2
]

dz̃

Similar evaluation of the integral I2 of equation (3.10) gives

I2 = e−2ε̃
∫ ∞

ε̃/α̃

(
ε̃

z̃2
+ 1

)
exp

[
−
(
ε̃

z̃
− z̃

)2
]

dz̃

− e−2ε̃
∫ ∞

ε̃/α̃

exp

[
−
(
ε̃

z̃
− z̃

)2
]

dz̃.

Again −β̃ =

(
ε̃

z̃
− z̃
)

into the first term, the result is

I2 = e−2ε̃
∫ ∞
ε̃
α̃−α̃

e−β̃
2

dβ̃ − e−2ε̃
∫ ∞

ε̃/α̃

exp

[
−
(
ε̃

z̃
− z̃

)2
]

dz̃

Note that
∫ ∞

ε̃/α̃

exp

[
−
(

z̃ +
ε̃

z̃

)2

+ 2ε̃

]
dz̃ =

∫ ∞

ε̃/α̃

exp

[
−
(
ε̃

z̃
− z̃

)2

− 2ε̃

]
dz̃

Substitute in equation (3.10) gives

I =
1

2

{
−e2ε̃

∫ ∞

α̃+ ε̃
α̃

e−β̃
2

dβ̃ + e2ε̃
∫ ∞

ε̃/α̃

exp

[
−
(
ε̃

z̃
+ z̃

)2
]

dz̃

+ e−2ε̃
∫ ∞
ε̃
α̃−α̃

e−β̃
2

dβ̃ − e−2ε̃
∫ ∞

ε̃/α̃

exp

[
−
(
ε̃

z̃
− z̃

)2
]

dz̃

}

By dual subtraction, we get

I =
1

2

{
e−2ε̃

∫ ∞
ε̃
α̃−α̃

e−β̃
2

dβ̃ − e2ε̃
∫ ∞
ε̃
α̃+α̃

e−β̃
2

dβ̃

}
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Thus, equation (3.9) may be expressed as

Γ̃(x, t) =
2C0√
π
e
ũ2t
4D̃

{√
π

2
e−2ε̃ − 1

2

[
e−2ε̃

∫ ∞
ε̃
α̃−α̃

e−β̃
2

dβ̃ − e2ε̃
∫ ∞
ε̃
α̃+α̃

e−β̃
2

dβ̃

]}
(3.11)

However, by definition

e2ε̃
∫∞
α̃+ ε̃

α̃
e−β̃

2

dβ̃ =

√
π

2
e2ε̃erfc

(
α̃+

ε̃

α̃

)
. Also,

e−2ε̃
∫ ∞
ε̃
α̃−α̃

e−β̃
2

dβ̃ =

√
π

2
e−2ε̃

[
1 + erf

(
α̃− ε̃

α̃

)]

Writing equation (3.11) in terms of the error functions

Γ̃(x, t) =
C̃0

2
e

ũ2t

4D̃

[
e2ε̃erfc

(
α̃+

ε̃

α̃

)
+ e−2ε̃erfc

(
α̃− ε̃

α̃

)]

Then, substituting into equation (3.4) the solution is

C̃(x, t) =
C̃0

2
e

ũ2t

4D̃

[
e2ε̃erfc

(
α̃+

ε̃

α̃

)

+ e−2ε̃erfc

(
α̃− ε̃

α̃

)]
exp

(
ũx

2D̃
− ũ2t

4D̃

)

By dual substraction,

C̃

C̃0

=
1

2

[
erfc

(
α̃− ε̃

α̃

)
+ e4ε̃erfc

(
α̃+

ε̃

α̃

)]

Resubstituting for ε̃ and α̃ gives

C̃(x, t) =
C̃0

2


erfc




x

2
√
D̃t
−

ũx

4D̃
x

2
√
D̃t


+ e

4

 ũx

4D̃


erfc




x

2
√
D̃t

+

ũx

4D̃
x

2
√
D̃t







Hence,

C̃(x, t) =
C̃0

2

{
erfc

(
x− ũt
2
√
D̃t

)
+ e

ũx
D̃ erfc

(
x+ ũt

2
√
D̃t

)}
(3.12)

The vagueness of second term in the above equation is more and can be neglected.
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4 Numerical Examples

Example 4.1.
Consider a solute transport problem whose input parameters are interval numbers,
say ũ = [0.05, 0.15] m / day, t = 400 days, D̃ = [0.15, 1.5]m2/ day, x = 200 m and
the initial concentration C0 = 10 = [10, 10] mg /l

We shall compute the concentration of the solute for varying the downward dis-
tances at, say around 10, around 20, around 30, ... and so on.

Let us model these uncertain parameters around 10, around 20, around 30,
... as interval numbers: around 10 = 1̃0 = [9, 11], around 20 = 2̃0 = [19, 21],
around 30 = 3̃0 = [29, 31], and so on.

By using the generalized interval arithmetic (a new interval arithmetic introduced
in this paper), we get

ũt = [20, 60], D̃t = [200, 600],
√

[200, 600] = [14.1421, 24.4949],

2[14.1421, 24.4949] = [28.2841, 48.9899] and
1

[28.2841, 48.9899]
= [0.0204, 0.0314].

Substituting these values in equation (3.12), we get

C̃(x, t) = 5 {erfc (x − [20, 60][0.0204, 0.0314])}
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Figure 1: Concentration of the solute in the fluid for fixed distance 200 meters with
initial concentration 10 =[10, 10] mg / l
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Figure 1: Concentration of the solute in the fluid for fixed distance 200 meters with initial concentration 10 =[10, 10] mg / l

4. Numerical Examples

Example 4.1. Consider a solute transport problem whose input parameters are interval numbers, say ũ = [0.05, 0.15]
m / day, t = 400 days, D̃ = [0.15, 1.5]m2/ day, x = 200 m and the initial concentration C0 = 10 =
[10, 10] mg /l

We shall compute the concentration of the solute for varying the downward distances at, say around 10,
around 20, around 30, ... and so on.

Let us model these uncertain parameters around 10, around 20, around 30, ... as interval numbers: around 10 =
1̃0 = [9, 11], around 20 = 2̃0 = [19, 21], around 30 = 3̃0 = [29, 31], and so on.

By using the generalized interval arithmetic (a new interval arithmetic introduced in this paper), we get

ũt = [20, 60], D̃t = [200, 600],
√

[200, 600] = [14.1421, 24.4949],

2[14.1421, 24.4949] = [28.2841, 48.9899] and
1

[28.2841, 48.9899]
= [0.0204, 0.0314].

Substituting these values in equation (3.12), we get

C̃(x, t) = 5 {erfc (x− [20, 60][0.0204, 0.0314])}

Example 4.2. In the above example, suppose that the initial concentration is a non degenerate interval number
C0 = 1̃0 = [9.5, 10.5] mg /l and no other changes in the remaining boundary and initial conditions. Then the
problem becomes ũ = [0.05, 0.15] m / day, t = 400 days, D̃ = [0.15, 1.5]m2/ day, x = 200 m and the initial
concentration C0 = 1̃0 = [9.5, 10.5] mg /l

By using the generalized interval arithmetic (a new interval arithmetic introduced in this paper), we get
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Figure 2: Concentration of the solute in the fluid for fixed distance 200 meters with
initial concentration 1̃0 = [9.5, 10.5] mg / l

5 Results and discussion

In modeling and solving the solute transport problem, the model parameters of the
problem must have crisp values. But in groundwater hydrology, vague information
can arise in the identification and classification of aquifer properties. Also in real-
world applications certainty, reliability and precision of data is often not possible and
it involves high information costs. These uncertainties are due to insufficient data
or imprecise information. These imprecise information can be modeled as interval
numbers.

In this study, we have obtained the analytical solution for one dimensional solute
transport problem involving interval parameters with out converting to classical
models. As the input parameters of the given problems are interval numbers, the
concentration of the solute also will be in the form of interval numbers. Figure
1 shows that the Concentration level of the solute in the fluid for fixed distance
200 meters with initial concentration as 10 = [10, 10] mg/l which is a degenerate
interval. Figure 2 shows that the Concentration level of the solute in the fluid for
fixed distance 200 meters with initial concentration as [9.5, 10.5] mg/l which is a
non-degenerate interval.

Though the initial concentration for the above two graphs different (degenerate
and non degenerate), the concentration level of the solute in the fluid remains same.

Preprint submitted to IJAMC

Figure 2: Concentration of the solute in the fluid for fixed distance 200 meters with initial concentration 1̃0 = [9.5, 10.5] mg / l

ũt = [20, 60], D̃t = [200, 600],
√

[200, 600] = [14.1421, 24.4949]

2[14.1421, 24.4949] = [28.2841, 48.9899],
1

[28.2841, 48.9899]
= [0.0204, 0.0314]

and
C0

2
= [9.5, 10.5][0.5, 0.5] = [4.7499, 5.2501].

Substituting these values in equation (3.12), we get

C̃(x, t) = [4.7499, 5.2501] [erfc[x− [20, 60][0.0204, 0.0314]]]

5. Results and discussion

In this study, we have proposed a new method for the analytical solution of one dimensional solute transport
problem involving interval parameters with out converting them to classical models. As the input parameters
of the given problems are interval numbers, the concentration of the solute will also be in the form of interval
numbers. Figure 1 shows that the Concentration level of the solute in the fluid for fixed distance 200 meters with
initial concentration as 10 = [10, 10] mg/l which is a degenerate interval. Figure 2 shows that the Concentration
level of the solute in the fluid for fixed distance 200 meters with initial concentration as [9.5, 10.5] mg/l which is
a non-degenerate interval.

Though the initial concentration for the above two graphs different (degenerate and non degenerate), the con-
centration level of the solute in the fluid remains same. The solution of the above problems may help us to
determine the position and time to reach the minimum/maximum or harmless concentration. It may be used as the
preliminary predictive tools in groundwater management.
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Table 1: Concentration of the solute in the fluid for fixed distance 200 meters with initial concentration [10, 10] mg /l

S.No Distance Concentration of the Solute
X(m) = [x1, x2] [t1, t2]

1 [0, 0 ] [10 , 10]
2 [9 ,11] [6.0243, 9.7370]
3 [19, 21] [ 4.8229, 9.3442]
4 [29, 31] [3.1260, 8.8897]
5 [39, 41] [1.7553, 8.2447]
6 [49, 51] [1.1103, 6.8740]
7 [59, 61] [0.6558, 5.1771]
8 [ 69, 71 ] [0.2630, 3.9757]
9 [79, 81] [ 0.0860, 2.9180 ]

10 [ 89, 91] [0.0235, 2.0140]
11 [99, 101] [ 0.0053, 1.3027]
12 [109, 111] [0.0010, 0.7874 ]
13 [119, 121] [ 0.0001, 0.4437 ]
14 [129, 131] [2.0881e−005, 0.2326]
15 [ 139, 141] [2.2501e−006, 0.1133]
16 [149, 151] [2.0035e−007, 0.0512]
17 [159, 161] [1.4728e−008, 0.0214]
18 [169, 171] [8.9317e−010, 0.0083]
19 [ 179, 181] [4.4663e−011, 0.0030]
20 [ 189, 191] [1.8406e−012, 9.8965e−004]
21 [199, 201] [6.2487e−014, 3.0341e−004]
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