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ABSTRACT

The paper elucidates a mathematical model of harvested enemy species and a cover protected Ammensal pair with limited
resources. A cover proportionate to the population of Ammensal is provided for Ammensal species to protect from the
attacks of the enemy species. More over the enemy with limited resources is harvested at a constant rate. The model is
characterized by a couple of first order non-linear ordinary differential equations. All six equilibrium points for this model
are identified and their stability criteria are discussed.
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1. Introduction

Harvesting plays a major role in the population growth of Ammensal-enemy species.Mathematical mod-
eling of ecosystems was initiated in 1925 by Lotka [13]. The general concepts of modeling have been
presented in the treatises of Meyer [14], Kapur [9, 10]. N.C. Srinivas [16] studied the competitive
ecosystems of two species and three species with limited and unlimited resources. Lakshminarayan and
Pattabhiramacharyulu [11, 12] investigated Prey-predator Ecological models with a partial cover for the
prey and alternate food for the predator. Recently, stability analysis of competitive species was carried
out by Archana Reddy, Pattabhi Ramachryulu and Gandhi [7] and by Bhaskara Rama Sarma and Pat-
tabhiramacharyulu [8], while the mutualism between to species was examined by Ravindra Reddy [15].
The present authors Acharyulu [1–6] and Pattabhi Ramacharyulu investigated some remarkable results
on the stability of an Ammensal- enemy species pair with various resources.

The present paper investigates on an analytical study of a two species Ammensal – enemy model. The
enemy is harvested at a constant rate with limited resources. In addition to it, a cover proportionate to
the population of Ammensal is provided for Ammensal species to protect from the attacks of the enemy
species. The model is characterized by a couple of first order non-linear ordinary differential equations.
All six equilibrium points for the model are obtained and their stability criteria are discussed. The
linearised perturbed equations are solved and the trajectories are derived.

1.1 Notation Adopted

N1 and N2 are the populations of the Ammensal (S1) and enemy (S2) species with natural growth rates
a1 and a2 respectively.
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a11 is rate of decrease of the Ammensal due to insufficient food.

a12 is rate of increase of the Ammensal due to inhibition by the enemy.

a22 is rate of decrease of the enemy due to insufficient food.

h2 = a22H2 is rate of harvest of the enemy.

Ki = ai/aii are the carrying capacities of Ni, i = 1, 2, . . .

α = a12/a11 is the coefficient of Ammensalism.

b = The constant characterized by the cover which is provided for the Ammensal species (0 < b < 1)

The state variables N1 and N2 as well as the model parameters a1, a2, a11, a22, K1, K2,α,b , h2 are
assumed to be non-negative constants.

2. Basic Equations

An Ammensal-harvested enemy model with limited resources where a cover proportionate to the popu-
lation of Ammensal is provided for Ammensal species to protect from the attacks of the enemy species
characterized by a pair of coupled non-linear ordinary differential equations.

(I) Equation for the Growth Rate of Ammensal Species (N1):

dN1

dt
= a11(K1N1 −N2

1 − α(1 − b)N1N2) (2.1)

(II) Equation for the Growth Rate of enemy Species (N2):

dN2

dt
= a22(K2N2 −N2

2 −H2) (2.2)

3. Equilibrium points

The system under this investigation has six equilibrium states given by dNi
dt = 0 where i = 1, 2, . . .. Out

of these, three are the Ammensal washed out states and the reaming are co-existence states. Here the
enemy always survives. These states are described here under.

(E1) Ammensal washed out state I

N1= 0; N2=
K2

2
(3.1)

This would arise only when H2=
K2

2

4

(E2) Ammensal washed out state II

N1 = 0; N2 = K2 −
H2

K2
(3.2)

This would happen only when H2 <
K2

2

4
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(E3) Ammensal washed out state III

N1 = 0; N2 =
H2

K2
(3.3)

This would exist only when H2 <
K2

2

4

(E4) Coexistence state I

N1 = K1 −
α(1 − b) K2

2
;N2=

K2

2
(3.4)

This would happen only when K1>
α(1−b) K2

2 and H2=
K2

2

4

(E5) Co-existence state II

N1 =K1 −
α(1 − b)H2

K2
;N2=

H2

K2
(3.5)

This would arise only when K1K2 > α(1 − b) H2 and H2<
K2

2

4

(E6) Co-existence state III

N1= K1 − α(1 − b)

(
K2 −

H2

K2

)
;N2= K2 − H2

K2
(3.6)

This would exist only when K1> α(1 − b)
(
K2 − H2

K2

)
and H2<

K2
2

4

Note: There would be no fully washed out state and also enemy washed-out state. However there are
three equilibrium states in which the Ammensal is washed out and three (conditionally) coexistence
states.

4. Stability of the Equilibrium States

After linearization, we get

dU

dt
= AU (4.1)

where

A =

[
a11(K1 − 2N̄1 − α(1 − b)N̄2) −a11α(1 − b)N̄1

0 a22(K2 − 2N̄2)

]
(4.2)

The corresponding characteristic equation for the system is

det[A− λI] = 0 (4.3)

The equilibrium state is stable only when the roots of the equation (4.3) are negative when they are real
or have negative real parts in case they are complex.
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4.1 Stability of the Equilibrium State E1:

In this case

A =

[
− a11

(
K1 − α (1−b) K2

2

)
− α (1 − b) a 1 1

(
K1 − α (1−b) K2

2

)
0 0

]
(4.4)

The characteristic roots of A are −a11
(
K1 − α (1−b)K2

2

)
, 0. Hence the Equilibrium state is unstable.

The equation (9) yields the solution curves.

U1 =U10 e
a11

(
K1 − α (1−b) K2

2

)
t
, U2 = U20 (4.5)

and the solution curves are illustrated as follows.

Case (i) U10 > U20 i.e. initially the Ammensal species dominates the enemy species. Figure 1 shows,
the Ammensal (S1) dominates over the enemy (S2) in its natural growth rate as well as in its initial
population strength. In this case the Ammensal always outnumbers the enemy. Further the enemy
species is noted to be at a constant distance from the equilibrium point in the course of time, while
the Ammensal species is going away from the equilibrium point.

Case (ii) U10< U20 i.e initially the enemy species dominates the Ammensal species. In this case, U1(t) =
U2(t) is possible at time

t∗=
1

a11

(
K1 − α (1−b) K2

2

) log

(
U20

U10

)

Initially the enemy outnumbers the Ammensal and this continues up to t = t∗ , after which the
Ammensal out-numbers the enemy illustrated as in Figure 2.

Figure 1 Figure 2

4.1.1 Trajectories of the Perturbed species:

The trajectories obtained by solving (13) in U1 – U2 plane can be given as shown in Figure 3.
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Figure 3

4.2 Stability of the Equilibrium state (E2)

In this case

A =

 a11 (K1 − α (1 − b)
(
K2 − H2

K2

))
0

0 −a22
(
K2 − H2

K2

)  (4.6)

The characteristic roots of A are

a11

(
K1 − α (1 − b)

(
K2 −

H2

K2

))
and

−a22
(
K2 −

H2

K2

)
since one of these roots is positive, the steady state is unstable.

The equation (9) yields the solution curves.

U1 = U10 e
a11
(
K1− α(1−b)

(
K2− H2

K2

))
t

and U2= U20 e
− a22

(
K2− H2

K2

)
t

(4.7)

we have divided it in to two cases and the solution curves are illustrated here under.

Case(A) When

K1>α(1 − b)

(
K2−

H2

K2

)
(4.8)

Here one of the roots is positive. Hence the state is stable. The solution curves are illustrated in
Figure 4.

Case (i) U10 > U20 i.e. initially the Ammensal (S1) species dominates over the enemy (S2)
species. In this case the Ammensal dominates the enemy in natural growth rate as well as in
its population strength. The Ammensal species is noted to be going away from the equilibrium
point as shown in Figure 4, while the enemy species is asymptotic to the equilibrium point.

Case (ii) U10 < U20 i.e. initially the enemy species dominates the Ammensal species.

The Ammensal (S1) dominates over the enemy (S2) in natural growth rate but its initial
strength is less than the enemy. In this case the enemy outnumbers the Ammensal till the
time instant

t∗=
1

a22

(
K2 − H2

K2

)
+a11

(
K1 − α(1 − b)

(
K2 − H2

K2

)) log

[
U20

U10

]
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Figure 4 Figure 5

after which the Ammensal goes away from the equilibrium point, while the enemy species is
asymptotic to the equilibrium point. Hence the equilibrium point is unstable, as shown in
Figure 5.

Case(B) When

K1< α(1 − b)

(
K2−

H2

K2

)
(4.9)

Here both the roots are negative. Hence the state is stable.

The equation (9) yields the solution curves as

U1=U10 e
− a11

[(
α(1−b)

(
K2 − H2

K2

)
− K1

)]
t

and U2= U20e
− a22

(
K2−H2

K2

)
t

(4.10)

Let a11

(
α(1 − b)

(
K2− H2

K2

)
−K1

)
= Q1 and a22

(
K2− H2

K2

)
= Q2

Case(i) When Q1 < Q2 and U10 > U20 The enemy (S2) dominates over the Ammensal (S1) in
natural growth rate but it’s initial strength is less than that of Ammensal and Ammensal out
numbers the enemy till the time-instant

t∗=
1

a22

(
K2 − H2

K2

)
+a11

[(
K1 − α (1 − b)

(
K2 − H2

K2

))] log

[
U20

U10

]
after that the dominance is reversed,as depicted in Figure 6.

Case (ii) When Q1 > Q2 and U10 > U20. The Ammensal (S1) dominates over the enemy (S2) in
natural growth rate as well as in its initial population strength, as illustrated in Figure 7.

Case (iii) when Q1 > Q2 and U10 < U20 The Ammensal (S1) dominates over the enemy (S2) in
natural growth rate but it’s initial strength is less than that of an enemy, and the enemy out-
numbers the Ammensal till the time-instant

t∗=
1

a22

(
K2 − H2

K2

)
+a11

[(
K1 − α (1 − b)

(
K2 − H2

K2

))] log

[
U20

U10

]
after that the dominance is reversed, as shown in Figure 8.
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Case (iv) When Q1 < Q2 and U10 < U20. The enemy (S2) dominates over the Ammensal (S1)
all throughout the strength, as depicted in Figure 9.

Figure 6 Figure 7

Figure 8 Figure 9

Figure 10 Figure 11
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4.2.1 Trajectories of Perturbed species:

The trajectories obtained by solving (18) in U1 – U2 plane are given by

(
U1

U10

)Q(
U2

U20

)
= 1 where Q =

a22

(
K2 − H2

K2

)
a11

[(
K1 − α(1 − b)

(
K2 − H2

K2

))] =
q1
q2

(4.11)

which are illustrated in Figure 10 and Figure 11.

4.3 Stability of the Equilibrium State E3

In this case

A =

 a11 (K1 − α (1−b) H2

K2

)
0

0 a22

(
K2 − 2 H2

K2

)  (4.12)

The characteristic roots at A are a11

(
K1 − α (1−b) H2

K2

)
, a22

(
K2 − 2H2

K2

)
and these are both positive,

hence the steady state is unstable.
The equation (9) yields the solution curves.

U1= U10 e
a11
(
K1− α (1−b) H2

K2

)
t

and U2= U20 e
a22

(
K2 − 2H2

K2

)
t

(4.13)

and these are illustrated as follows in Figure 12 and Figure 13.

Case (i) U10 > U20 i.e. initially the Ammensal (S1) species dominates over the enemy (S2) species.
The Ammensal dominates the enemy in natural growth rate as well as in its initial population
strength. In this case the Ammensal continuously outnumbers the enemy as shown in Figure 12.

Case (ii) U10 < U20 i.e initially the enemy (S2) species dominates over the Ammensal (S1) species. The
enemy dominates the Ammensal in natural growth rate as well as in its initial population strength.
In this case the enemy continuously outnumbers the Ammensal as shown in Figure 13.

4.3.1 Trajectories of Perturbed Species:

The trajectories obtained by solving (21) in U1 – U2 plane can be given by

U1

U10
=

(
U2

U20

)q
(4.14)

where q =
a11
(
K1−α(1−b)H2

K2

)
a22
(
K2− 2H2

K2

) which are illustrated in Figure14.

4.4 Stability of the Equilibrium State E4

In this case

A =

[
− a11

(
K1 − α(1−b) K2

2

)
− α a11

(
K1 − α(1−b) K2

2

)
0 0

]
(4.15)

The characteristic roots of A are − a11

(
K1 − α(1−b) K2

2

)
, 0. Hence the equilibrium state is unstable.
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The equation (9) yields the solution curves

U1 = (U10+L4) e
− a11

(
K1− α(1−b) K2

2

)
t − L4, U2 = U20 (4.16)

where L4 = α (1 − b)U20 which are illustrated here under.

Case (i) U10 > U20. i.e. initially the Ammensal (S1) species dominates over the enemy (S2) species. In
this case U1(t) = U2(t) is possible at time

t∗=
1

a11

(
K1−α(1−b) K2

2

) log(U10+L4

U20+L4

)

The Ammensal out numbers the enemy and this continues up to t = t∗, after which the enemy
outnumbers the Ammensal as shown in Figure 15.

Case (ii) U10 < U20. i.e initially the enemy (S2) species dominates over the Ammensal (S1) species. The
enemy dominates the Ammensal in its natural growth as well as in its initial population strength.
In this case the enemy always outnumbers the Ammensal.Further the enemy species is noted to
be at a constant distance from the equilibrium point in the course of time, while the Ammensal
species is asymptotic to the equilibrium point.

Hence the equilibrium point is neutrally stable shown as in Figure 16.

4.4.1 Trajectories of Perturbed species :

The trajectories obtained by solving (4.16) in U1 – U2 plane can be given by Figure 17

4.5 Stability of the Equilibrium State E5

In this case

A =

− a11

(
K1−α(1−b)H2

K2

)
− α (1 − b) a11

(
K1−α(1−b)H2

K2

)
0 a22

(
K2− 2H2

K2

)  (4.17)

The characteristic roots of A are − a11

(
K1−α(1−b)H2

K2

)
, a22

(
K2− 2H2

K2

)
and one of these roots is

positive, hence the steady state is unstable.

The equation (9) yields the solution curves.

U1 = −L5e
a22
(
K2− 2H2

K2

)
t

+ (U10 + L5)e
−a11

(
K1−α(1−b)H2

K2

)
t
, U2 = U20e

a22
(
K2− 2H2

K2

)
t

(4.18)

where L5=
α(1−b) a11

(
K1−α(1−b)H2

K2

)
U20

a22
(
K1− 2H2

K2

)
+a11

(
K1−α(1−b)H2

K2

) and these are illustrated as below.

Case (i) U10 < U20. i.e. initially the enemy (S2) species dominates over the Ammensal (S1) species. In
this case the enemy dominates the Ammensal in natural growth rate as well as in its population
strength. The enemy species is noted to be going away from the equilibrium point as shown in
Figure 18.
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Figure 12 Figure 13

Figure 14 Figure 15

Figure 16 Figure 17

Case (ii) U10 > U20. i.e. initially the Ammensal species dominates the enemy species. The enemy (S2)
dominates over the Ammensal (S1) in natural growth rate but its initial strength is less than the
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Figure 18 Figure 19

Figure 20 Figure 21

Figure 22 Figure 23

Ammensal. In this case the enemy outnumbers the Ammensal till the time instant

t∗=
1

a22

(
K2 − 2H2

K2

)
− a11

(
K1 − α(1 − b)

(
K2 − H2

K2

)) log

[
U10

U20

]
After that the enemy is found to be going away from the equilibrium point while the Ammensal
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species is asymptotic to the equilibrium point. Hence the equilibrium point is unstable, as shown
in Figure 19.

4.5.1 Trajectories of Perturbed Species:

The trajectories obtained by solving (4.18) in U1 – U2 plane can be given by

U1

U10
+
L5

U10

(
U2

U20

)
=

(
1+

L5

U10

) (
U2

U20

)−γ

(4.19)

Where γ =
a11
(
K1−α (1−b)H2

K2

)
a22
(
K2− 2H2

K2

) and these are illustrated in Fig .20.

4.6 Stability of the Equilibrium State E6

In this case

A =

− a11

(
K1−α(1 − b)

(
K2−H2

K2

))
−α(1 − b) a11

(
(K1 − α(1 − b) (K2 −

H2

K2
)
)

0 − a22

(
K2− 2H2

K2

) 
(4.20)

The characteristic roots of A are - a11

(
K1−α(1 − b)

(
K2−H2

K2

))
, -a22

(
K2− 2H2

K2

)
and these are

both negative. Hence the steady state is stable.
The equation (9) yields the solution curves:

U1 = L6e
−a22

(
K2− 2H2

K2

)
t

+ (U10 + L6)e
−a11

[
K1−α(1−b)

(
K2− 2H2

K2

)]
t
,

U2 = U20e
−a22

(
K2− 2H2

K2

)
t

(4.21)

where L6 = α(1−b) a 11 N 1 U20

a22 N 1
− a22

(
K2− 2H2

K2

) and these curves are illustrated here under.

Case (i) U10 > U20. i.e. initially the Ammensal (S1) species dominates over the enemy (S2) species and
it continues throughout its growth rate. In this case the Ammensal continuously outnumbers the
enemy as shown in Figure 21. However both converge asymptotically to the equilibrium point.

Case (ii) U10 < U20 i.e. initially the enemy (S2) species dominates the Ammensal (S1) species. The
enemy dominates over the Ammensal up to the time-instant

t∗=
1

a22

(
K2− 2H2

K2

)
−a11

(
K1− α(1 − b)

(
K2−H2

K2

)) log

[
U20+L6

U10+L6

]
there after both Ammensal and the enemy decline further shown as in Figure 22.

4.6.1 Trajectories of Perturbed species:

The trajectories obtained by solving (4.21) in U1 − U2 plane can be given by

U1

U10
=

−L6

U10

(
U2

U20

)
+

(
1+

L6

U10

) (
U2

U20

)P
, where p =

a11
(
K1 − α(1 − b)N2

)
a22

(
K2 − 2H2

K2

) (4.22)

which are illustrated in Figure 23.
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5. Open Problems

i. One can apply the concept of harvesting rate for a four species ecosystem in diffenrent situations.

ii. One can study the model where harvesting rate is proportional to the population sizes of the species
with un limited recourses and then construct Liapunov’s function to examine the global stability
of this model.
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