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ABSTRACT

Throughout this paper we consider the Poisson equations in two dimensions. By the collocation methods based on radial
basis functions and by exploiting some tools in literature: Perron-Frobenius theory and Weyl Tyrtyshnikov equal distri-
bution, we prove under suitable assumptions on the shape parameter appearing in the radial basis functions that, the
spectral radii of the collocation matrices grow as the size of the matrices, that is, lim

n→∞
ρn
dn

= constant where ρn and dn

are respectively the spectral radius and the size of the collocation matrix.
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1. Introduction

The purpose of this paper is to provide a deep study of the spectral radii of collocation matrices approx-
imating elliptic boundary value problems in two dimensional case

∂2u
∂x2 + ∂2u

∂y2 = f if (x, y) ∈ Ω = (0, 1)2

u(x, y) = g(x, y) for (x, y) ∈ ∂Ω
(1.1)

The chosen method for approximating is based on the radial basis functions. These types of approxima-
tions are often very useful for obtaining a numerical solution of certain PDEs. Under certain conditions,
the convergence is very fast (exponential in the number of grid points) when compared with Finite Dif-
ference or Finite Elements. The price that is paid is often an extreme ill-conditioning of the resulting
structured matrices. A main role for approximation space is played a radial function and this space is
made by translating a standard radial function with zero as its center. Some of the most commonly used
radial basis functions are:

• Direct Multiquadric (MQ): φ(t) = (t2 + c2)
1
2

• Inverse Multiquadric (IMQ): φ(t) = (t2 + c2)
−1
2

• Gaussian: φ(t) = e−
t2

c2
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where the parameter c is often called shape parameter and whose the role is to determine the accuracy
and the stability. Denoting by Ω an opened domain of model problem (1.1), ∂Ω its boundary and

Ω̂ = ∂Ω ∪ Ω an artificial domain greater than real domain Ω, h = 1
n+1 the maximal step size and,

{(xi, yj) = (ih, jh)}n+1
i,j=0 the selected points that are chosen out of the real domain Ω and are in the

artificial domain, we present an interesting method using the nodes that most of them are selected out
of the real domain and the others in the domain. Hence, the real collocation matrix is the sum of a
symmetric block Toeplitz matrices with symmetric Toeplitz blocks of size dn = (n + 2)2 generated by
unbounded function over Ω and a matrix of rank at most 4n+4, which collects the boundary conditions.
More in detail we are interested in fast solution methods, and especially in the asymptotic growth of the
spectral radii of the resulting matrices and in the global distribution results. For the latter point, we
need to think not to a single linear system but to a sequence of linear systems of increasing dimensions
d2n related to a finesse parameter, as usually occurs in the approximation of PDEs. Such kind of spectral
knowledge is then employed for suggesting appropriate O(d2nlogdn) preconditioners for krylov subspace
methods. A first important step for understanding the spectral behavior of the considered matrices
done in [1], where the link with Toeplitz sequences generated by a symbol was exploited. One of the
advantages of meshless methods based on radial functions with respect to others, is high decreased of
computational volume that arises when changing multi- dimensions to one dimension. Kansa [4] is the
first researcher that applied an approximation by radial basis functions (Pseudo interpolation) to PDEs.
The use of the globally supported radial functions, reaches to the large linear systems, poorly condition
number and full matrices.

The paper is organized as follows. In section 2, we recall some useful results due to the Perron-Frobenius
theory and to the Weyl Tyrtyshnikov equal distribution. Section 3 deals with the approximation of
Poisson equation (1.1) by the collocation systems. The approximation of collocation sequences by the
sequences of block Toeplitz matrices and the asymptotic behavior of the generating function of Toeplitz
sequences are established in section 4. Section 5 is reserved to the asymptotic growth of the spectral
radii of collocation matrices while section 6 deals with the general conclusions and future works.

2. Some Definitions and main results

The aim of this section is to recall some definitions and main results of the linear algebra which are
useful for the study of the collocation matrices.

2.1 Perron Frobenius theory

Throughout this subsection, we recall the Perron Frobenius theory.

Definition 2.1. Let A = (ajk) and B = (bjk) be two n× r matrices. Then, A ≥ B (A > B) if ajk ≥ bjk
(ajk > bjk) for all j = 1, 2, ..., n and k = 1, 2, ..., r.

Definition 2.2. A ∈ Rn×r is said to be nonnegative (positive) matrix if A ≥ 0 (A > 0).

Definition 2.3. A matrix A ∈ Rn×n possesses the Perron-Frobenius property if its dominant eigenvalue
λ1 is positive and the corresponding eigenvector x(1) is nonnegative.

Definition 2.4. A matrix A ∈ Rn×n possesses the strong Perron-Frobenius property if its dominant
eigenvalue λ1 is positive, simple (λ1 > |λj |, j = 2, 3, ..., n) and the corresponding eigenvector x(1) is
positive.

Definition 2.5. A matrix A ∈ Rn×n is said to be eventually positive (eventually nonnegative) if there
exists a positive integer k0 such that Ak > 0 (Ak ≥ 0) for all k ≥ k0.
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Theorem 2.1. [5, 7, 13]. For a symmetric matrix A ∈ Rn×n, the following properties are equivalent:

(i) A possesses the strong Perron-Frobenius property.

(ii) A is an eventually positive matrix.

Proof. (i⇒ ii) : λ1 = ρ(A) > |λ2| ≥ λ3| ≥ ... ≥ λn|, where λ1 is a simple eigenvalue with the eigenvector
x(1) ∈ Rn being positive. Choose the i-th column a(i) ∈ Rn of A.

Expand a(i): a(i) =
n∑
j=1

cjx
(j) (where {x(1), x(2), ..., x(n)} is an orthonormal basis of Rn).

cj = (a(i), x(j)), j = 1, 2, ..., n. So, c1 = (a(i), x(1)) = λ1x
(1)
i > 0. Apply power method: lim

k→∞
Aka(i) >

0⇒ Aka(i) > 0 ∀k > m. Choose m0 = min{m : Aka(i) > 0 ∀k ≥ m}, then, Ak > 0 ∀k ≥ k0 = m0 + 1.
So, A is an eventually positive matrix.
(ii ⇒ i): From the Perron-Frobenius theory of nonnegative matrices, the assumption Ak > 0 means
that the dominant eigenvalue of Ak is positive and the only one in the circle while the corresponding
eigenvector is positive. It is well known that the matrix A has as eigenvalues the k-th roots of those of
Ak with the same eigenvectors. Since this happens ∀k ≥ k0, A possesses the strong Perron-Frobenius
property.

Theorem 2.2. [5, 7, 13]. For a matrix A ∈ Rn×n the following properties are equivalent:

i. Both matrices A and AT possess the strong Perron-Frobenius property.

ii. A is an eventually positive matrix.

iii. AT is an eventually positive matrix.

Proof. (i ⇒ ii) : Let A = XDX−1 be the Jordan canonical form of the matrix A. We assume that the
eigenvalue λ1 = ρ(A) is the first diagonal entry of D. So the Jacobi canonical form can be written as

A = [x(1)|Xn,n−1]

[
λ1 0
0 Dn−1,n−1

] [
y(1)

T

Yn−1,n

]
(2.1)

where y(1)
T

and Yn−1,n are the first row and the matrix formed by the last n − 1 rows of X−1,
respectively. Since A possesses the strong Perron-Frobenius property, the eigenvector x(1) is positive.
From (2.1), the block form of AT is

AT = [y(1)|Y Tn,n−1]

[
λ1 0
0 DT

n−1,n−1

] [
x(1)

T

XT
n−1,n

]
(2.2)

The matrix DT
n−1,n−1 is the block diagonal matrix formed by the transpose of the Jordan blocks except

λ1. It is obvious that there exists a permutation matrix P ∈ R(n−1)×(n−1) such that the associated
permutation transformation on the matrix DT

n−1,n−1 transposes all the Jordan blocks.

Thus, Dn−1,n−1 = PTDT
n−1,n−1P and relation (2.2) takes the form:

AT = [y(1)|Y Tn,n−1]

[
1 0
0 P

] [
1 0
0 PT

] [
λ1 0
0 DT

n−1,n−1

] [
1 0
0 P

]
×
[

1 0
0 PT

] [
x(1)

T

XT
n−1,n

]
= [y(1)|Y

′T

n−1,n]

[
λ1 0
0 Dn−1,n−1

][
x(1)

T

X
′T

n,n−1

]
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where Y
′T

n−1,n = Y Tn,n−1P and X
′T

n,n−1 = PTXT
n−1,n. The last relation is the Jordan canonical form of

AT which means that y(1) is the eigenvector corresponding to the dominant eigenvalue λ1. Since AT

possesses the strong Perron-Frobenius property, y(1) is a positive vector or a negative one. Since y(1)
T

is
the first row of X−1, we have that (y(1), x(1)) = 1 implying that y(1) is a positive vector.
We return now to the Jordan canonical form (2.1) of A and form the power Ak.

Ak = [x(1)|Xn,n−1]

[
λk1 0
0 Dk

n−1,n−1

] [
y(1)

T

Yn−1,n

]
then

1

λk1
Ak = [x(1)|Xn,n−1]

[
1 0
0 1

λk
1
Dk
n−1,n−1

] [
y(1)

T

Yn−1,n

]
Since λ1 is the dominant eigenvalue, the only one of modulus λ1, we get that lim

k→∞
1
λk
1
Dk
n−1,n−1 = 0. Thus

lim
k→∞

1

λk1
Ak = x(1)y(1)

T

> 0.

The last relation means that there exists an integer k0 > 0 such that Ak > 0 for all k ≥ k0. So, A is an
eventually positive matrix and the first part of theorem is proved.
(ii⇔ iii) : Obvious from Definition 2.5.
(ii⇒ i): The proof is the same as that of Theorem 2.1, by considering that A and AT are both eventually
positive matrices.

Theorem 2.3. [2, 13]. Let A ∈ Rn×n be an eventually nonnegative matrix. Then, both matrices A and
AT possess the Perron-Frobenius property.

Proof. Analogous to the proof of the part (ii⇒ i) of Theorem 2.2.

Theorem 2.4. [5, 7, 13]. If AT ∈ Rn×n possesses the Perron-Frobenius property, then either

n∑
j=1

aij = ρ(A) ∀i = 1, 2, ..., n, (2.3)

or

min
1≤i≤n

 n∑
j=1

aij

 ≤ ρ(A) ≤ max
1≤i≤n

 n∑
j=1

aij

 (2.4)

Moreover, if AT possesses the strong Perron-Frobenius property, then both inequalities in (2.4) are strict.

Proof. Let (ρ(A), y) be the Perron-Frobenius eigenpair of the matrix AT and e be the vector of ones.
Then,

yTAe = yT



n∑
j=1

a1j

n∑
j=1

a2j

...
n∑
j=1

anj


=

n∑
i=1

yi n∑
j=1

aij

 ≤ max
1≤i≤n

 n∑
j=1

aij

 n∑
i=1

yi,
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yTAe =

n∑
i=1

yi n∑
j=1

aij

 ≥ min
1≤i≤n

 n∑
j=1

aij

 n∑
i=1

yi.

On the other hand, we get

yTAe = eTAT y = ρ(A)eT y = ρ(A)

n∑
j=1

yj .

Combining the relations above, we get our result. Obviously, equality holds if the row sums are equal. If
AT possesses the strong Perron-Frobenius property, then y > 0 and the inequalities become strict.

Corollary 2.5. [5, 7, 13]. If A ∈ Rn×n possesses the Perron-Frobenius property, then either

n∑
i=1

aij = ρ(A) ∀j = 1, 2, ..., n, (2.5)

or

min
1≤j≤n

(
n∑
i=1

aij

)
≤ ρ(A) ≤ max

1≤j≤n

(
n∑
i=1

aij

)
. (2.6)

Moreover, if A possesses the strong Perron-Frobenius property, then both inequalities in (2.6) are strict.

Theorem 2.6. [5, 7, 13]. If the matrices A,B ∈ Rn×n are such that A ≤ B, and both A and BT possess
the Perron-Frobenius property (or both AT and B possess the Perron-Frobenius property), then

ρ(A) ≤ ρ(B). (2.7)

Moreover, if the above matrices possess the strong Perron-Frobenius property and A 6= B then, the
inequality (2.7) becomes strict.

Proof. Let x, y ≥ 0 be the Perron right and left eigenvectors of A and B associated with the dominant
eigenvalues λA and λB , respectively. Then the following equalities hold

yTAx = λAy
Tx, yTBx = λBy

Tx.

Since A ≤ B, B = A+ C, where C ≥ 0. So,

λBy
Tx = yTBx = yT (A+ C)x = yTAx+ yTCx ≥ yTAx = λAy

Tx.

Assuming that yTx > 0, the above relations imply that λB ≥ λA. The case where yTx = 0 is covered by
using a continuity argument and perturbation technique. It is also obvious that the inequality becomes
strict in the case where the associated Perron-Frobenius properties are strong.

2.2 Weyl Tyrtyshnikov equal distribution

This part recalls some definitions on the distribution of matrix sequences. Furthermore, some tools to
evaluate the strength of the equal distribution and equal localization that are based upon estimes of the
singular values and involve the Frobenius norm. We denote by Ms(C) the linear space of all the square
complex matrices of dimension s × s, and we equippe this linear space by the Frobenius norm defined
by:

‖A‖F =

 s∑
j=1

σj(A)2

 1
2

=

 s∑
i=1

s∑
j=1

|aij |2
 1

2
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where A = [aij ]
s
i,j=1 ∈ Ms(C) and σj(A) denotes the j-th singular value of A. The first motivation

is ”practical” in the sense that, in the approximation of matrix sequences of increasing dimension in
the simpler space of matrices, this is the only Shatten p-norm whose calculation is computationally not
expensive. The second motivation is theoretical: actually the Frobenius norm is the only Shatten p-
norm induced by an inner product which makes the spaceMs(C) into a Hilbert space. More specifically,

setting < A,B >=trace(A?B), we deduce that ‖A‖F =< A,A >
1
2 .

Definition 2.6. Two real sequences {a(n)i }i≤dn , {b
(n)
i }i≤dn (dn < dn+1) are equally distributed (ED) if

and only if, for any real-valued continuous function F with bounded support, the following relation holds:

lim
n→∞

1

dn

dn∑
i=1

(
F (a

(n)
i )− F (b

(n)
i )
)

= 0. (2.8)

When the previous limit goes to zero as O(d−1n ) and F is Lipschitz continuous, we say that there is
strong equal distribution (SED). The same definition applies to the case of sequences of matrices

{An}n and {Bn}n of dimension dn × dn : in this case {a(n)i }i≤dn and {b(n)i }i≤dn are the sets of their
singular values (or eigenvalues if the involved matrices are Hermitian).

Notation {An}n 'D {Bn}n means that the matrix sequences {An}n and {Bn}n are equally dis-
tributed.

Definition 2.7. Two real sequences {a(n)i }i≤dn , {b
(n)
i }i≤dn (dn < dn+1) are equally localized (EL) if and

only if, for any nontrivial interval [α, β] (α < β), the following relation holds:

lim
n→∞

1

dn

(
card{i : a

(n)
i ∈ [α, β]} − card{i : b

(n)
i ∈ [α, β]}

)
= 0. (2.9)

When the previous limit goes to zero as O(d−1n ), we say that there is strong equal localization (SEL).
The same definition applies to the case of matrix sequences {An}n and {Bn}n of dimension dn × dn: in

this case {a(n)i }i≤dn and {b(n)i }i≤dn are the sets of their singular values (or eigenvalues if the involved
matrices are Hermitian)

Notation {An}n 'L {Bn}n means that the matrix sequences {An}n and {Bn}n are equally localized.

Proposition 2.7. [9, 11, 12]. Let {An}n and {Bn}n be two sequences of dn × dn matrices.

1. Assume that rank(An − Bn) = o(dn). Then the sequences {An}n and {Bn}n are equally localized
(EL) and equally distributed (ED).

2. If rank(An−Bn) = O(1). Then the sequences {An}n and {Bn}n are strongly equally localized (SEL)
and strongly equally distributed (SED).

Proof. 1. Let rn = rank(An − Bn). As a consequence of the Cauchy interlace theorem we have
σi−2rn(Bn) ≥ σi(An) ≥ σi+2rn(Bn) for i = 2rn + 1, ..., dn − 2rn. Therefore, for any interval [α, β]
we have

card{i : σi(An) ∈ [α, β]} = card{i : σi(Bn) ∈ [α, β]}+ en |en| ≤ 4rn. (2.10)

Consequently rn = o(dn) and then the sequences {An}n and {Bn}n are equally localized (EL). Hence,
the equal distribution (since the equal localization (EL) implies the equal distribution).
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2. If rn = O(1), then there is SEL by (2.10). For the proof of the last part, recall that F is Lipschitz
continuous with bounded support contained in M = [α, β]. Owing to its Lipschitzness, F is of bounded
variation (F ∈ BV ) too. Therefore it can be expressed as the sum of two monotone functions. By
linearity it is enough to focus our attention on the monotone functions restricted to M . Let S(An) and
S(Bn) be the sets of the singular values ordered nonincreasingly. Let q be an integer number and let
S(Bn, q) be such that (S(Bn, q))i = (S(Bn))i+q, i = 1, 2, ..., dn, where (S(Bn))j = min{α, (S(Bn))dn}
if j ≥ dn + 1 and (S(Bn))j = max{β, (S(Bn))1} if j ≤ 0. Now, supposing that rn = O(1) i.e., rn ≤ k
for some positive k, we find that S(Bn,−2k) ≥ S(Bn), S(An) ≥ S(Bn, 2k), where ” ≥ ” is intended
componentwise. Finally, by monotonicity we deduce that

∣∣∣∣∣
dn∑
i=1

(F (σi(An))− F (σi(Bn)))

∣∣∣∣∣ ≤
∣∣∣∣∣
dn∑
i=1

(F (σi(S(Bn,−2k)))− F (σi(S(Bn, 2k))))

∣∣∣∣∣
=

∣∣∣∣∣∣ 1

dn

∑
i=1−2k,...,2k,j=dn−2k+1,...,dn+2k

(F (σi(S(Bn)))− F (σj(Bn)))

∣∣∣∣∣∣
= O(d−1n )

and the proof is complete.

Theorem 2.8. [9, 11, 12]. Let {An}n and {Bn}n be two sequences of dn × dn matrices.

1. If ‖An−Bn−Dn‖2F = o(dn) and rank(Dn) = o(dn), then the sequences {An}n and {Bn}n are equally
distributed (ED).

2. When ‖An −Bn −Dn‖1 = O(1), with rank(Dn) = o(1), then {An}n and {Bn}n are strongly equally
distributed (SED).

3. Approximation of Poisson equations (1.1) by collocation systems

In the preceding section we have recalled some definitions and main results of the Perron-Frobenius theory
and of the Weyl Tyrtyshnikov equal distribution. Here, by the use of the radial function φ : Rn → R+,
we determine the collocation systems approximating the Poisson equations (1.1).

Discretizing Ω with grid points zjk = (xj , yk) = (hj, hk); j, k = 0, 1, ..., n + 1 and h = 1
n+1 , we define

an approximated solution of the Poisson equations (1.1) by setting

v(x, y) =

n+1∑
j=0

n+1∑
k=0

vjkφ ((x, y)− (xj , yk)) (3.1)

where

φ(x, y) =


√
x2 + y2 + c2 Multiquadric (MQ)

1√
x2+y2+c2

Inverse multiquadric (IMQ)

e−
x2+y2

c2 Gaussian

(3.2)
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The use of (1.1) and (3.1) yields



n+1∑
j=0

n+1∑
k=0

vjk

[
∂2φ
∂x2 + ∂2φ

∂y2

]
(x− xj , y − yk) = f(x, y) for (x, y) ∈ Ω

n+1∑
j=0

n+1∑
k=0

vjkφ(−xj , y − yk) = g(0, y) if y ∈ [0, 1]

n+1∑
j=0

n+1∑
k=0

vjkφ(1− xj , y − yk) = g(1, y) if y ∈ [0, 1]

n+1∑
j=0

n+1∑
k=0

vjkφ(x− xj ,−yk) = g(x, 0) if x ∈ (0, 1)

n+1∑
j=0

n+1∑
k=0

vjkφ(x− xj , 1− yk) = g(x, 1) if x ∈ (0, 1)

(3.3)

By straightforward computations, one has:

∂φ

∂x
(x, y) =


x(x2 + y2 + c2)−

1
2

−x(x2 + y2 + c2)−
3
2

−2x
c2 e

− x2+y2

c2 ,

∂φ

∂y
(x, y) =


y(x2 + y2 + c2)−

1
2

−y(x2 + y2 + c2)−
3
2

−2y
c2 e

− x2+y2

c2

then

∂2φ

∂x2
(x, y) =


(x2 + y2 + c2)−

1
2 − x2(x2 + y2 + c2)−

3
2

−(x2 + y2 + c2)−
3
2 + 3x2(x2 + y2 + c2)−

5
2

−2
c2 e
− x2+y2

c2 + 4x2

c2 e
− x2+y2

c2

∂2φ

∂y2
(x, y) =


(x2 + y2 + c2)−

1
2 − y2(x2 + y2 + c2)−

3
2

−(x2 + y2 + c2)−
3
2 + 3y2(x2 + y2 + c2)−

5
2

−2
c2 e
− x2+y2

c2 + 4y2

c2 e
− x2+y2

c2

then

∂2φ

∂x2
(x, y) +

∂2φ

∂y2
(x, y) =


(x2 + y2 + 2c2)(x2 + y2 + c2)−

3
2 (MQ)

(x2 + y2 − 2c2)(x2 + y2 + c2)−
5
2 (IMQ)

4
c2 ((x2 + y2)− c2)e−

x2+y2

c2 (Gaussian)

(3.4)

The linear system associated with (3.3) is given by:



(a)
n+1∑
l,p=0

vlp

[
∂2φ
∂x2 + ∂2φ

∂y2

]
(xj − xl, yk − yp) = f(xj , yk) : j, k = 1, ..., n

(b)
n+1∑
l,p=0

vlpφ(−xl, yj − yp) = g(0, yj) : j = 0, 1, ..., n+ 1

(c)
n+1∑
l,p=0

vlpφ(1− xl, yj − yp) = g(1, yj) j = 0, 1, ..., n+ 1

(d)
n+1∑
l,p=0

vlpφ(xj − xl,−yp) = g(xj , 0) : j = 1, ..., n

(e)
n+1∑
l,p=0

vlpφ(xj − xl, 1− yp) = g(xj , 1) : j = 1, ..., n

(3.5)
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Setting g = c
h , then

cj−lk−p =

[
∂2φ

∂x2
+
∂2φ

∂y2

]
(xj − xl, yk − yp)

=


1√

(xj−xl)2+(yk−yp)2+c2
+ c2

(xj−xl)2+(yk−yp)2+c2)
3
2

(MQ)

(xj−xl)
2+(yk−yp)2−2c2

((xj−xl)2+(yk−yp)2+c2)
5
2

(IMQ)

4
c2 ((xj − xl)2 + (yk − yp)2 − c2)e−

(xj−xl)
2+(yk−yp)2

c2 (Gaussian)

=


1
h

1√
(j−l)2+(k−p)2+g2

+ 1
h

g2

[(j−l)2+(k−p)2+g2]
3
2

(MQ)

1
h3

(j−l)2+(k−p)2−2g2

[(j−l)2+(k−p)2+g2]
5
2

(IMQ)

4
h2g4 [(j − l)2 + (k − p)2 − g2]e

− (j−l)2+(k−p)2

g2 (Gaussian)

(3.6)

and

φj−lk−p = φ(xj − xl, yk − yp) =


h[(j − l)2 + (k − p)2 + g2]

1
2 (MQ)

1
h ((j − l)2 + (k − p)2 + g2)−

1
2 (IMQ)

e
− (j−l)2+(k−p)2

g2 (Gaussian)

(3.7)

It follows from (a), (b), (c), (d), and (e) that

n+1∑
l,p=0

cj−lk−pvlp = fjk j, k = 1, 2, ..., n (3.8)

n+1∑
l,p=0

φlj−pvlp = g(0, yj) = g0j j = 0, 1, ..., n+ 1 (3.9)

n+1∑
l,p=0

φn+1−l
j−p vlp = g(1, yj) = g1j j = 0, 1, ..., n+ 1 (3.10)

n+1∑
l,p=0

φj−lp vlp = g(xj , 0) = gj0 j = 1, ..., n (3.11)

n+1∑
l,p=0

φj−ln+1−pvlp = g(xj , 1) = gj1 j = 1, ..., n (3.12)

When exploiting the relations (3.8), (3.9), (3.10), (3.11), and (3.12) above we deduce the following linear
system
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
A

(n+2)
0−0 A

(n+2)
0−1 . . . A

(n+2)
0−n A

(n+2)
0−n−1

A
(n+2)
1−0 A

(n+2)
1−1 . . . . . . A

(n+2)
1−n−1

...
...

. . .
...

...

A
(n+2)
n−0 A

(n+2)
n−1 . . . A

(n+2)
n−n A

(n+2)
n−n−1

A
(n+2)
n+1−0 A

(n+2)
n+1−1 . . . A

(n+2)
n+1−n A

(n+2)
n+1−n−1




v(0)

v(1)

...
v(n)

v(n+1)

 =


f (0)

f (1)

...
f (n)

f (n+1)


i.e.,

Adnv = f̃ (3.13)

where dn = (n+ 2)2. For j = 0, 1, ..., n+ 1

A
(n+2)
0−j = [φjl−p]

n+1
l,p=0; A

(n+2)
n+1−j = [φ

(n+1)−j
l−p ]n+1

l,p=0 (3.14)

for j = 1, 2, ..., n and l = 0, 1, ..., n+ 1

A
(n+2)
j−l =


φj−l0 φj−l1 . . . φj−ln φj−ln+1

cj−l1 cj−l0 . . . cj−ln−1 cj−ln
...

...
. . .

...
...

cj−ln cj−ln−1 . . . c
j−l
0 cj−l1

φj−ln+1 φ
j−l
n . . . φj−l1 φj−l0

 , (3.15)

for k = 0, 1, ..., n+ 1,

v(k) = (vk,0, vk,1, ..., vk,n+1)T ; f (0) = (g0,0, g0,1, ..., g0,n+1)T ; f (n+1) = (gn+1,0, ..., gn+1,n+1)T

and for p = 1, 2, ..., n,

f (p) = (gp,0, fp,1, ..., fp,n, gp,n+1)T .

The relation given by (3.13) is called the radial basis functions collocation systems approximating the
elliptic boundary value problems (1.1) and the associated two level matrices Adn are the collocation
matrices. These matrices are highly structured, full and near Toeplitz [3].

4. Approximation of the collocation matrices by Toeplitz sequences

This section is devoted to the approximation of collocation sequences by Toeplitz and to the asymptotic
behavior of the generating function of these Toeplitz sequences.

4.1 Approximation of collocation sequences

In [1], the authors provided explicit asymptotic estimates, as function of c/h, c being the shape parameter,
h being the step size, to the condition number µ(Tn) of the Toeplitz matrix Tn related to the approximated
one-dimensional model problem

u
′′
(x) = f(x) x ∈ (0, 1)

u(0) = u0, u(1) = u1
(4.1)
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with the collocation technique over a grid of equally spaced points and based on the MQ, IMQ, and
Gaussian radial functions, respectively. Here we are interested by the approximation of two-dimensional
model problem (1.1).

In reference to section 3 and for l = 0, 1, ..., n+ 1; if we set

∆
(n+2)
0−l = [φlk−p − clk−p]n+1

k,p=0 and ∆
(n+2)
n+1−l = [φn+1−l

k−p − cn+1−l
k−p ]n+1

k,p=0 (4.2)

then the matrices A
(n+2)
0−l , A

(n+2)
n+1−l, ∆

(n+2)
0−l , and ∆

(n+2)
n+1−l are symmetric of rank at most n + 2 and the

matrices T
(n+2)
n+1−l and T

(n+2)
n+1−l defined respectively by

T
(n+2)
0−l = A

(n+2)
0−l −∆

(n+2)
0−l and T

(n+2)
n+1−l = A

(n+2)
n+1−l −∆

(n+2)
n+1−l (4.3)

are symmetric Toeplitz matrices generated by the function

s(x, y) = c00 + 2

∞∑
k=1

c0k[cos(2kπx) + cos(2kπy)] + 4

∞∑
k=1

∞∑
j=1

ckj cos(2jπx) cos(2kπy) ∀(x, y) ∈ Ω

(4.4)

Next, for j = 1, 2, ..., n and l = 0, 1, ..., n+ 1, if we set

∆
(n+2)
j−l =


φj−l0 − cj−l0 . . . φj−ln+1 − c

j−l
n+1

0 . . . 0
...

...
0 . . . 0

φj−ln+1 − c
j−l
n+1 . . . φ

j−l
0 − cj−l0

 and T
(n+2)
j−l = [cj−lk−p]

n+1
k,p=0 (4.5)

we deduce the following splitting

A
(n+2)
j−l = T

(n+2)
j−l + ∆

(n+2)
j−l (4.6)

It follows from (4.5) that each matrix ∆
(n+2)
j−l is of rank equal to 2 and according to relation (4.6), it

is obvious that rank(A
(n+2)
j−l − T (n+2)

j−l ) = o(n+ 2). Exploiting Proposition 2.7 it follows that the matrix

sequences {A(n+2)
j−l }n and {T (n+2)

j−l }n are equally distributed (ED) and equally localized (EL), i.e.,

{A(n+2)
j−l }n 'L.D {T

(n+2)
j−l }n (4.7)

When constructing the two-level matrices Adn and ∆dn of the following way:

Tdn = [T
(n+2)
j−l ]n+1

j,l=0 and ∆dn = [∆
(n+2)
j−l ]n+1

j,l=0 (4.8)
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we deduce from relations (3.14), (4.2), (4.3), (4.4), (4.5), and (4.8) that

Adn = Tdn + ∆dn (4.9)

where ∆dn is a matrix of order dn = (n+ 2)2 and whose the rank satisfies the inequality

rank(∆dn) ≤ 4(n+ 1) = o(dn) (4.10)

Next, Tdn is a symmetric block Toeplitz matrices with symmetric Toeplitz blocks generated by the
function s(x, y) defined in (4.4). Using relations (4.9) and (4.10) we have that

Adn − Tdn = ∆dn

rank(∆dn) = o(dn)
(4.11)

Exploiting again Proposition 2.7 it follows that the matrix sequences {Adn}n and {Tdn}n are equally
distributed (ED) and equally localized (EL), i.e.,

{Adn}n 'L.D {Tdn}n (4.12)

so, the Toeplitz matrices Tdn are good approximations for the collocation matrices Adn which can also
be seen as good preconditioners for Adn .

4.2 Asymptotic behavior of the generating function s(x, y)

In this subsection we study the asymptotic behavior of the generating function s(x, y) of two-level block
Toeplitz matrices Tdn := Tdn(s) in the Multiquadric, Inverse Multiquadric and Gaussian cases. First, we
recall the following main result for the integrable functions.

Proposition 4.1. [8]. Let {Sn}n be a sequence of quasi-uniformly distributed grid points x
(n)
i on I =

[−π, π] Then, for any bounded and Riemann integrable function g, we have

n−1∑
i=0

g(x
(n)
i ) =

n

2π

∫ π

−π
g + o(n).

If the distribution is uniform and if g is bounded and Lipschitz continuous except, at most, for a finite
number of discontinuity points, then

n−1∑
i=0

g(x
(n)
i ) =

n

2π

∫ π

−π
g +O(1).

Armed with Proposition 4.1, the following Lemma holds true

Lemma 4.2. The real-valued integrable function s(x, y) is even and unbounded over the compact domain

Ω̂ = [−1, 1]2.
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Proof. In this proof, we treat separately the cases: Multiquadric, Inverse Multiquadric and Gaussian.
For j, k = 0, 1, ..., n+ 1; let us recall that: zjk = (xj , yk), h = 1

n+1 and g = c
h .

• Multiquadric case

ckj =
1

h
(j2 + k2 + g2)−

1
2 +

g2

h
(j2 + k2 + g2)−

3
2 = c

(1)
j,k + c

(2)
j,k

where

c
(1)
j,k =

1

h
(j2 + k2 + g2)−

1
2 and c

(2)
j,k =

g2

h
(j2 + k2 + g2)−

3
2

Since the Fourier coefficients cjk are nonnegative, to study the behavior of the series
∞∑
k=1

∞∑
j=1

ckj , we study

the behavior of the sequence
n+1∑
k=1

c
(2)
0,k and we conclude by exploiting the inequality

n+1∑
k=1

c
(2)
0,k ≤ c

0
0 + 4

n+1∑
k=1

c
(2)
0,k +

n+1∑
k=1

n+1∑
j=1

ckj

 (4.13)

Indeed:

c
(2)
0,k =

1

h

g2

(k2 + g2)
3
2

=
g3

c(n+ 1)3
1

[( k
n+1 )2 + c2]

3
2

=
c2

[c2 + y2k]
3
2

Since the function y 7→ c2

(c2+y2)
3
2

is positive and continuous on the interval [0, 1], it is Riemann integrable,

so

0 <

∫ 1

0

c2

(c2 + y2)
3
2

dy = α0 <∞,

and according to Proposition 4.1, we have that

lim
n→∞

1

n+ 1

n+1∑
k=1

c2

(c2 + y2k)
3
2

=

∫ 1

0

c2

(c2 + y2)
3
2

dy = α0.

Then, for ε = α0/2, ∃Nε ∈ N such that

n > Nε ⇒

∣∣∣∣∣ 1

n+ 1

n+1∑
k=1

c2

(c2 + y2k)
3
2

− α0

∣∣∣∣∣ < α0

2

⇒ α0

2
(n+ 1) <

n+1∑
k=1

c2

(c2 + y2k)
3
2

<
3α0

2
(n+ 1)

Then,

n+1∑
k=1

c
(2)
0,k ∼ n+ 1
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so

lim
n→∞

n+1∑
k=1

c
(2)
0,k =∞ (4.14)

From (4.4), (4.13), and (4.14) we obtain

lim
(x,y)→(0,0)

s(x, y) =∞, lim
(x,y)→(0,1)

s(x, y) =∞

and

lim
(x,y)→(1,0)

s(x, y) =∞, lim
(x,y)→(1,1)

s(x, y) =∞

Hence, s(x, y) is unbounded over Ω̂. Since the Toeplitz matrix Tdn(s) is symmetric, we deduce that
the function s(x, y) is even.

• Inverse Multiquadric case

ckj =
1

h3
j2 + k2 − 2g2

(j2 + k2 + g2)
5
2

,

then

c0k =
1

h3
k2 − 2g2

(k2 + g2)
5
2

=
−2c2 + ( k

n+1 )2

[c2 + ( k
n+1 )2]

5
2

=
−2c2 + y2k
(c2 + y2k)

5
2

One shows as in Multiquadic case the following relations

n+1∑
k=1

c0k ∼ −(n+ 1) and lim
n→∞

n+1∑
k=1

c0k = −∞ (4.15)

Since the Fourier coefficients ckj of s(x, y) are all nonpositive, we have

c00 + 4

n+1∑
k=1

c0k +

n+1∑
k=1

n+1∑
j=1

cjk

 ≤ n+1∑
k=1

c0k. (4.16)

From (4.4), (4.15), and (4.16), it follows that

lim
(x,y)→(0,0)

s(x, y) = −∞, lim
(x,y)→(0,1)

s(x, y) = −∞

and

lim
(x,y)→(1,0)

s(x, y) = −∞, lim
(x,y)→(1,1)

s(x, y) = −∞

Hence, s(x, y) is unbounded over the domain Ω̂ and because Tdn(s) is symmetric, we deduce that the
function s(x, y) is even.
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• Gaussian
Also in this case, one shows as in Inverse Multiquadric case the following limits

lim
(x,y)→(0,0)

s(x, y) = −∞, lim
(x,y)→(0,1)

s(x, y) = −∞

and

lim
(x,y)→(1,0)

s(x, y) = −∞, lim
(x,y)→(1,1)

s(x, y) = −∞

Since the Toeplitz matrix Tdn(s) is symmetric, we conclude that the generating function s(x, y) is even.

Remark 4.1. The solution of the system of linear equations T
dn

(s)v = f̃ provides an approximate

solution of the collocation system Adnv = f̃ which is also an approximate solution of the elliptic boundary
value problems (1.1). Furthermore, the matrices Tdn(s) are ill-conditioned for any value of n. More
precisely, the Euclidean condition number of Tdn(s), as a function of the dimensions, is unbounded:

lim
n→∞

k2(Tdn(s)) =∞. (4.17)

Hence, unless some preconditioning are used, all classic iterative methods are very slow.

5. Asymptotic growth of the spectral radii of the collocation matrices

Throughout this section we prove that the spectral radii ρ(Adn) of the collocation matrices Adn grow as
dn when the shape parameter ”c” is strictly greater than

√
2. The proof of this result will be done in

the cases: Multiquadric, Inverse Multiquadric and Gaussian.

Lemma 5.1. If c >
√

2 then, the inequalities (5.1), (5.2), and (5.3) hold true

ρ(−Tdn) = ρ(Tdn) ≤ ρ(Adn) ≤ ρ(Tdn) + ρ(∆dn) (5.1)

In Multiquadric case

min
0≤j,k≤n+1

n+1∑
l=0

n+1∑
p=0

cj−lk−p ≤ ρ(Tdn) ≤ max
0≤j,k≤n+1

n+1∑
l=0

n+1∑
p=0

cj−lk−p (5.2)

and in Inverse Multiquadric and Gaussian cases

min
0≤j,k≤n+1

n+1∑
l=0

n+1∑
p=0

(−cj−lk−p) ≤ ρ(−Tdn) ≤ max
0≤j,k≤n+1

n+1∑
l=0

n+1∑
p=0

(−cj−lk−p) (5.3)

Proof. According to (4.9)

Adn = Tdn + ∆dn
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then

(Adn)2 = (Tdn)2 + Tdn∆dn + ∆dnTdn + (∆dn)2 (5.4)

since

Tdn = [T
(n+2)
j−l ]n+1

j,l=0 and ∆dn = [∆
(n+2)
j−l ]n+1

j,l=0

then

(Tdn)2 =

[
n+1∑
s=0

T
(n+2)
j−s T

(n+2)
s−l

]n+1

j,l=0

; (∆dn)2 =

[
n+1∑
s=0

∆
(n+2)
j−s ∆

(n+2)
s−l

]n+1

j,l=0

Tdn∆dn =

[
n+1∑
s=0

T
(n+2)
j−s ∆

(n+2)
s−l

]n+1

j,l=0

; ∆dnTdn =

[
n+1∑
s=0

∆
(n+2)
j−s T

(n+2)
s−l

]n+1

j,l=0

then

(Adn)2 =

[
n+1∑
s=0

{
T

(n+2)
j−s T

(n+2)
s−l + T

(n+2)
j−s ∆

(n+2)
s−l + ∆

(n+2)
j−s T

(n+2)
s−l + ∆

(n+2)
j−s ∆

(n+2)
s−l

}]n+1

j,l=0

(5.5)

For k, p = 0, 1, ..., n+ 1

(T
(n+2)
j−s T

(n+2)
s−l )k,p =

n+1∑
q=0

(T
(n+2)
j−s )kq(T

(n+2)
s−l )qp =

n+1∑
q=0

cj−sk−qc
s−l
q−p, (5.6)

(T
(n+2)
j−s ∆

(n+2)
s−l )k,p =

n+1∑
q=0

(T
(n+2)
j−s )kq(∆

(n+2)
s−l )qp =

n+1∑
q=0

cj−sk−q(φ
s−l
q−p − cs−lq−p), (5.7)

(∆
(n+2)
j−s T

(n+2)
s−l )k,p =

n+1∑
q=0

(∆
(n+2)
j−s )kq(T

(n+2)
s−l )qp =

n+1∑
q=0

(φj−sk−q − c
j−s
k−q)c

s−l
q−p, (5.8)

(∆
(n+2)
j−s ∆

(n+2)
s−l )k,p =

n+1∑
q=0

(∆
(n+2)
j−s )kq(∆

(n+2)
s−l )qp =

n+1∑
q=0

(φj−sk−q − c
j−s
k−q)(φ

s−l
q−p − cs−lq−p). (5.9)

From (5.5), (5.6), (5.7), (5.8), (5.9), we have that (Adn)2 =
[
[aj,lk,p]

n+1
k,p=0

]n+1

j,l=0
where for j, l = 0, 1, ..., n+1

and k, p = 0, 1, ..., n+ 1

aj,lk,p =

n+1∑
s=0

n+1∑
q=0

{cj−sk−qc
s−l
q−p + Cj−sk−q(φ

s−l
q−p − cs−lq−p) + (φj−sk−q − c

j−s
k−q)c

s−l
q−p
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+ (φj−sk−q − c
j−s
k−q)(φ

s−l
q−p − cs−lq−p)}

=

n+1∑
s=0

n+1∑
q=0

φj−sk−qφ
s−l
q−p > 0

since φi,rn,m > 0 ∀i, n,m, r = 0, 1, ..., n+ 1. Then

(Adn)2 > 0 (5.10)

On the other side, Tdn =
[
[cj−lk−p]

n+1
k,p=0

]n+1

j,l=0
≥ 0 (in Multiquadric case) and −Tdn =

[
[−cj−lk−p]

n+1
k,p=0

]n+1

j,l=0
≥

0 since −cj−lk−p ≥ 0 (in fact c >
√

2) ∀i, j, k, p = 0, 1, ..., n+ 1 (Inverse Multiquadric and Gaussian cases).

Then (Tdn)2 = (−Tdn)2 ≥ 0. All the coefficients of the matrices (Adn)2 and (Tdn)2 are nonnegative, then
both(Adn)2 and (Tdn)2 are nonnegative matrices, soAdn and Tdn are eventually nonnegative matrices.
According to Theorem 2.3, the matrices Adn , A

T
dn
, Tdn and TTdn possess the Perron-Frobenius property.

Since Adn − Tdn = ∆dn ≥ 0 and ‖Adn‖2 ≤ ‖Tdn‖2 + ‖∆dn‖2, it follows from Theorem 2.6 that

ρ(−Tdn) = ρ(Tdn) ≤ ρ(Adn) ≤ ρ(Tdn) + ρ(∆dn)

and according to Theorem 2.4, we have that

• In Multiquadric case

min
0≤j,k≤n+1

n+1∑
l=0

n+1∑
p=0

cj−lk−p ≤ ρ(Tdn) ≤ max
0≤j,k≤n+1

n+1∑
l=0

n+1∑
p=0

cj−lk−p

and
• Inverse Multiquadric and Gaussian cases

min
0≤j,k≤n+1

n+1∑
l=0

n+1∑
p=0

(−cj−lk−p) ≤ ρ(−Tdn) ≤ max
0≤j,k≤n+1

n+1∑
l=0

n+1∑
p=0

(−cj−lk−p)

Lemma 5.2. If c >
√

2, then the spectral radius ρ(Tdn) of the Toeplitz matrix Tdn grows as dn = (n+2)2.

Proof. We treat separately the cases: Multiquadric, Inverse Multiquadric and Gaussian.

• Multiquadric
For j, l, p, k = 0, 1, ..., n+ 1

cj−lk−p =
1

h

1√
(j − l)2 + (k − p)2 + g2

+
1

h

g2

[(j − l)2 + (k − p)2 + g2]
3
2

Then

n+1∑
l=0

n+1∑
p=0

cj−lk−p =
1

h

n+1∑
l=0

n+1∑
p=0

(
1√

(j − l)2 + (k − p)2 + g2
+

g2

[(j − l)2 + (k − p)2 + g2]
3
2

)
(5.11)
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First of all, for j − l ∈ [−n − 1, n + 1] fixed, let us study the functions: fn,j−l(x) = 1

(g2+x2+(j−l)2)
1
2

and gn,j−l(x) = g2

(g2+x2+(j−l)2)
3
2

over the interval [−n − 1, n + 1]. Since fn,j−l and gn,j−l are even

functions, the study of these functions reduces on [0, n+ 1]. Because f
′

n,j−l(x) = −x
(g2+x2+(j−l)2)

3
2
< 0and

g
′

n,j−l(x) = −3g2x
(g2+x2+(j−l)2)

5
2
< 0 for x ∈ (0, n + 1], then fn,j−l and gn,j−l are decreasing functions on

[0, n+ 1]. So, it follows that,

min
0≤j,k≤n+1

n+1∑
l=0

n+1∑
p=0

cj−lk−p =
1

h

n+1∑
l=0

n+1∑
p=0

(
1√

l2 + p2 + g2
+

g2

[l2 + p2 + g2]
3
2

)
(5.12)

For l, p = 0, 1, ..., n+ 1,

1

n+ 1

1√
2 + c2

≤ 1√
l2 + p2 + g2

and
1

n+ 1

c2

(2 + c2)
3
2

≤ g2

(l2 + p2 + g2)
3
2

then

(
1√

2 + c2
+

c2

(2 + c2)
3
2

)
(n+ 2)2 ≤ 1

h

n+1∑
l=0

n+1∑
p=0

(
1√

l2 + p2 + g2
+

g2

[l2 + p2 + g2]
3
2

)
(5.13)

On the other side, one easily shows that

max
0≤j,k≤n+1

n+1∑
l=0

n+1∑
p=0

cj−lk−p ≤ 4

[n2 ]+1∑
l=0

[n2 ]+1∑
p=0

clp

= 4

c00 + 2

[n2 ]+1∑
p=1

c0p +

[n2 ]+1∑
l=1

[n2 ]+1∑
p=1

clp


≤
(α)

4

[
2

c
+

2

c
(n+ 2) +

1

2c
(n+ 2)2

]
≤ 18

c
(n+ 2)2 (5.14)

(α) follows from clp ≤ 2
c ∀l, p = 0, 1, ..., [n2 ] + 1 and [n2 ] + 1 ≤ n+2

2 . It follows from (5.2), (5.12), (5.13),
and (5.14) that the spectral radius of the matrix Tdn grows as dn = (n+ 2)2.

• Inverse Multiquadric
For j, k = 0, 1, ..., n+ 1,

n+1∑
l=0

n+1∑
p=0

(−cj−lk−p) =
1

h3

n+1∑
l=0

n+1∑
p=0

(
2g2 − (j − l)2 − (k − p)2

[(j − l)2 + (k − p)2 + g2]
5
2

)
(5.15)

For j−l ∈ [−n−1, n+1] fixed, the function fn,j−l(x) = −x2−(j−l)2+2g2

[x2+(j−l)2+g2]
5
2

defined on the interval [−n−1, n+

1] is even, then the study of fn,j−l reduces on [0, n+1]. Because f
′

n,j−l(x) =
−x(g2+x2+(j−l)2)

3
2 (12g2−3x2−3(j−l)2)

(g2+x2+(j−l)2)5 <
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0 for x ∈ (0, n+ 1] (since c >
√

2), then fn,j−l is decreasing over [0,n+1]. Hence

min
0≤j,k≤n+1

n+1∑
l=0

n+1∑
p=0

(−cj−lk−p) = min
0≤j≤n+1

n+1∑
l=0

n+1∑
p=0

(−cj−lp ) (5.16)

Also, the function gn,p(x) = −x2−p2+2g2

[x2+p2+g2]
5
2

is a decreasing function over the interval [0,n+1]. So, we deduce

that

min
0≤j≤n+1

n+1∑
l=0

n+1∑
p=0

(−cj−lp ) =

n+1∑
l=0

n+1∑
p=0

(−clp) (5.17)

According to (5.16), (5.17), it follows that

min
0≤j,k≤n+1

n+1∑
l=0

n+1∑
p=0

(−cj−lk−p) =

n+1∑
l=0

n+1∑
p=0

(−clp) (5.18)

Because, min
l
{min

p
(−clp)} = 1

h3

2g2−2(n+1)2

(g2+2(n+1)2)
5
2

= 1
h3

2
(n+1)3

c2−1
(c2+2)

5
2

, then for l, p = 0, 1, ..., n+ 1,

1

h3
2

(n+ 1)3
c2 − 1

(c2 + 2)
5
2

≤ 1

h3
2g2 − l2 − p2

(g2 + l2 + p2)
5
2

= −clp

so,

2

(
c2 − 1

(c2 + 2)
5
2

)
(n+ 2)2 ≤

n+1∑
l=0

n+1∑
p=0

(−clp) (5.19)

Next,

max
0≤j,k≤n+1

n+1∑
l=0

n+1∑
p=0

(−cj−lk−p) ≤ 4

[n2 ]+1∑
l=0

[n2 ]+1∑
p=0

(−clp)

= 4

−c00 + 2

[n2 ]+1∑
p=1

(−c0p) +

[n2 ]+1∑
l=1

[n2 ]+1∑
p=1

(−clp)


≤
(β)

4

[
2

c3
+

2

c3
(n+ 2) +

1

2c3
(n+ 2)2

]
≤ 18

c3
(n+ 2)2 (5.20)

(β) follows from −clp ≤ 2
c3 ∀l, p = 0, 1, ..., [n2 ] + 1. It follows from (5.3), (5.18), (5.19), and (5.20) that

the spectral radius ρ(Tdn) of Tdn grows as (n+ 2)2.

• Gaussian
One shows as in Inverse Multiquadric case by considering the function fn,j−l(x) = [g2 − (j − l)2 −

x2]e
− (j−l)2+x2

g2 that the spectral radius ρ(Tdn) of the collocation matrix Tdn grows as dn = (n+ 2)2.
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Lemma 5.3. If c >
√

2, then the inequalities (5.21) hold true

ρ(∆dn) ≤ 2 max
0≤j,k≤n+1

n+1∑
l=0

n+1∑
p=0

φj−lk−p ≤ 2
√

2 c dn (5.21)

Proof. Since c >
√

2 then all the coefficients of ∆dn are nonnegative, so ∆dn is an eventually nonnegative
matrix, according to Theorem 2.3 both matrices ∆dn and (∆dn)T possess the Perron-Frobenius property.
It follows from Theorem 2.4 that

ρ(∆dn) ≤ max
0≤j,k≤n+1

n+1∑
l=0

n+1∑
p=0

(φj−lk−p − c
j−l
k−p)

Obviously

max
0≤j,k≤n+1

n+1∑
l=0

n+1∑
p=0

(φj−lk−p − c
j−l
k−p) ≤ 2 max

0≤j,k≤n+1

n+1∑
l=0

n+1∑
p=0

φj−lk−p ≤

 2
√

2 c dn (MQ)
2
c dn (IMQ)
2dn (Gaussian)

Lemma 5.4. If c >
√

2, then the spectral radius ρ(Adn) of the collocation matrix Adn grows as dn =
(n+ 2)2.

Proof. The proof follows from (5.1), Lemmas 5.2 and 5.3.

6. Conclusion and future works

In this paper we have studied in detail the asymptotic behavior of the generating function of the block
Toeplitz matrices which are equally distributed and equally localized as the collocation matrices approx-
imating elliptic boundary value problems (1.1) and we have provided a deep analysis of the asymptotic
growth of the spectral radii of collocation matrices. Our future researches will consist to solve the precon-
ditioned collocation systems by the quasi minimal residual (QMR) method with preconditioner chosen
in the Tau algebra.
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