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ABSTRACT

In this paper, we study the dependence structure of the generalized bivariate Lomax family. We also obtain some association measures and
the local dependence function due to Kotz and Nadarajah [25]. In addition, we derive entropy, mutual information and quadratic mutual
information measures for this family and discuss about them. Furthermore, we compare local dependence function and Pearson’s ρ via a
numerical study.
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1. Introduction and Preliminaries

In recent years, a number of studies in economics, finance, networking and some other sciences like these, have fo-
cused on dependence measuring, modeling, information measuring and heavy tailed distributions. In addition, the
bivariate measures of dependence and the copula based approaches to dependence modeling are two interrelated
parts of the study of dependence structure of bivariate distributions in mathematical statistics and probability the-
ory. Many authors studied the dependence structures of some bivariate distributions, among them, Shaked [37] has
presented some concepts of dependence for bivariate distributions, Schweizer and Wolff [36] obtained nonpara-
metric measures of dependence for random variables. Apparently, some authors wrote useful papers in the field
of dependence via computing well-known dependence measures for some bivariate distributions. For example,
Bairamove and Kotz [2] studied the dependence structure of Farlie-Gumbel-Morgenstern distributions and their
extensions, Nadarajah et al. [28] determined the local dependence function for extreme value distributions in view
of Kotz and Nadarajah’s [25] Local dependence function. A new measure of linear local dependence has been ob-
tained by Bairamov et al. [3], Tavangar and Asadi [39] extended of the linear local dependence due to Bairamov et
al. [2] and studied some of its properties, Sankaran and Gupta [35] studied the properties of the local dependence
function that introduced by Holland and Wang [19]. Also, Xie et al. [40] discussed some association measures
and their collapsibility. Moreover, they presented characterizations for bivariate Lomax distribution, bivariate
Dirichlet distribution, and bivariate normal distribution using local function and regression functions. Asadian
et al. [1] investigated aspects of dependence in Lomax family. Cuadras and Auge [12] introduced the family of
bivariate distributions and investigated dependence structure of it, Cuadras [11] derived dependence measures,
Kendall’s tau and Spearman’s rho in Cuadras-Auge family and expanded this bivariate distribution in terms of
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Fréchet-Hoeffding lower and upper bounds. Ruiz-Rivas and Cuadras [34] studied some geometrical, probabilistic
and statistical properties of the Cuadras-Ague family and Bolbolian et al. [7] studied dependence structure of
Cuadras-Auge family via some measure of association and tail dependence coefficients. Genest [17] considered
the dependence structure of Frank’s family of bivariate distribution, also suggested three nonparametric estimator
of the association parameter and compared their small-sample behavior of the Maximum likelihood estimator for
this family. The other way of determining the measure of dependence between two random variables is using the
information theory. Some measures such as entropy, mutual information and quadratic mutual information play
important role in dependence measuring of bivariate distributions and some papers have written in this subject.
For example, Joe [22] has presented the relative entropy measures of multivariate dependence and Bell [5] has
used mutual information as a measure of dependence. Xu and Principe [41] discussed a novel algorithm to train
nonlinear mappers with information theoretic criteria (entropy and mutual information) directly from a training
set. Also, the heavy tailed random variables and their asymptotic behaviors and applications have been extensively
investigated in half past century by many authors. The heavy tailed random variables have very considerable role
in some sciences like finance, insurance and economics and study the structures of the distributions for these ran-
dom variables is one of the interesting topics for statisticians. In particular, study the dependence structure of tail
of distribution of random variables is considerable. Frahm et al. [15] derived some properties of estimating the tail
dependence coefficient. Caillault and Guegan [8] have introduced non-parametric estimators for upper and lower
tail dependence and confidence intervals are obtained with a bootstrap method. Dobric and Schmid [13] estimated
the lower tail dependence in bivariate copulas by nonparametric approach. Many other authors presented some
papers in this case, for example, Juri and Wüthrich [24], Charpentier and Segers [9], Peng [32] and Zi-sheng et al.
[42].

In view of these themes, we want to study the dependence structure of a family of bivariate distributions which
contains the distributions with heavy tailed marginal distributions via some dependence structure and information
measures.
Let (X,Y ) be a random vector with the following survival distribution function:

F (x, y) = (1 + a1x
a2 + b1y

b2)−p, x, y ≥ 0, (1.1)

where a1, a2, b1, b2 and p are positive real numbers. This family of bivariate distributions is an extended version
of the bivariate Lomax distribution, that is called ”generalized bivariate Lomax (GBL)”. This class contains two
main categories of the bivariate distributions such as:

• Bivariate Lomax distributions for a1 = a2 = 1, which is widely used in reliability theory (see for details,
Nayak, [29], Nadarajah, [28] and Barlow and Proschan [4]).

• Bivariate Burr distributions for b1 = b2 = 1, that belongs to the class of heavy tailed distribution. It has
many applications in finance, insurance and networking (see, Resnik, [33]).

• In general case, if Z has a gamma distribution with unit scale parameter and shape parameter p > 0, and V1

and V2 independent of Z are independent, exponentially distributed with mean 1
a1

and 1
b1

respectively, then

(X
1
a2 , Y

1
b2 ) has the survival function given in equation (1.1) and this distribution is known as the bivariate

Pareto of the fourth kind. (Kotz et al. [26]), WhereX = Z−1V1 and Y = Z−1V2 for all ai, bi > 0, i = 1, 2.

The purpose of this paper is to examine the dependence structure of GBL family of distributions. In Section 2
some concepts of dependence for GBL family have presented. Some association measures such as tail dependence
coefficients and extremal dependence coefficients are derived for this family in Section 3, and also we compare
these coefficients by numerical approach in this section. In Section 4, we discuss the behavior of the local depen-
dence via Bairamov and Kotz local dependence function and Clayton-Oakes association measure in GBL family.
Furthermore, we draw graphs of this local dependence measure. In section 5, we compute three information mea-
sures in GBL family and evaluate these measures of information for this family. In some cases, we have used
copula function, instead of distribution function, since computations are simple and the copula is independent
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from marginal distributions. We will also investigate dependence structure of this family via computing measures
of information and dependency.

2. Some Concepts of Dependence

Let (X,Y ) be a random vector with joint density function f(x, y), distribution function F (x, y) and marginals
F1(x) and F2(y). Then, the following quantities are defined:

1. The real function h(x, y) is totally positive of order two (TP2) if h(x, y) ≥ 0, and

h(x, y)h(x′, y′) ≥ h(x, y′)h(x′, y), for all x < x′, y < y′.

2. The random vector (X,Y ) is said to be positive likelihood ratio dependent (PLRD(X,Y )) if f(x, y) is
TP2.

3. The random vector (X,Y ) or its distribution function is said to be right corner set increasing (RCSI(X,Y ))
if P (X > x, Y > y|X > x′, Y > y′) is increasing in x′ and y′ for all x and y.

4. The random vector (X,Y ) or its distribution function is said to be left corner set decreasing (LCSD(X,Y ))
if P (X ≤ x, Y ≤ y|X ≤ x′, Y ≤ y′) is decreasing in x′ and y′ for all x and y.

5. The random variable X is said to be stochastically increasing in Y (SI(X|Y )) if P (X > x|Y = y) is
increasing in y for all x.

6. The random variable X is said to be right tail increasing in Y (RTI(X|Y )) if P (X > x|Y > y) is
non-decreasing in y for all x.

7. The random variable X is said to be left tail decreasing in Y (LTD(X|Y )) if P (X ≤ x|Y ≤ y) is non-
increasing in y for all x.

8. The random variables X and Y are said to be positively quadrant dependent (PQD(X,Y )) if,

P (X > x, Y > y) ≥ P (X > x)P (Y > y), ∀x, y.

9. The copula function C(u, v) is a bivariate distribution function with uniform marginals on [0, 1], such that

F (x, y) = CF (F1(x), F2(y))

By Sklar’s Theorem (Sklar, [38]), this copula exists and is unique if F1 and F2 are continuous. Thus we can
construct bivariate distributions F (x, y) = CF (F1(x), F2(y)) with given univariate marginals F1 and F2

by using the copula CF ,(Nelsen, [30]).

Let the random vector (X,Y ) has joint distribution function F (x, y) be with marginals F1(x) and F2(y) respec-
tively, then the following properties for copula functions given in Nelsen, [30]:

• The copula CF is given by

CF (u, v) = F (F−1
1 (u), F−1

2 (v)), ∀u, v ∈ [0, 1],

where, F−1
1 and F−1

2 are quasi-inverses of F1 and F2 respectively.

• The partial derivatives ∂CF (u,v)
∂u and ∂CF (u,v)

∂v exist and c(u, v) = ∂2CF (u,v)
∂u∂v is density function ofCF (u, v).
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• When the random variables X and Y are continuous, the concepts of dependence considered above are
properties of the copula C(u, v).

Noting that, the concept of PLRD is differs from other dependence concepts, because it is defined in terms of
the joint density function. Moreover, PLRD is the strongest, implying all of the dependence concepts mentioned
above. In terms of the copula of continuous random variables X and Y , we have The random vector (X,Y ) is
PLRD if and only if

PLRD(X,Y )⇔ c(u′, v)

c(u, v)
is incraesing in v for all u < u′. (2.1)

Remark 2.1. (i)- Let (X,Y ) be a random vector with GBL distribution function, then, using relation (1.1), it is
easy to see that,

C(u, v) =
[
(1− u)−

1
p + (1− v)−

1
p − 1

]−p
+ u+ v − 1, p > 0. (2.2)

(ii)- We observe that the copula function of GBL family is independent of the parameters ai, bi, i = 1, 2, further-
more, it is equal to copula of bivariate Lomax family that has been studied by Asadian et al. [1].

Proposition 2.2. Let (X,Y ) be a random vector with GBL distribution function, then (X,Y ) is PLRD.

Proof. Using relation (2.2), we get,

c(u, v) =
∂2C(u, v)

∂v∂u

=
p+ 1

p
(1− v)−

1
p−1(1− u)−

1
p−1

[
(1− u)−

1
p + (1− v)−

1
p − 1

]−p−2

,

So, we have

c(u′, v)

c(u, v)
=
( 1− u

1− u′
) p+1

p

[
1− (1− u′)

−1
p − (1− u)

−1
p

(1− u′)
−1
p + (1− v)

−1
p − 1

]p+2

, ∀ u < u′, v ∈ (0, 1),

which is increasing function in v and this completes the proof.

Remark 2.3. Let (X,Y ) be a random vector with GBL distribution function, then by Theorem 5.2.19 in Nels, we
have

PQD(X,Y ), LTD(Y |X), RTI(Y |X), SI(Y |X), LCSD(X,Y ), RCSI(X,Y ).

3. Some measures of association

In this section, we compute measures of association, tail dependence coefficients and extremal dependence coef-
ficients for GBL family.

3.1 Kendall’s τ and Spearman’s ρs

The Spearman’s ρs is connected with PQD concept and formulated by copula function C as follows:

ρs = 12

∫ 1

0

∫ 1

0

[C(u, v)− uv]dudv

= 12

∫ 1

0

∫ 1

0

C(u, v)dudv − 3.
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The Kendall’s τ is connected with PLRD concepts and formulated by copula function C as:

τ = 4

∫ 1

0

∫ 1

0

C(u, v)dC(u, v)− 1 = 1− 4

∫ 1

0

∫ 1

0

[
∂C

∂u
.
∂C

∂v

]
dudv.

These measures are obtained for bivariate Lomax family by Asadian et al. [1], and since the copula of GBL family
is equal to copula of bivariate Lomax family, so, the following proposition is valid for GBL family.
Proposition 3.1. Let (X,Y ) be a random vector with GBL distribution function, then,

(i). τ = 1
2p+1 ,

(ii). ρs =
∑∞
k=0

12p2(k+1)
2p+k B(3p, k + 1)− 3.

Where, B(α, β) = Γ(α)Γ(β)
Γ(α+β) is the Beta function and Γ(α) =

∫∞
0
xα−1e−xdx.

Remark 3.2. Let (X,Y ) be a random vector with GBL distribution function, then, Proposition 2.3, Theorem 5.1
in [16] and [20] [Exercise, 5.38 in Nelsen [30]] imply that

0 ≤ τ ≤ ρs ≤
3

2
τ.

3.2 The Blomqvist medial coefficient

Blomqvist, [6] introduced this coefficient as evaluating the dependence at the center of a distribution. If X
and Y are random variables with copula function C(u, v), then the coefficient of Blomqvist is defined as:

β = 4C(
1

2
,

1

2
)− 1.

Corollary 3.1. Let (X,Y ) be a random vector with GBL distribution function, then, β = 4(2(p+1)/p − 1)−p − 1.
It is obvious that 0 ≤ β ≤ 1 for all p > 0.

3.3 Schweizer-Wolff’s index of dependence

An index closely related to Spearmans ρs is the index σXY introduced by Schweizer and Wolff [36]. Instead
of considering the difference C(u, v)− uv, they use its absolute value to define:

σXY = 12

∫ 1

0

∫ 1

0

|C(u, v)− uv|dudv,

which is a measure of the volume between the surfaces C(u, v) and uv.

Corollary 3.2. Let (X,Y ) be a random vector with GBL distribution function, then Proposition 2.2 implies that
C(u, v) ≥ uv, consequently σXY = ρs.

3.4 Gini’s gamma coefficient

The Gini’s γ coefficient is defined as

γC = 2

∫ 1

0

∫ 1

0

(|u+ v − 1| − |u− v|)dC(u, v).

Another form of Gini’s γ is given by

γC = 4

{∫ 1

0

C(u, 1− u)du−
∫ 1

0

[u− C(u, u)]du

}
.

(For more details see, Nelsen, [30]).
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Corollary 3.3. Let (X,Y ) be a random vector with GBL distribution function, then,

γC = 4

[∫ 1

0

(
[(1− u)

−1
p + u

−1
p − 1]−p + [2(1− u)

−1
p − 1]−p

)
du

]
− 2,

for all p > 0.

Remark 3.4. Since there is not closed form for the Gini’s gamma coefficient in GBL family, we study and analysis
of it with numerical approach. Table 3.1 presents Gini’s gamma coefficient and Spearman’s ρ (or σXY ) for GBL
family for some values of p. It is easy to see that ρs = σXY ≥ γC for all values of p.

Table 1: γC and ρs for some values of p in GBL family.

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
γC .877 .776 .692 .622 .565 .516 .475 .439 .409 .382

ρs = σXY .952 .885 .811 .743 .683 .631 .585 .545 .510 .479
p 2 3 4 5 6 7 8 9 10 20
γC .230 .164 .128 .104 .088 .076 .067 .060 .055 .027

ρs = σXY .295 .212 .166 .136 .115 .099 .088 .079 .071 .037
p 30 40 50 60 70 80 90 100 ... 1000
γC .018 .014 .011 .009 .008 .007 .006 .005 ... .0006

ρs = σXY .025 .018 .015 .012 .011 .009 .008 .007 ... .0007

3.5 Tail dependence coefficients

Inspect of other dependence measures the tail dependence coefficients explain dependence between the random
variables in the upper right quadrant and in the lower left quadrant of [0, 1]× [0, 1]. Let (X,Y ) be a random vector
with joint distribution function F (x, y) and marginals F1(x) and F2(y), respectively. The quantity λu = lim

t→1−

P (F1(X) > t|F2(Y ) > t) is called the upper tail dependence coefficient (UTDC) provided the limit exists. We
say that (X,Y ) has upper tail dependence if λu > 0 and upper tail independent if λu = 0. Similarly, we define the
lower tail dependence coefficient (LTDC) by λl = lim

t→0+
P (F1(X) ≤ t|F2(Y ) ≤ t) . The upper tail dependence

coefficient (or lower tail dependence coefficient) can also be defined via the notion of copula as:

λu = lim
t→1−

1− 2u+ C(u, u)

1− u
and λl = lim

t→0+

C(u, u)

u
.

For more details, [30].

Corollary 3.5. Let (X,Y ) be a random vector with GBL distribution function. Then, λu = 2−p. and λl = 0.

3.6 Extremal dependence coefficients

Extremal dependence coefficients were introduced by Frahm [14] for studying the asymptotic dependence struc-
ture of the minimum and the maximum of a random vector. Let (X1, X2, ..., Xn) be a random vector with joint
distribution function F (x1, x2, ..., xn) and marginal distribution functions F1, ..., Fn.The lower extremal depen-
dence coefficient (LEDC) and upper extremal dependence coefficient (UEDC) of (X1, X2, ..., Xn) are defined
as

El = lim
t→0+

P (Fmax ≤ t|Fmin ≤ t),

and
Eu = lim

t→1−
P (Fmin > t|Fmax > t),
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provided the corresponding limits exist, where, Fmin = min{F1(X1), ..., Fn(Xn)} andFmax = max{F1(X1), ..., Fn(Xn)}.
Remark 3.1. By Proposition 1 in Frahm (2006), we can derive El and Eu via the quantities λl and λu as: El =
λl

2−λl
and Eu = λu

2−λu
. Therefore, if (X,Y ) has the GBL distribution, then, the Corollary 3.5 implies that

El = 0, and Eu =
1

2p+1 + 1
> 0.

This means that (X,Y ) has UED but not LED.

Remark 3.2. Since we have closed forms expression for τ , β, λu and Eu for the GBL family, it is possible to
compare analytically these measures. Figure 1 contains graphs of these functions with comparing them for some
values of p:

(i). If 0 < p < 1, then, Eu < τ < β < λu.

(ii). If 1 ≤ p < 2.6598, then, Eu < β ≤ τ < λu.

(iii). If 2.6598 < p < 2.7211, then, Eu < β < λu < τ .

(iv). If p > 2.7211, then, Eu < λu < β < τ.

Figure 1: Comparing the dependence coefficients for some values of p, where λu shows by ” ∗ ”,Eu by ”× ”, β by ” ◦ ” and τ by line.

4. Local Dependence

We compute the Clayton-Oakes association measure (denoted by Θ(x, y)) and local dependence function due to
Kotz and Nadarajah [25] (denoted by H(x, y)) in GBL distribution function. Furthermore, we investigate the
behavior of these measures drawing their graphs.

4.1 Clayton-Oakes Association Measure

Clayton [10] and Oakes [31] defined the association measure as:

θ(x, y) =
F̄ (x, y)D12F̄ (x, y)

D1F̄ (x, y)D2F̄ (x, y)
,

where,

D12F̄ (x, y) =
∂2F̄ (x, y)

∂x∂y
; D1F̄ (x, y) =

∂F̄ (x, y)

∂x
; D2F̄ (x, y) =

∂F̄ (x, y)

∂y
.
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If θ(x, y) > (<)1 , we say X and Y are positive dependent(negative dependent). Consequently, if θ(x, y) = 1,
X and Y being independent. Gupta [18] proved that θ(x, y) = r(x|Y = y)/r(x|Y > y), where r(x|Y = y) =
f(x|y)
F̄ (x|y)

and r(x|Y > y) is the hazard rate of the conditional distribution of X given Y > y. Using this result, we
obtain the following Proposition:

Proposition 4.1. Let (X,Y ) be a random vector with GBL distribution function, then,

θ(x, y) =
p+ 1

p
.

Proof. Via the arguments in Gupta [18], we have,

r(x|Y = y) = −D12F̄ (x, y)

D2F̄ (x, y)

= a1a2(p+ 1)xa2−1(1 + a1xa2 + b1y
b2)−1, (4.1)

and

r(x|Y > y) = −D1F̄ (x, y)

F̄ (x, y)

= a1a2px
a2−1(1 + a1xa2 + b1y

b2)−1, (4.2)

for every real value of x and y. So,

θ(x, y) =
r(x|Y = y)

r(x|Y > y)
=
p+ 1

p
,

4.2 Local dependence function

Kotz and Nadarajah [25] have introduced a local dependence function (denoted by H(x, y)), which provides a
local point of view on dependence at a point (x, y) and defined

H(x, y) =
E{(X − E(X|Y = y))(Y − E(Y |X = x))}√
E(X − E(X|Y = y))2

√
E(Y − E(Y |X = x))2

,

which is obtained from the expression of the Pearson correlation coefficient by replacing mathematical expecta-
tions E(X) and E(Y ) by conditional expectations E(X|Y = y) and E(Y |X = x), respectively. So, we have,

H(x, y) =
ρ+ φX(y)φY (x)√

1 + φ2
X(y)

√
1 + φ2

Y (x)
, (4.3)

where,

ρ =
cov(X,Y )√
var(X)var(Y )

; φX(y) =
E(X)− E(X|Y )√

var(X)
; and φY (x) =

E(Y )− E(Y |X)√
var(Y )

.

Proposition 4.2. Let (X,Y ) be a random vector with GBL distribution function, then,

φX(y) =
B(p− 1

a2
, 1 + 1

a2
)
[
p− (p− 1

a2
)(1 + b1y

b2)
1
a2

]
√
p
[
B(p− 2

a2
, 1 + 2

a2
)− pB2(p− 1

a2
, 1 + 1

a2
)
] 1

2

,

Darbose



Int. J. of Applied Mathematics and Computation, 4(3), 2012 255

Table 2: Computes of (x∗, y∗)

p ρ x∗ y∗ Θ(x∗, y∗)
1 1.000 ∞ ∞ 2.000
2 0.500 1.000 1.000 1.500
3 0.333 0.500 0.500 1.333
4 0.250 0.333 0.333 1.250
5 0.200 0.250 0.250 1.200
6 0.167 0.200 0.200 1.167
7 0.143 0.167 0.167 1.143
8 0.125 0.143 0.143 1.125
9 0.111 0.125 0.125 1.111
10 0.100 0.111 0.111 1.100

φY (x) =
B(p− 1

b2
, 1 + 1

b2
)
[
p− (p− 1

b2
)(1 + a1x

a2)
1
b2

]
√
p
[
B(p− 2

b2
, 1 + 2

b2
)− pB2(p− 1

b2
, 1 + 1

b2
)
] 1

2

,

and

ρ =

[
(p+ 1)B(p− 1

a2
− 1

b2
, 1 + 1

a2
, 1 + 1

b2
)− pB(p− 1

a2
, 1 + 1

a2
)B(p− 1

b2
, 1 + 1

b2
)
]

[(
B(p− 2

a2
, 1 + 2

a2
)− pB2(p− 1

a2
, 1 + 1

a2
)
)(

B(p− 2
b2
, 1 + 2

b2
)− pB2(p− 1

b2
, 1 + 1

b2
)
)] 1

2

.

By substituting theses relations in (4.3), H(x, y) can be obtained, on noting that B(a, b, c) = Γ(a)Γ(b)Γ(c)
Γ(a+b+c) . and

Γ(α) =
∫∞

0
xα−1e−xdx.

Corollary 4.3. In particular if a1 = a2 = b1 = b2 = 1, H(x, y) in GBL distribution function is,

H(x, y) =
p3 + (p− 2)2[x(1− p) + 1][y(1− p) + 1]√

[p4 + (p− 2)2(x(1− p) + 1)2][p4 + (p− 2)2(y(1− p) + 1)2]
.

As we see, H(x, y) is a decreasing function of p and tends to infinity when p tends to infinity. Figure 2 shows
the behavior of H(x, y) for values of p = 1, 2, 4, 6, 10, 25, under the conditions of the Corollary 4.4.

Remark 4.4. We compute the saddle point (x∗, y∗) such that H(x∗, y∗) = ρ when a1 = a2 = b1 = b2 = 1 in
GBL family. By solving the equation φX(y∗) = φY (x∗) = 0 analytically, we obtain,

(x∗, y∗) =

(
1

p− 1
,

1

p− 1

)
.

As we see, H(x, y) is equal to Pearson’s correlation coefficient ρ when X and Y are equal to their expectation. It
is easy to see that in this case, H(x∗, y∗) = ρ = 1

p .

In order to compar Pearson’s ρ, Θ(x, y) and H(x, y) for some values of p and (x∗, y∗), Table 2.1 presents ρ,
and Θ(x∗, y∗).

5. Some Information measures

In this section, we derive three information measures for GBL distribution function. Also, we study behavior of
these measures via a numerical study:
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Figure 2: The diagram ofH(X,Y ) for different values of p. Top left: p = 1, Top right: p = 2, Middle left: p = 4, Middle right: p = 6, Bottom left: p = 10
and Bottom right p = 25.
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Table 3: Values ofHe(X,Y ) for some values of p

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
He(X,Y ) 25.12 14.26 10.38 8.29 6.95 6.00 5.27 4.69 4.21

p 1 2 3 3.55 4 5 6 7 8
He(X,Y ) 3.81 1.54 0.43 0 −0.30 −0.83 −1.26 −1.61 −1.92

p 9 10 11 15 20 25 30 35 40
He(X,Y ) −2.18 −3.28 −3.89 −4.36 −4.74 −5.05 −5.33 −5.57 −2.41

5.1 Entropy

If (X,Y ) is a random vector with the joint density function f(x, y), the joint entropy for two random variables
X and Y is

He(X,Y ) = −E[log(f(X,Y ))].

This measure is maximum, when X and Y are independent and if X and Y are dependent random variables, then
He is a real number, (see, Joe, [21–23]).

Proposition 5.1. Let (X,Y ) be a random vector with GBL distribution function, then,

He(X,Y ) =
a2 − 1

b1b2a2
[ln a1 + c1(p)] +

b2 − 1

a1a2b2
[ln b1 + c1(p)]− c2(p)− ln(A),

where, A = a1a2b1b2p(p + 1) and ci(p); i = 1, 2 are functions of p. For the forms of ci(p), i = 1, 2 see
appendices.

Corollary 5.2. If a1 = a2 = b1 = b2 = 1 then, the entropy of GBL distribution function is

He(X,Y ) = log(p(p+ 1)) +

∞∑
i=0

p+ 2

Γ(p)Γ(i+ 1)
[Γ(p+ i)(Ψ(1 + i)−Ψ(p+ i))

+Γ(p+ i+ 1)(Ψ(1 + i)−Ψ(p+ i+ 1))], (5.1)

where, Ψ(x) = Γ′(x)
Γ(x) .

Table 2.2 and Figure 3 show the behavior of He(X,Y ) with respect to p increasing, we observe that He is
positive for p < 3.55, zero for p ∼= 3.55 and negative for p < 3.55.

Figure 3: He(X,Y ) for some values of p.
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Table 4: Values of I(X,Y ) and δ(X,Y ) for some values of p

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
I(X,Y ) 1.49 .96 .70 .54 .43 .36 .30 .26 .22
δ(X,Y ) .97 .92 .87 .81 .76 .71 .67 .63 .60

p 1 2 3 4 5 6 7 8 9
I(X,Y ) .19 .072 .038 .023 .016 .011 .009 .007 .005
δ(X,Y ) .56 .37 .27 .21 .18 .15 .13 .12 .10

p 10 15 20 25 30 35 40 ...
I(X,Y ) .004 .002 .001 .0007 .0005 .0004 .0003 ...
δ(X,Y ) .09 .063 .048 .039 .032 .028 .025 ...

5.2 Mutual Information

Mutual information measures are the amount of information that can be obtained about one random variable by
observing another. It is important in communication where it can be used to maximize the amount of information
shared between sent and received signals. The mutual information of X relative to Y with joint density function
f(x, y) and marginal density functions f1(x) and f2(y), respectively is given by:

I(X,Y ) = E

[
log

(
f(X,Y )

f1(X)f2(Y )

)]
= He(X) +He(Y )−He(X,Y ). (5.2)

Proposition 5.3. Let (X,Y ) be a random vector with GBL distribution function, then,

I(X,Y ) =
a2 − 1

a2

[
ln a1

(
1− 1

b1b2

)
+ ψ(p) + γ − c1(p)

b1b2

]
+
b2 − 1

b2

[
ln b1

(
1− 1

a1a2

)
+ ψ(p) + γ − c1(p)

a1a2

]
+c3(p)− log(a1a2)− log(b1b2),

where c1(p) and c3(p) are functions of p, see appendices.

Corollary 5.4. If a1 = a2 = b1 = b2 = 1, then,

He(X) = He(Y ) =
p+ 1

p
− log(p).

Using (5.1), and (5.2), we get

I(X,Y ) =
2p− 2

p
− log(p3(p+ 1)) +

∞∑
i=0

p+ 2

Γ(p)Γ(i+ 1)
[Γ(p+ i)(Ψ(1 + i)−Ψ(p+ i))

+Γ(p+ i+ 1)(Ψ(1 + i)−Ψ(p+ i+ 1))]. (5.3)

If the components of (X,Y ) are independent, then I(X,Y ) is zero and conversely, when the dependence is
maximal, I(X,Y ) tends to infinity. Joe [21] defined δ(X,Y ) =

√
1− exp(−2I(X,Y )) which is normalizing

this index.
The measure of δ is confined to the interval [0, 1]. If X and Y are independent then, δ = 0 and when the

dependence is maximal, δ achieves to one.
Our numerical results in Table 2.3 show that when p is decreasing the measures I and δ are increasing and when p
is increasing I and δ decreasing. Note that, we observed in sections 3 and 4 that the measures τ , ρ and θ, increase
with decreasing of p. It means that, we have more information and dependence in this case.
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5.3 Quadratic Mutual Information

Let X and Y be two random variables with marginal density functions f1(x) and f2(y) and joint density function
f(x, y), the mutual information between two random variables can be estimated by Kullack-Leibler divergence
between the joint density function and the factored marginals. By using quadratic forms of density functions, Xu
and Principe (1998), proposed the following distance based on the Cauchy-Schwarz inequality:

C(X,Y ) = log

(∫∞
0

∫∞
0
f2(x, y)dxdy

) (∫∞
0

∫∞
0
f2(x)f2(y)dxdy

)(∫∞
0

∫∞
0
f(x, y)f(x)f(y)dxdy

)2 .

It is obvious that C(X,Y ) ≥ 0 and C(X,Y ) = 0 if and only if X and Y are independent. So, C(X,Y )
is an appropriate measure for the independence of two random variables (minimization of mutual information).
Although, it is difficult to prove a strict justification that C(X,Y ) is appropriate to measure dependence. We
compute this measure for GBL family and then, study the behavior of it via a numerical study and drawing it’s
graph.

Proposition 5.5. Let (X,Y ) be a random vector with GBL distribution function, then,

C(X,Y ) = log(C1) + log(C2)− 2 log(C3),

where,

C1 = Dp2(p+ 1)2B(2p+
1

a2
+

1

b2
, 2− 1

a2
, 2− 1

b2
),

C2 = Dp4B(2p+
1

a2
, 2− 1

a2
)B(2p+

1

b2
, 2− 1

b2
),

C3 = Dp3(p+ 1)

[
B(2− 1

a2
, p+ 1

a2
)Γ(1− p− 1

a2
)

Γ(p+ 1)Γ(2− 1
a2

)

∞∑
i=1

C4(i)

+
B(2p+ 1 + 1

a2
,−p− 1

a2
)Γ(1 + p+ 1

a2
)

Γ(p+ 2)Γ(2p+ 1
a2

+ 1)

∞∑
i=1

C5(i)

]
,

and

C4(i) =
B(2p+ 2

b2
+ i− 1, 2− 1

b2
)Γ(p+ 1 + i)Γ(2− 1

a2
+ i)

i!Γ(1− p− 1
a2

+ i)
,

C5(i) =
B(p+ i+ 1

b2
− 1, 2− 1

b2
)Γ(p+ 2 + i)Γ(2p+ 1 + 1

a2
+ i)

i!Γ(1 + p+ 1
a2

+ i)
,

D = a2b2a
1
a2
1 b

1
b2
1 .

Corollary 5.6. If a1 = a2 = b1 = b2 = 1 , then,

C(X,Y ) = log

(
p2(p+ 1)2

(2p+ 3)(2p+ 2)

)
+ 2 log

(
p2

2p+ 1

)
−2 log

[
p3Γ(−p)
Γ(p+ 1)

∞∑
i=0

Γ(p+ 1 + i)

(2p+ i)Γ(i− p)
+ p3Γ(−p− 2)

∞∑
i=0

Γ(2p+ 2 + i)

(p+ i+ 1)i!

]
.

Under the assumptions of Corollary 5.6, we computed C(X,Y ) for some values of p in Table 2.4, also Figure
4 shows the behavior of C(X,Y ) with respect to p. Table 2.4 and Figure 4 show that, increasing p the quadratic
mutual information decrease, this agree with behavior of I and δ.
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Table 5: Values of C(X,Y ) for some values of p

p 1 2 3 4 5 6 7 8 9 10
C(X,Y ) .0542 .0227 .0122 .0078 .0044 .0033 .0026 .0020 .0016 .0014

Figure 4: C(X,Y ) for some values of p.

6. Conclusion

In this paper, the dependence structure of the GBL family has been studied via dependence coefficients and
information coefficients. We show that X and Y in GBL family have positive dependence and this dependency
will be weaker as p goes to be larger. In information measure, terms are similar, in fact when p tends to infinity,
the measure of information between two random variables tends to be negligible. Also, we find links between the
properties of GBL family via information measures and dependency.

7. Appendices

In this section, we present proof of the propositions.

Proof of Proposition 4.2:

E(X) =

∫ ∞
0

a1a2px
a2(1 + a1x

a2)−p−1dx = pa
−1
a2
1 B(p− 1

a2
, 1 +

1

a2
),

and,

E(X2) = pa
−2
a2
1 B(p− 2

a2
, 1 +

2

a2
).

We have,

var(X) = pa
−2
a2
1

[
B(p− 2

a2
, 1 +

2

a2
)− pB2(p+

1

a2
, 1 +

1

a2
)

]
.

Moreover,

E(X|Y = y) =

∫ ∞
0

x.
f(x, y)

f1(y)
dx = (p+ 1)a

−1
a2
1 (1 + b1y

b2)
1
a2B(p+ 1− 1

a2
, 1 +

1

a2
).

Hence, we get,

E(X)− E(X|Y = y) = a
−1
a2
1 B(p− 1

a2
, 1 +

1

a2
)

[
p− (p− 1

a2
)(1 + b1y

b2)
1
a2

]
.
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So, by some mathematical calculation, we get,

φX(y) =
B(p− 1

a2
, 1 + 1

a2
)
[
p− (p− 1

a2
)(1 + b1y

b2)
1
a2

]
√
p
[
B(p− 2

a2
, 1 + 2

a2
)− pB2(p− 1

a2
, 1 + 1

a2
)
] 1

2

.

Similarly, we obtain,

φY (x) =
B(p− 1

b2
, 1 + 1

b2
)
[
p− (p− 1

b2
)(1 + a1x

a2)
1
b2

]
√
p
[
B(p− 2

b2
, 1 + 2

b2
)− pB2(p− 1

b2
, 1 + 1

b2
)
] 1

2

.

On the other hand, we have

E(XY ) =

∫ ∞
0

∫ ∞
0

xyf(x, y)dxdy =
p(p+ 1)Γ(p− 1

a2
− 1

b2
)Γ(1 + 1

a2
)Γ(1 + 1

b2
)

a
1
a2
1 Γ(p+ 2)b

1
b2
1

= a
1
a2
1 b

1
b2
1 p(p+ 1)B(p− 1

a2
− 1

b2
, 1 +

1

a2
, 1 +

1

b2
),

where,

B(a, b, c) =
Γ(a)Γ(b)Γ(c)

Γ(a+ b+ c)
.

thus,

cov(X,Y ) = a
1
a2
1 b

1
b2
1 p

[
(p+ 1)B(p− 1

a2
− 1

b2
, 1 +

1

a2
, 1 +

1

b2
)

−pB(p+ 1, 1 +
1

a2
)B(p+ 1, 1 +

1

b2
)

]
,

then,

ρ =

[
(p+ 1)B(p− 1

a2
− 1

b2
, 1 + 1

a2
, 1 + 1

b2
)− pB(p+ 1, 1 + 1

a2
)B(p+ 1, 1 + 1

b2
)
]

[(
B(p+ 1, 1 + 2

a2
)− pB2(p+ 1, 1 + 1

a2
)
)(

B(p+ 1, 1 + 2
b2

)− pB2(p+ 1, 1 + 1
b2

)
)] 1

2

.

These complete the proof.

Proof of Proposition 5.1: By definition of entropy function, we have,

He(X,Y ) = E [log(f(X,Y ))]

= −
∫ ∞

0

∫ ∞
0

log
(
Axa2−1yb2−1(1 + a1x

a2b1y
b2)−p−2

)
Axa2−1yb2−1(1 + a1x

a2b1y
b2)−p−2dxdy

= H1 +H2 +H3 −H4, (7.1)

where,

H1 = −A
∫ ∞

0

∫ ∞
0

log (A)xa2−1yb2−1(1 + a1x
a2b1y

b2)−p−2dxdy (7.2)
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= − log(A). (7.3)

For H2, we get,

H2 = −A
∫ ∞

0

∫ ∞
0

(a2 − 1) log (x)xa2−1yb2−1(1 + a1x
a2b1y

b2)−p−2dxdy

= −A
∫ ∞

0

yb2−1

∫ ∞
0

(a2 − 1) log (x)xa2−1(1 + a1x
a2b1y

b2)−p−2dxdy

= −A
∫ ∞

0

yb2−1H5(y)dy.

By some algebraic computation we get

H5(y) =
(1− a2)[p(ln a1 − ln(1 + b1y

b2) + ψ(p) + γ) + 1]

a1a2
2p(p+ 1)(1 + b1yb2)p+2

,

where,

ψ(p) =
∂ ln(Γ(p))

∂p
=

Γ′(p)

Γ(p)
; γ = lim

x→∞

(
n∑
i=1

1

i
− lnn

)
' 0.577.

Therfore, we obtain,

H2 = −A
∫ ∞

0

yb2−1 (1− a2)[p(ln a1 − ln(1 + b1y
b2) + ψ(p) + γ) + 1]

a1a2
2p(p+ 1)(1 + b1yb2)p+2

dy

=
(a2 − 1)

a2

∫ ∞
0

yb2−1

(1 + b1yb2)p+2
[p(ln a1 − ln(1 + b1y

b2) + ψ(p) + γ) + 1]dy

=
(a2 − 1)

a2

[
[p(ln a1 + ψ(p) + γ) + 1]

∫ ∞
0

yb2−1

(1 + b1yb2)p+2
dy

−p
∫ ∞

0

yb2−1 ln(1 + b1y
b2)

(1 + b1yb2)p+2
dy

]
.

=
(a2 − 1)

a2

[
[p(ln a1 + ψ(p) + γ) + 1]

(
Γ(p)

b1b2Γ(p+ 1)

)
− pH6

]
,

where,

H6 =

∫ ∞
0

yb2−1 ln(1 + b1y
b2)

(1 + b1yb2)p+2
dy

=
1

b1b2Γ(p+ 1)
[Γ(2)Γ(p− 1)heypergeom([1, 1, 2], [2, 2− p], 1)

+
π2 csc(π(p− 1))Γ(p+ 1)

p sin(πp)Γ(0)
].

In the last relation heypergeometric function is defined as below,

heypergeom([a1, a2, ...], [b1, b2, ...], z) =

∞∑
i=0

zi

i!
.

∏
j Γ(aj + i)/Γ(aj)∏
j Γ(bj + i)/Γ(bj)

.
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So, we get,

H2 =
(a2 − 1)

a2b1b2Γ(p+ 1)
[Γ(p)[p(ln a1 + ψ(p) + γ) + 1]

−Γ(p− 1)

∞∑
i=0

Γ2(i+ 1)

i!Γ(2 + i− p)
− π2 csc(π(p− 1))Γ(p+ 1)

p sin(πp)
]

=
a2 − 1

a2b1b2
[ln a1 + c1(p)], (7.4)

where,

c1(p) =

[
1

p
+ ψ(p) + γ − Γ(p− 1)

Γ(p+ 1)

∞∑
i=0

Γ2(i+ 1)

i!Γ(2 + i− p)
− π2 csc(π(p− 1))Γ(p+ 1)

p sin(πp)

]
.

Similarly for H3, we obtain

H3 =
b2 − 1

b2a1a2
[ln b1 + c1(p)]. (7.5)

Now, for H4, we have,

H4 = A(p+ 2)

∫ ∞
0

yb2−1

∫ ∞
0

log
(
1 + a1x

a2b1y
b2
)
xa2−1(1 + a1x

a2b1y
b2)−p−2dxdy

= A(p+ 2)

∫ ∞
0

yb2−1H7(y)dy,

where,

H7 =
1

a2b1b2Γ(p+ 2)
[(1 + b1y

b2)−p−1[log(1 + b1y
b2)Γ(p+ 1)

+Γ(p)

∞∑
i=0

Γ2(i+ 1)

i!Γ(1 + i− p)
+
π2 csc(π(p− 1))Γ(p+ 2)

(p+ 1) sin(πp)
]]

=
1

a1a2Γ(p+ 2)
[(1 + b1y

b2)−p−1[ln(1 + b1y
b2)Γ(p+ 1) + c′(p)],

We get,

H4(y) =
A(p+ 2)

a2b1b2(p+ 1)

∫ ∞
0

yb2−1(1 + b1y
b2)−p−1 log(1 + b1y

b2)dy

+
A(p+ 2)

a2b1b2Γ(p+ 2)
c′(p)

∫ ∞
0

yb2−1(1 + b1y
b2)−p−1dy

=
A(p+ 2)

a2b1b2(p+ 1)
H6 +

A(p+ 2)

a2b1b2Γ(p+ 2)
c′(p)

p

b1b2

= b1b2(p+ 2)H6 +
c′(p)

Γ(p)

=
p+ 2

Γ(p+ 1)

[
Γ(p− 1)

∞∑
i=0

Γ2(i+ 1)

i!Γ(2 + i− p)
− π2 csc(π(p− 1))Γ(p+ 1)

p sin(πp)

]
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+
c′(p)

Γ(p)
= c2(p). (7.6)

Now by substituting (7.2),(7.4), (7.5) and (7.6) in (7.1), we obtain,

He(X,Y ) =
a2 − 1

b1b2a2
[ln a1 + c1(p)] +

b2 − 1

a1a2b2
[ln b1 + c1(p)]− c2(p)− ln(A),

This complete the proof.

Proof of Proposition 5.3:
For computing the mutual information of GBL distribution, we can write

He(X) = −E(log(f(X)))

= −
∫ ∞

0

log(a1a2px
a2−1(1 + a1x

a2)−p−1)a1a2px
a2−1(1 + a1x

a2)−p−1dx

= −(K1 +K2 −K3). (7.7)

where,

K1 =

∫ ∞
0

log(a1a2p)a1a2px
a2−1(1 + a1x

a2)−p−1dx = log(a1a2p),

K2 =

∫ ∞
0

log(xa2−1)a1a2px
a2−1(1 + a1x

a2)−p−1dx

=
1− a2

a2
[ln a1 + ψ(p) + γ],

and

K2 =

∫ ∞
0

log((1 + a1x
a2)−p−1)a1a2px

a2−1(1 + a1x
a2)−p−1dx

=
p+ 1

p− 1

∞∑
i=1

Γ2(i+ 1)Γ(2− p)
i!Γ(2− i+ p)

+
(p+ 1)π2 csc(π(p− 1))

sin(πp)
.

So, we get,

He(X) = − log(pa1a2)− 1− a2

a2
[ln a1 + ψ(p) + γ]

+
p+ 1

p− 1

∞∑
i=1

Γ2(i+ 1)Γ(2− p)
i!Γ(2− i+ p)

+
(p+ 1)π2 csc(π(p− 1))

sin(πp)

= c4(p)− log(pa1a2)− 1− a2

a2
[ln a1 + ψ(p) + γ], (7.8)

where,

c4(p) =
p+ 1

p− 1

∞∑
i=1

Γ2(i+ 1)Γ(2− p)
i!Γ(2− i+ p)

+
(p+ 1)π2 csc(π(p− 1))

sin(πp)
− log(p).

Similarly for H(Y ), we obtain,

He(Y ) = c4(p)− log(pb1b2)− 1− b2
b2

[ln b1 + ψ(p) + γ]. (7.9)
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Substituting (7.7), (7.8) and (7.9) in (5.2), implies that

I(X,Y ) = c4(p)− log(pa1a2)− 1− a2

a2
[ln a1 + ψ(p) + γ]

+c4(p)− log(pb1b2)− 1− b2
b2

[ln b1 + ψ(p) + γ]

−
[
a2 − 1

b1b2a2
[ln a1 + c1(p)] +

b2 − 1

a1a2b2
[ln b1 + c1(p)]− c2(p)− ln(A)

]
= 2c4(p) + c3(p) +

1− a2

a2

[
ln a1

(
1− 1

b1b2

)
+ ψ(p) + γ − c1(p)

b1b2

]
+

1− b2
b2

[
ln b1

(
1− 1

a1a2

)
+ ψ(p) + γ − c1(p)

a1a2

]
− log(a1a2)− log(b1b2).

This complete the proof.

Proof of Proposition 5.5:
For computing the quadratic mutual information we rewrite it as below:

C(X,Y ) = log
C1C2

C2
3

= log(C1) + log(C2)− 2 log(C3). (7.10)

For the first term we have

C1 =

∫ ∞
0

∫ ∞
0

f2(x, y)dxdy

=

∫ ∞
0

∫ ∞
0

A2x2(a2−1)y2(b2−1)(1 + a1x
b2 + b1y

b2)−2(p+2)dxdy

= A2

∫ ∞
0

y2(b2−1)

∫ ∞
0

x2(a2−1)(1 + a1x
b2 + b1y

b2)−2(p+2)dxdy

= A2

∫ ∞
0

y2(b2−1)C4(y)dy,

where,

C4(y) =

∫ ∞
0

x2(a2−1)(1 + a1x
b2 + b1y

b2)−2(p+2)dx

=
1

a2
1a2Γ(2p+ 4)

[(
1 + b1y

b2
)−2p−2− 1

a2 a
1
a2
1 Γ(2p+ 2 +

1

a2
)Γ(2− 1

a2
)

]
= a

1
a2
−2

1 a−1
2

(
1 + b1y

b2
)−2p−2− 1

a2 B(2p+ 2 +
1

a2
, 2− 1

a2
).

We get,

C1 = A2a
1
a2
−2

1 a−1
2 B(2p+ 2 +

1

a2
, 2− 1

a2
)

∫ ∞
0

y2(b2−1)
(
1 + b1y

b2
)−2p−2− 1

a2 dy,

=

A2a
1
a2
1 Γ(2p+ 2 + 1

a2
)Γ(2− 1

a2
)

a2
1a2Γ(2p+ 4)

b−2+ 1
b2

1 Γ(2p+ 1
a2

+ 1
b2

)Γ(2− 1
b2

)

b2Γ(2p+ 2 + 1
a2

)


=

1

a2b2Γ(2p+ 4)

[
A2a

−2+ 1
a2

1 b
−2+ 1

b2
1 Γ(2p+

1

a2
+

1

b2
)Γ(2− 1

a2
)Γ(2− 1

b2
)

]
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= a
1
a2
1 b

1
b2
1 a2b2p

2(p+ 1)2B(2p+
1

a2
+

1

b2
, 2− 1

a2
, 2− 1

b2
). (7.11)

Moreover, for C2 we can write,

C2 =

∫ ∞
0

∫ ∞
0

f2
1 (x)f2

2 (y)dxdy =

∫ ∞
0

f2
1 (x)dx

∫ ∞
0

f2
2 (y)dy = C5C6,

where,

C5 =

∫ ∞
0

(
a1a2px

a2−1(1 + a1x
a2)−p−1

)2
dx

=
p2a

1
a2
1 a2Γ(2p+ 1

a2
)Γ(2− 1

a2
)

Γ(2p+ 2)

= p2a
1
a2
1 a2B(2p+

1

a2
, 2− 1

a2
).

Similarly for C6, we get,

C6 = p2b
1
b2
1 b2B(2p+

1

b2
, 2− 1

b2
).

Then, we have,

C2 = p4a
1
a2
1 a2b

1
b2
1 b2B(2p+

1

a2
, 2− 1

a2
)B(2p+

1

b2
, 2− 1

b2
). (7.12)

For C3, we have,

C3 =

∫ ∞
0

∫ ∞
0

f(x, y)f1(x)f2(y)dxdy

= K

∫ ∞
0

y2b2−2(1 + b1y
b2)−p−1

∫ ∞
0

x2a2−2(1 + a1x
a2)−p−1dxdy

= K

∫ ∞
0

y2b2−2(1 + b1y
b2)−p−1C7(y)dy,

where, K = a2
1a

2
2b

2
1b

2
2p

3(p+ 1) and via some calculations

C7(y) = a
1
a2
−2

1 a−1
2

[
B(2− 1

a2
, p+

1

a2
)

Γ(1− p− 1
a2

)

Γ(p+ 1)Γ(2− 1
a2

)
×

∞∑
i=1

(1 + b1y
b2)−p−

1
a2

+iΓ(p+ 1 + i)Γ(2− 1
a2

+ i)

i!Γ(1− p− 1
a2

+ i)
+

B(2− 1

a2
, p+

1

a2
)

Γ(1− p− 1
a2

)

Γ(p+ 1)Γ(2− 1
a2

)
×

∞∑
i=1

(1 + b1y
b2)−p−

1
a2

+iΓ(p+ 1 + i)Γ(2− 1
a2

+ i)

i!Γ(1− p− 1
a2

+ i)

 .
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Therefore,

C3 = a
1
a2
1 a2b

1
b2
1 b2p

3(p+ 1)

[
B(2− 1

a2
, p+

1

a2
)

Γ(1− p− 1
a2

)

Γ(p+ 1)Γ(2− 1
a2

)
×

∞∑
i=1

B(2p+ 2
b2

+ i− 1, 2− 1
b2

)Γ(p+ 1 + i)Γ(2− 1
a2

+ i)

i!Γ(1− p− 1
a2

+ i)
+

B(2p+
1

b2
+ i− 1, p+

1

a2
)

Γ(1− p− 1
a2

)

Γ(p+ 1)Γ(2− 1
a2

)
×

∞∑
i=1

B(2p+ 1 + i, 2− 1
b2

)Γ(p+ 1 + i)Γ(2− 1
a2

+ i)

i!Γ(1− p− 1
a2

+ i)

]
. (7.13)

Now by substituting (7.11), (7.12) and (7.13) in (7.10) the proof is completed.
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[24] Juri, A. and Wüthrich, M. Tail dependence from a distributional point of view. Extremes, 2003, 6, 213-246.
[25] Kotz, S. and Nadarajah, S. Local dependence function for the elliptically symmetric distributions. Sankhya, A, 2003, Vol.

65, No.1, 207-223
[26] Kotz, S., Balakrishnan, N. and Johnson, N.H. Continuous Multivariate Distributions. Wiley & Sons,2000.
[27] Nadarajah, S. Sums, products, and ratios for the bivariate Lomax distribution. Comput. Statist. and Data Analysis, 2005,

49, 109-129.
[28] Nadarajah, S., Mitov, K. and Kotz, S. Local dependence functions for extreme value distributions. J. App. Statist.,

2003,30(10), 1081- 1100.
[29] Nayak, T. K. Multivariate Lomax distribution: properties and usefulness in reliability theory.J. App. Probab., 1987,

24,170-177.
[30] Nelsen, R. B. An Introduction to Copula. Springer, 2006.
[31] Oakes, D. Bivariate survival models induced by frailties. J. Amer. Statist. Assoc. 1989, 84, 487-493.
[32] Peng, L. A practical way for estimating tail dependence functions. Statistica Sinica. 2010, 20, 365-378.
[33] Resnik, S. Heavy-tailed Phenomena, Probabilistics and Statistical Modeling. Springer, 2007.
[34] Ruiz-Rivas, C. and Cuadras, C. M. Inference properties of a one-parameter curved exponential family of distributions

with given marginals. J. Multivariate Anal., 1988, 27(2), 447-456.
[35] Sankaran, P.G. and Gupta, R.P. Charaterizations using local dependence function. Commun. Statist. Theory and Methods,

2004, Vol.33, No.12, 2959-2974.
[36] Schweizer, B. and Wolff, E.F. On nonparametric measures of dependence for random variables. Ann. Statist., 1981, 9,

879-885.
[37] Shaked, M. A family of concept of positive dependence for bivariate distributions. J. Amer. Statist. Assoc., 1977, 72,

642-650.
[38] Sklar, A. Functions de repartition on n-daimensions et leurs marges. Publications de lInstitut de Statistique de lUniversite

de Paris, 1959, 8, 229-231.
[39] Tavangar, M. and Asadi, M. On a new measure of linear local dependence. JIRSS., 2008, Vol.7, No.1-2. 35-56.
[40] Xie, Xi., Ma, Z. and Ceng, Z. Some association measures and their collapsibility. Statistica Sinica, 2008, 18, 1165-1183.
[41] Xu, D. and Principe, J. Learning from examples with quadratic mutual information. Proceedings of 1998 Workshop on

Neural Networks for Signal Processing VIII, 1998.
[42] Z-sheng, O., Hui, L. and Xiang-qun, Y. Modeling dependence based on mixture copulas and its application in risk

management. Appl. Math. J. Chinese Univ., 2009, 24(4): 393-401.

Darbose


	Introduction and Preliminaries 
	Some Concepts of Dependence
	Some measures of association 
	Kendall's  and Spearman's s
	 The Blomqvist medial coefficient
	Schweizer-Wolff's index of dependence
	Gini's gamma coefficient
	 Tail dependence coefficients
	Extremal dependence coefficients

	Local Dependence
	Clayton-Oakes Association Measure 
	Local dependence function 

	Some Information measures
	Entropy
	Mutual Information
	Quadratic Mutual Information

	Conclusion
	Appendices

