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ABSTRACT

A numerical study of two dimensional convection diffusion problem for incompressible viscous flows inside a porous cavity
is presented. The flow is governed by the two mechanisms: (1) a viscous electrically driven convective flow due to magnetic
field, and (2) partially thermally activated side walls. Extensive numerical results of the flow field governed by the Navier-
Stokes equations are obtained over a wide range of physical parameters like Grashof number, Hartmann number and the
Darcy number. The simulated results has a good agreement with the available numerical previously published results
and the experimental observations. The total heat flux is computed both for high convection (due to magnetic field) and
diffusive forces (due to temperature).
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1. Introduction

The study of Magnetic convection inside an enclosure with periodic thermal boundary conditions has
wide range of applications in industry, crystal growth techniques, space applications, oceanography,
astrophysics, vulcanology, drying chambers, material processing and metallurgy etc. It also occurs in
many engineering applications, geothermal phenomena and the safe disposal of nuclear waste. In this
flows, the non-linear convective terms are significantly suppressed by applying an external magnetic
field. Among the few geometries that have been studied in detail is the study of cavity flow filled with
a porous medium. Despite its simple geometry, flow in the cavity exhibits features of more complex
geometry flows. Numerical investigation on the flow inside cavity was first initiated by Burggraf [1].

The general idea regarding the flow and energy transfer inside a porous driven cavity was studied by
Al-Amiri [2]. He discussed the characteristics of a lid-driven flow for a stable thermally stratified water
saturated porous medium. The effects of Darcy number and Richardson number over the flow field and
temperature fields are detailed studied.

Extensive studies have been made in recent years to examine the effects of magnetic field on the flow
structure. Lage and Bejan [3] studied both theoretically and numerically the natural convection in a two-
dimensional square cavity with one side cold and isothermal, and the other side heated with pulsating
heat flux. With the periodic heating at the side walls with high Rayleigh number, they observed that
the buoyancy-driven flow has the tendency to resonate the periodic heating.
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Bilgen and Yedder [4] discussed about the natural convection in a cavity with sinusoidal heating and
cooling system at one side wall and observed that the heat transfer is higher when the heated section is
in the lower half of the cavity at high Rayleigh number.

Kladius and Prasad [5] have studied the influence of Darcy and Prandtl numbers for fluid flow in a
porous medium. They have also investigated the effect of heat transfer and flow characteristics for a
horizontal porous layer.

Natural convection flow of a viscous incompressible fluid in a rectangular porous cavity heated from
below and inclined cold sidewalls was studied by Hossain & Rees [6]. They observed that the flow field
is dominated by the Grashof numbers due to the effect of cold sidewalls.

Nithyadevi et al. [7] studied the magnetoconvection in a square cavity where the side walls are
activated with partially supplied temperature combined with a time periodic boundary condition. The
results presented for the case of clear fluid where various values of amplitude, period, Grashof number,
Hartmann number and Prandtl number were considered. In their study they observed that the flow and
the heat transfer rate are affected by the sinusoidal temperature profile and the magnetic field at lower
values of Grashof number.

The present paper deals with the effect of magnetic field on the flow field and heat transport in side
the porous cavity with partially thermally active vertical walls with time periodic boundary conditions.
In our study, We have considered the flow is governed by two mechanisms; (1) mechanical force due
to magnetic field, and (2) buoyancy forces due to horizontal thermal gradients. Our specific aim is to
investigate the characteristics of the flow fields and heat transfer due to the variation of buoyancies (due
to variation of Grashof number and Prandtl number). The pathlines, isotherms and the heat transfer
rates are also investigated for various values of flow parameters.

2. Numerical model and equations

We consider the unsteady two dimensional magneto natural convective flow in a square porous cavity of
length L filled with an electrically conducting fluid shown in Fig. 1. A portion (1/2 of the wall) of the
right wall is kept at a constant temperature and a portion (1/2 of the wall) of the left wall temperature
is maintained periodic in time. The remaining boundaries of the cavity are thermally insulated. The
hot region is moving from top to bottom of the left wall and the cold region is moving from bottom to
top of the opposite wall. But in the present study we have presented our result for a fixed hot and cold
region at the left and right side of the wall(middle-middle). In the next phase of this work, the different
combinations of the thermally active locations the heat transfer characteristics will be investigated. The
gravity acts vertically downwards. The uniform external magnetic field By is applied parallel to gravity.
It is assumed that induced magnetic field is negligible in comparison to the applied magnetic field. Under
these assumptions, the governing equations for the two dimensional viscous incompressible fluid flow for
magneto natural convection in a square porous cavity are as follows.

The fluid is assumed to be Newtonian and its density is supposed to be constant, except in the
gravitational force term in the Navier-Stokes equation, where it varies linearly with the local temperature
fraction (Gebhart and Pera [8]) and is given by

p(0) = poll — Bu(6" — 0})]. (2.1)
po is the density of the undisturbed fluid. The volumetric coefficient of the thermal expansion
Br = —% gg‘l > 0. The governing Navier-Stokes equations along with the heat transport equation

in dimensional form with the Boussinesqg-fluid assumption are given by

ou Ov
2 + oy 0 (2.2)

9. Darbose



164 Int. J. of Applied Mathematics and Computation, 4(2), 2012

y
N
-~ - —
. N
L L2 S C
1 R s
v
/| u /
0\ ~ > X

Figure 1: Schematic diagram of the 2-D cavity and computational domain.
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Where u and v are the = and y components of the velocity field, K is the permeability of the porous
medium, g is the acceleration due to gravity, « is the thermal conductivity of the medium. The character-
istic length scale and velocity scale are considered as L and %, respectively. Introducing the dimensionless
variables as u*,v*, p*, t* and * for the velocity, pressure, time and temperature, respectively, where

ul vL x Y
t. 6—0 L2
=g = S (2.7)

2 e A )
In non-dimensional form the equations can be represented as,

ou*  oOv*
= 2.
oxr* * oy* 0 (2:8)
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It can be seen from the equations that the flow and heat transfer are characterized by three dimen-
sionless parameters: (i) Hartmann number Ha, (ii) Grashof number Gr, (iii) Prandtl number Pr , which

are given by

2712 * _ Ox 3
BO L (Te’ Gr — gﬁT(GH HL)L 7 Pr — 57 Kp _
K

Ha* =
a m 2

Qn = 1— Asin(n0*/)), Q =0

26 is the period and A is the amplitude factor.
The initial conditions for time t* = 0 are given by

ut=0v" =0, 68 =0 for0<z*<1, 0< y* <1

The boundary conditions for time ¢t* > 0 are given by

6*
ut = v* =0, =0 aty*=0and 1, 0<z* <1
0y
. . a0~
u = v =0, =0, atz* =0and 1, 0<y* <0.25
or
. . o0*
v = v =0, =0, atz* =0and 1, 0.75 <y* <1
ox
u = v =0, 0" =Qy, atx* =0, 025 <y* <0.75
ut =" =0, 0" =Q, atxz* =1, 025 <y* <0.75

= (2.12)

2

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

The heat flux at the left wall are written in non-dimensional terms by Nusselt number as

o0*
N =
b 8:10*]
y*=0

and average Nusselt number

Nu= / Nudy*.
h

(2.20)

(2.21)
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Figure 3: Comparison of present 2-D average Nus-
selt number with Maiti et al. [9], when B=5.0 and
Grashof number is —10°% for different Re values.
Solid lines represents the present result and e repre-
sents the result due to Maiti et al.[9].

Figure 2: Influence of grid sizes on the average heat
flux profile, at upper and lower lids with Moallemi
and Jang [10] when Pr=1.0, B=0.0. Grashof number
is 10°.

3. Numerical Method

We used the pressure correction based iterative SIMPLE algorithm for solving those governing equations
with boundary conditions specified previously. This procedure is based on a cyclic series of guess-and-
correct operations to solve the governing equations. A third level fully implicit scheme is used for
discritization of time derivatives. Also a third order QUICK is employed to discretize the convective
terms in the Navier-Stokes equations (Maiti et al. [9]). The velocity components are first calculated from
the momentum equations using a guessed pressure field. The pressure and velocities are then corrected
so as to satisfy continuity. This process continues until the solution converges.

3.1 Grid Consideration and Algorithm Testing

First we tried to compare our simulated results with some validated previously published numerical
results for solid cavity case and then we compared our 2-D porous simulated results with some of the
2-D published results considering the same geometry.

To test the accuracy of our numerical algorithm we have considered the two dimensional lid driven
cavity flow without porosity. For this structure the non-dimensional governing equation involves the
parameters Reynolds, Grashof, and Prandtl numbers. The grid independent tests were performed by
varying the grids between 61 x 61 to 161 x 161. Fig. 2 presents the effect of grid size on the average
Nusselt number. We found that the changes in solution due to halving the grid size occur on the third
decimal place. The grids 81 x 81 were found to be optimal. This figure also shows the comparison of
local Nusselt number along the top (y=1) and bottom lids (y=0) for the case of no species diffusion
when Re = 500, Gr = 10°. The maximum percentage difference of Nusselt number on upper lid from
the result due to Moallemi and Jang [10] is 5.5%.

To validate the accuracy of our 2-D results, we have compared our results with the average Nusselt
number with Maiti et al. [9]. They studied the double-diffusive convection in a square cavity with a
sliding top lid in the presence of combined vertical temperature and concentration gradients. The bottom
lid and other two walls are kept fixed. The side walls are adiabatic and impermeable to solute while the
top and bottom lids are kept at constant but distinct temperature and concentration. We have shown
our comparison in Fig. 3, when buoyancy ratio B=5.0 and Grashof number as —10° for different Re
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Figure 4: Comparison of present 2-D average Nus-
selt number with Sathiyamoorthy et al. [11], when
Pr=0.7 and Darcy number Da is 107%. Solid lines
represents the present result and square represents
the result due to Sathiyamoorthy et al.[11].

Figure 5: Streamlines for middle-middle active walls
for Gr = 10%, Pr= 0.054, Ha = 10, A = 0.4, Q = 3.

values. It is seen that the agreement between the published data by Maiti et al. [9] and our numerical
result is very good. .

A comparison of our results for local temperature flux profiles with the results due to Satiyamoorthy
et al [11] is presented in Fig. 4. Sathiyamoorthy et al. [11] considered a steady natural convection
flow in a square cavity filled with a porous medium for linearly heated side walls. The results has been
presented for local Nusselt number due to the uniformly heated wall where the parameters are considered
as Pr = 0.7, Da = 1074,

3.2 Results and discussion

The magnetoconvection of an electrically conducting fluid in a square cavity filled with a porous medium
(Porosity for this investigation is 1mm) is studied numerically for middle-middle thermally active loca-
tions. The flow and heat transfer characteristics are governed by the parameters Pr, Gr and Da. The
computations are carried out for various values of the Grashof numbers from 10* to 10°, Hartmann
numbers from 10 to 50, Prandtl number 0.054, amplitude 0.4 and period 3, of the time periodic hot zone.

In Fig.5 and Fig.6 we have presented the streamlines and isothermal lines for middle-middle active
walls for Gr = 10°, Pr = 0.054, Ha = 10, A = 0.4, Q = 3. Two recirculation eddies are formed closed
to two side walls, where the active thermal gradients are present. The flow lines shows a linear variation
close to the center of the cavity. The magnetic convection plays a dominant role and the recirculation
flow is mostly generated by thermal gradients. It is seen from Fig.5 that the recirculation is clockwise
close to left and right walls and some perturbations are seen in streamlines far from the wall due to
impingement of fluid at the horizontal wall.

It is also observed that the temperature has a large variation near the active thermal part of the
wall. Since the distance increases from the wall, the isothermal contours shows a little variation, as the
temperature flux variation is less along the core of the cavity. The isothermal contours shown in Fig.6
exhibit strong dependence on wall temperature. This indicates that the thermal boundary layers over
the left and right walls are thicken compared to core of cavity.

The variation in the average Nusselt number for the increase in Prandtl number are shown in Fig.7 for
Ha = 10, Gr = 10%, § = 3 and A = 0.4. The rate of increase in average heat flux is very high in the range
of Pr =0.054 to 0.71. The comparison with Sathiyamoorthy et al. [11] without porosity shows a close
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Figure 6: Isotherms profile for middlemiddle active

walls for Gr = 10°, Pr = 0.054, Ha = 10, A = 0.4, Figure 7: Average Nu vs Pr for middle-middle active

walls, Gr = 10%, A =0.4, § = 3 and Ha = 10.
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Figure 8: Average Nu vs Gr for middle-middle active Figure 9: Average Nu vs Da for middle-middle active
walls, Pr = 0.054, A =0.4, § = 3, Ha = 10 and 50 walls, Pr = 0.054, A = 0.4, § = 3, Gr = 10* and
respectively. 10° respectively.

agreement with porous, that in the middle-middle active locations the heat transfer rate is maximum.

With the increase of the value of Hartmann number, the rate of heat transfer is sharply reduced. Fig.8
indicates the variations of the average Nusselt number with Grashof number for several values of Ha.
The effect of magnetic field on the average Nusselt number is more in the lower Grashof number region.
At higher Grashof number values, convection is dominant the reduction in heat transfer due to magnetic
field is not significant.

The effects of the Darcy number and thermal behaviors of the porous cavity are investigated in Fig.9.
The Darcy number, which is directly proportional to the permeability of the porous medium, was set to
vary between 0.001 to 0.1. As Grashof number increases, the average heat transfer flux reduces sharply.
For high porosity values the rate of heat transfer is almost same for two different Grashof numbers.
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4. Conclusion

In our study we have presented the numerical results of magneto convection in a square cavity filled with
a porous medium, where the side walls are inclined with a periodic temperature boundary conditions.
Liquid metals (Pr = 0.054) is used as a coolant in nuclear reactors for thermodynamics systems[7]. The
heat transfer rate is maximized in the middle portion of the cavity when the thermally active locations
are placed in middle position of the side walls. The average Nusselt number increases as Prandtl number
is increased and also the same trend is observed when the Grashof number is also increased for a fixed
Darcy- and Hartmann number.
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