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Numerical solution of convection-diffusion equation using
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ABSTRACT

In this paper, two numerical methods are proposed to approximate the solutions of the convection-diffusion partial dif-
ferential equations with Neumann’s boundary conditions. The methods are based on collocation of cubic B-splines over
finite elements so that we have continuity of the dependent variable and its first two derivatives throughout the solution
range. In Method-I, we discretize the time derivative with Crank Nicolson scheme and handle spatial derivatives with cubic
B-splines. Stability of this method has been discussed and shown that it is unconditionally stable. In Method-II, we apply
cubic B-splines for spatial variable and derivatives which produce a system of first order ordinary differential equations.
We solve this system by using SSP-RK54 scheme. These methods needs less storage space that causes to less accumulation
of numerical errors. In numerical test problems, the performance of these methods is shown by computing Loo and Lo
errors for different time levels. Illustrative five examples are included to demonstrate the validity and applicability of
these methods. Results shown by these methods are found to be in good agreement with the exact solutions. Easy and
economical implementation is the strength of these methods.
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1. Introduction

In this paper, we consider the numerical solution of the following one dimensional convection-diffusion
equation

Ou ou 0%y

b =~y—— 0<az<L, 0<t<T 1.1
ot for o VTS USIS (L1.1)
with initial condition
u(z,0) = () (1.2)

and Neumann’s boundary conditions are as follows [7]:

<gz> on go(t), <gz> o gi(t), te€0,T] (1.3)
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where the parameter « is the viscosity coefficient and ¢ is the phase speed and both are assumed to be
positive. ¢,g9 and g; are known functions of sufficient smoothness.

The convection-diffusion problems arise in many important applications in science and engineering
such as fluid motion, heat transfer, astrophysics, oceanography, meteorology, semiconductors, hydraulics,
pollutant and sediment transport, and chemical engineering.

In literature, various numerical techniques such as finite differences, finite elements, spectral proce-
dures, and the method of lines have been developed and compared for solving the one dimensional
convection-diffusion equation with Dirichlets boundary conditions [1-6, 8-11, 13—-15]. Most of these tech-
niques are based on the two-level finite difference approximations. However, fewer difference schemes
have been developed to solve the convection-diffusion equation with Neumann’s boundary conditions,
which are much more difficult to handle than Dirichlet conditions. In [7], Cao et. al developed a fourth-
order compact finite difference scheme for solving the convection-diffusion equations with Neumann’s
boundary conditions.

In this paper, two numerical methods are developed to approximate the solutions of the convection-
diffusion partial differential equations with Neumann’s boundary conditions using cubic B-splines colloca-
tion methods. It is well known that B-spline collocation methods produce better numerical approximation
in comparison to finite difference method. The finite difference solution is available only at predetermined
nodal points. The solution at any other point must be obtained by interpolation. On the other hand
from the cubic B-spline collocation method solutions can be given in terms of cubic B-splines defined
over the whole interval [0, L]. Thus, the solution is known at least in principle at every point in [0, L].
In this work, it is aimed to effectively employ the collocation methods for solving convection-diffusion
equation with Neumann’s boundary conditions which are often encountered in engineering applications
[7, 16]. It should be noted that the zero or constant Neumann’s conditions (zero or constant flux on
the boundary) are typical requirement to describe the actual processes in mathematical modeling. In
Method-I, for solving equations (1.1)- (1.3), we discretize the time derivative by using Crank Nicolson
scheme,then solve it by using collocation method which is based on cubic B-splines. We know that
B-splines have mainly two main features which are useful in numerical work. One feature is that the
continuity conditions are inherent. Hence, B-spline is the smoothest interpolating function compared
with other piecewise polynomial interpolating functions. Another feature of B-splines is that they have
small local support, i.e. each B-spline function is only non-zero over a few mesh subintervals, so that the
resulting matrix for the discretization equation is tightly banded which is very attractive for practical
engineering problems. Due to their smoothness and capability to handle local phenomena, B-splines offer
distinct advantages. In combination with collocation, this significantly simplifies the solution procedure
of differential equations. We prove the stability of Method-I by using von Neumann stability scheme
[12] and show that the Method-I, is unconditionally stable. In Method-II, we use cubic B-splines basis
functions for spatial variable and derivatives then the resulting system of differential equations are solved
by using SSP-RK54 scheme [11].

This paper is organized as follows. In Section 2, description of cubic B-splines collocation method
is explained. In Sections 3, procedure for implementation of Method-I is describe for equation (1.1)
and in Section 4, stability of this method is discussed by applying von-Neumann stability method.
In Section 5, procedure to obtain initial vector which is required to start Method-I is explained. In
Section 6, implementation of Method-II is discussed. We present five numerical examples to establish the
applicability and accuracy of the proposed methods computationally in Section 7. The final conclusion
is given in Section 8 that briefly summarizes the numerical outcomes.

2. Description of the methods

In cubic B-splines collocation method the approximate solution can be written as a linear combination
of cubic B-splines basis functions for the approximation space under consideration.
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Table 1: Coefficient of cubic B-splines and derivatives at nodes x;

T Tj-p Tjr Ty Tjpl Tjto
B;(x) 0 1 4 1 0
’ 3 -3
e 0 p L F
We consider a mesh 0 = zg < x1,...,xny_1 < Ty = L as a uniform partition of the solution domain

L
0 < 2 < L by the knots x; with h = x;4, —x; = N’j =0,...,N — 1. Our numerical treatment

for solving equation (1.1) using the collocation method with cubic B-splines is to find an approximate
solution UN (z,t) to the exact solution u(z,t) in the form:

N+1

UN(@, )= 3 a(t)B;(a) (2.1)

j=—1

where «;(t) are unknown time dependent quantities to be determined from the boundary conditions and
collocation from the differential equation. The cubic B-splines B;(z) at the knots is given by

(z — zj-2)%, € [1j-2,25-1)
|| @ we)? —dlw - 2i0)? e [z, 3)
Bj(w) = 154 (@42 — 2)° —d(wj11 —2)’, @ € [2),2541) (2.2)
(242 —)°, T € [Xj41,T542)
0, otherwise
where B_1, By, B1,...,BNn-1, Bn, Bny+1 forms a basis over the region 0 < x < L. Each cubic B-splines

cover four elements so that each element is covered by four cubic B-splines. The values of B;(z) and its
derivative may be tabulated as in Table-1.

Using approximate function (2.1) and cubic B-splines functions (2.2), the approximate values of U™ (x)
and its two derivatives at the knots/nodes are determined in terms of the time parameters a; as follows:

Uj = Oéj,1 —+ 40éj -+ Oéj+1
hU; = 3(ajp1 — 1) (2.3)
WU} = 6(c;1 — 205 + a41)

Using (2.1) and the boundary condition (1.3), we get the approximate solution at the boundary points
as

1
Us(zo,t) = Y a;(t)Bj(wo)
j=-1
N+1

UT(xNat): Z O‘j(t)B](IN)

j=N-1

9. Darbose
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Using Table 1, in (2.4) we get

a; — a1 = —go(t)

> w| s

QaN41 — QN—1 = 591(t)

3. Implementation of Method-I

First, discretizing the time derivative in the usual finite difference way and applying Crank-Nicolson

scheme to space derivative in (1.1), we get

un+1 —un u7L+1 + u™ u7L+1 + u™
At 2 2
At At At At
— " 4 s?ugﬂ — 'y?ugjl =u" — 57u2 + 77u;’$
Now, using (2.1) in (3.2), we get
N+1 ¢ N1 / A VL 5
Z a}’“(t)Bj(:c) —&-57 Z a?“(t)Bj(as) TS Z a;-”“l(t)Bj (x)
j=—1 j=—1 j=—1
N+1 Ap VI / ; Nt )
= > a}(t)Bj(z) —em > al(t)B; (=) +r5 > al(t)B; (z)
j=—1 j=—1 j=—1
Using Table 1 with (2.3) and (2.5) in (3.3) we get
Ao™t =Ba" +b
where
yxr+z qgp+r
r 'y z p q p
A . B .
r 'y p qg p
rT+zy p+raq
bo ag ™t g
0 oyt af
b= ’Oén+1 — ,an _ .
O anN-&-_ll a?\l—l
by antt o

(3.4)
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k k

3k k k 3
e=1-5e(3) =37(:5)y =4+67(55), 2 = 1+ 5e(5) = 37(35)

3 k k k 3k k
p=1+ () +31(5) a=4—61(:0),7 = 1= 5e(5) +3(7)

bo = g[:vgl(t”“) —pgi(t")], by = g[_zfiz(tnﬂ) +rga(t")],

Here A and B are (N 4+ 1) x (N + 1) tri-diagonal matrices and b is an (N + 1) order column vector,
which depends on the boundary conditions. The time evolution of the approximate solution U™ (x,t) is
determined by vector ™. This is found by repeatedly solving the recurrence relationship once the initial
vector o’ has been computed from the initial conditions. The matrix A in (3.4) is tri-diagonal and so
the system (3.4)can be solved using Thomas algorithm.

4. Stability of the Method-1

We have investigated stability of the proposed method by applying von-Neumann stability method.
For testing stability, we consider the equation

n+1
J

n+1 __

xa?fll +yalt +zal ) =paj_y +qaf +rafy, (4.1)

where x,y, z,p, q and r are given in equation (3.4).
Now, we consider the trial solution (one Fourier mode out of the full solution) at a given point z;

ol = €" exp(ijh) (4.2)

where i = \/(—1), 8 is the mode number and A is the element size. Now, by substituting

of = £"exp(ijph)
in (4.1), and simplifying the equation, we get
_ pexp(—iBh) + q+ rexp(iBh)

g_xmm—wm+y+zmmwm (4.3)

Now, substituting the values of z,y, z, p, ¢ and r from (3.4) in (4.3) and simplifying, we get

[2(cos Bh 4 2) — 6v( i )(1 — cos Sh)] — 2[35(%) sin Bh]

= n h (4.4)
[2(cos Bh +2) + 6’y(ﬁ)(1 — cos Bh)] + 2[35(5) sin 8]

Xy —iY

_ 4.5
Xy +iY (4.5)

=&

where
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X1 =2(cos Bh +2) — 67( k

ﬁ)(l — cos Bh)

Xo = 2(cos Bh + 2) + 67(%)(1 — cos Bh)

Y = 35(%) sin Sh

k h
Now substitute A = 2P = YA ,Péclet number(P,) = 5Tzaund p = cos Bh, in (4.4), we get

2(p +2) = 6p(1 — p)] = i[3Pep/(1 — pi*)]

&=

= ¢ =

[2(1+2) +6p(1 — p)] + i[3Pepy/(1 — p?)]

[2( +2) — 6p(1 — p)]* + [9PZp*(1 — pi?)]

(1 +2) + 6p(1 — p)]* + [9P2p* (1 — p2)]

(4.6)

Since numerator in (4.6) is less than denominator, therefore |£| < 1, hence the method is uncondition-
ally stable. It means that there is no restriction on the grid size, i.e. on h and At, but we should choose
them in such a way that the accuracy of the scheme is not degraded.

5. The initial vector a°

The initial vector o

of the initial condition as the following expressions:

This yields a (N + 1) x (N + 1) system of equations, of the form

Aa®=b
42 g
141 af
A= ' . ol = andb =
141 oy

24 a

olzo) + 3 (@)
o(r1)

p(rn-1)
h

plan) — 3¢ (zn)

The solution of (5.1) can be found by Thomas algorithm.

can be obtained from the initial condition and boundary values of the derivatives
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6. Implementation of Method-II

Our numerical treatment for solving equation (1.1) using the collocation method with cubic B-splines
is to find an approximate solution U™ (z,t) to the exact solution u(x,t) is given in (2.1), where a;(2)
are time dependent quantities to be determined from the boundary conditions and collocation from the

differential equation.
Using (2.1) in (1.1), we have

N+1 N+1 N+1

Z a;Bj(z) = —¢ Z ajB;-(x) + Z ajB;-/(:r) (6.1)

j=—1 j=—1 j=—1

Using approximate function (2.1) and cubic B-splines functions (2.2), the approximate values of UN (z)
and two derivatives of U N(m) at the knots/nodes are determined in terms of the time parameters ¢; as
follows:

(Uh); = aj_q +daj +ajiq
hUJ/ = 3(Oéj+1 - aj—l) (62)
hQUJ/-/ = 6(ij71 - 2aj + Oéj+1)

From (2.5), we have

. . h .
S ggo(t)
1 (6.3)
ANl — N1 = ggi (t)
Using (2.4), (6.2) and (6.3) in (6.1) we get a system of ordinary differential equations of the form
Ao =Ba+b (6.4)

where

4 2 qp+r
141 p q p
A=| . |B= .
141 p q p
24 p+rgq
bo g Qo
0 o) aq
b= ,o = S =
0 Ny aN_1
by Ay anN
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de 6y 12y -3¢ 6y

h+h2’Q7 h2 P h +ﬁ7

h, . n
by = 5 (rg1 — 91 H)

.n+1
) &

bo = g(—pg{f + 90
Here A and B are (N 4+ 1) x (N + 1) tri-diagonal matrices and b is an (N + 1) order column vector,
which depends on the boundary conditions.
Now, we solve the first order ordinary differential equation system (6.4) by using SSP-RK54 scheme
[11]. Here, the parameter « has been determined at an initial time level, to follow the procedure as given
in Section 5.

7. Numerical Experiments and discussion

In this section, we present the numerical results of present method on several problems. We tested
the accuracy and stability of this method for different values of h, At,e and ~.

Some important non-dimensional parameters in numerical analysis are defined as follows:

A
Courant number: The Courant number is defined as C, = sft
At
Diffusion number: The diffusion number is defined as s = Tz
C,
Grid Peclet number: The Peclet number is defined as P, = — = Eh
s

v
When the Peéclet number is high, the convection term dominates and when the Peclet number is low the
diffusion term dominates.

To gain insight into the performance of the presented methods, five numerical examples are given in
this section with L., and Lgy errors ,which are obtained by following formulae:

Loo — max |uezact _ anum‘

J

N
L2 — h (Z |u§zact _ anum|2>
0

Example 1 We consider the following equation [5]

ou ou 0%u
— — =y—0<2<1.0<tLT
ot Toop T VgV suslists

with € = 0.1, = 0.02 and the following initial condition ¢(z) = exp (ax), and boundary conditions are

ou ou
(a)(o’t) = aexp (Bt), (EM” = aexp (o + ft).
The exact solution is given by u(z,t) = exp (ax + 5t).
In our computation, we take ¢ = 0.1,y = 0.02,« = 1.17712434446770,3 = —0.09,h = 0.1,k = 0.01,
so that C, = 0.01,s = 0.02, P, = 0.5. The results are computed for different time levels. The L., and
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Table 2: Lo and Ly errors ( Example-1)

T Method-1 Method-I Method-II Method-II
Lo Lo Lo Lo

02 181F—-05 117E—-05 1.92FE—-05 1.18E—05
04 352E—-05 229FE—05 4.17TE—-05 237FE —05
06 b5.13FE—-05 337TE—-05 6.32E—05 3.55F —05
0.8 6.68FK—05 4.42F —05 836FE—05 4.72F —05
1.0 815E—-05 542FE—05 1.03F—04 5.90FE —05
50 2.68E—-04 196F —04 4.02FE—-04 291FE—04
100 358E—04 289F —04 6.35FE—04 5.25FE —04
20.0 421F—-04 3.76E—-04 873E—-04 7.93E—04

Table 3: Lo, and Ly errors ( Example-2)

T Method-I Method-I Method-II  Method-II
Lo Lo Lo Lo

0.2 167E—-09 157E—-09 846FE —06 4.53E —06
04 329FE—-09 3.10E—-09 1.75E—05 1.22FE —05
0.6 487E—09 4.60F—09 270FE—05 2.08E —05
0.8 6.42FE—-09 6.07TE—-09 3.63E—05 296E —05
1.0 793E—-09 7.51E—-09 454FE—05 3.82E—05
50 327TE—-08 3.11EF—-08 195E—-04 181F—04
10.0 5.25F —08 4.98FE —08 3.14E—-04 2.96F —04
20.0 7.18F—-08 6.81E—08 4.30FE—04 4.07E —04

Lo errors are reported in Table-2. The computed errors obtained from Method-I and Method-II are
approximately similar. Hence, both methods can apply for solving this problem for different time levels.

Example 2 We consider the following equation [5]

ou ou 0%u

=vy——0<2<1,0<tLT
ot ox 78:027 =T=5U=E>

with ¢ = 3.5, = 0.022 and the following initial condition ¢(z) = exp (ax), and boundary conditions

are (%)(0@ = aexp (ft), (87?)(1775) = aexp (a+ Bt).

The exact solution is given by u(z,t) = exp (ax + 5t).

In our computation, we take e = 3.5, = 0.022, « = 0.02854797991928, 5 = —0.0999, h = 0.1, k = 0.01,
so that C,. = 0.35,s = 0.022, P, = 15.90909091. The results are computed for different time levels. The
L., and Ls errors are reported in Table-3. In this problem, the results obtained from Method-I, are
more accurate in comparison to Method-II. We observe that both methods work well for higher value of
P, =15.90909091 for a long time T' = 20.

Example 3 We consider the following equation [7]

ou ou 0%y

=y—0<2<1,0<tLT
ot toop gV srsl0sts

with initial condition ¢(x) = aexp (—cz), and boundary conditions are
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Table 4: Lo, and Ly errors ( Example-3)

T Method-I Method-I Method-II  Method-II
L Lo Lo Lo
0.2 1.76FE —12 1.07F —12 536K —07 3.14F —07
0.4 3.60F —12 211F—-12 131E—-06 9.27FE —07
0.6 5.35FE —12 3.03F—12 2.62FE—06 1.49F — 06
0.8 7.05FE —12 3.82F—12 3.34F—-06 2.01E — 06
1.0 8.12F — 12 447TE—-12 429F —-06 2.45E — 06
5.0 1.95F —11 142F —11 226F —05 1.90F —05
10.0 3.40F —11 261F —11 6.51FE—05 b5.72E —05
20.0 945F — 11 7.33F —11 255FE —04 234E —04
Cao et. al [7]
(h=0.1,k=0.0001) T=1.0 3.34E — 09

ou ou —& + /(€2 + 47b)
(E)“”” = —acexp (bt), (E)(l"t) = —acexp (bt — ¢), where ¢ = % .

The exact solution is given by u(x,t) = aexp(bt — cx).

In our computation, we take ¢ = 1.0,y = 0.001,a = 1.0,b = 0.1,h = 0.1,k = 0.001, so that C, =
0.01,s = 0.0001, P. = 100. The results are computed for different time levels. The L, and Lo errors are
reported in Table-4. The results obtained from Method-I, are more accurate in comparison to Method-II.
In [7], Huai-Huo Cao et. al computed Lo error with A = 0.1 and k& = 0.0001 was 3.34E — 09 at T' = 1.0.
Hence, Method-I, produce more accurate result than [7] with A = 0.1 and k£ = 0.001. In Fig-1, Numerical
solutions at ¢ = 1.0 are also depicted graphically which is similar to [7]. Both presented methods work
well for higher value of P, = 100 for a long time T' = 20.

Figure 1: Approximate Solutions with (h = 0.1,k = 0.001) at T' = 1.0.

Example 4 We consider the following equation [7]

ou ou 0?u
— =7=—,0<2<2,0<t<2

3t+83x Vo2 =T =5=t=

with initial condition ¢(z) = sin(z), and boundary conditions are

ou ou

(a)(o,t) = exp (—7t) cos(et), (a)@,t) = exp (—7t) cos(2 — et).



Int. J. of Applied Mathematics and Computation, 4(2), 2012 125

The exact solution is given by u(z,t) = exp(—~t) sin(z — et).

In our computation, we take ¢ = 1.0, = 0.1,h = 0.1,k = 0.01, so that C,, = 0.1,s = 0.1, P, = 1.
The results are computed for different time levels. The L., and Ly errors are reported in Table-5.The
L., and Lo errors obtained from Method-I, are less in comparison to Method-II. In this problem, both
methods work well for small value of P, =1 for a long time 7" = 20. In this problem, numerical results
shown in Huai-Huo Cao et. al [7] are more accurate with h = 0.1 and k& = 0.0001.

Table 5: Lo, and Lo errors (Example-4)

T Method-I Method-I Method-II  Method-II
Loo L2 Loo L2
0.2 1.60FE —05 1.48FE —05 2.04FE—04 8.64FE —05
0.4 3.08E8—-05 256F—05 b(.96F —04 2.63E—04
0.6 4.26FEF — 05 3.25FE—05 1.14F —03 5.52E —04
0.8 499F — 05 3.6bF—05 1.82FE—03 9.56E —04
1.0 516K — 05 4.01E—05 259F —03 147FE —03
5.0 1.37TE—-04 127TF—-04 7.88E—03 8.90F —03
10.0 140FE—-04 1.68E—-04 6.72E—03 8.81F —03
20.0 7T47E — 05 947E —05 4.66F —03 6.02FE — 03
Cao et. al [7]
(h =0.1,k = 0.0001) 2.82E — 06
T=1.0

Example 5 We consider the following equation [9]

ou ou 0%u

=7——,0<2<1,0<t T
ot Toop T VgV suslists

1 2
with € = 1.0,7 = 1.0 and the following initial condition ¢(x) = 5 EXP —502) ,s$ = 1.0, and bound-

100¢ —100(1 —¢
ary conditions are (8u> = ﬁu((),t), (c')u) = Lu(l,t).
Ot ) o) s ot ) (1) 5
(z —1)?
5

1
The exact solution is given by u(x,t) = — exp <—50 ) , 8 = (1 4+ 2007t).

NG

In our computation, we take e = 1.0,y = 1.0, h = 0.1,k = 0.0001, so that C, = 0.001,s = 0.01, P, =

0.1. The results are computed for different time levels. The L., and Ls errors are reported in Table-

6. The L, and Ly errors obtained from Method-I and Method-II are approximately similar. In this
problem, both methods work well for smaller value of P, = 0.1 at T'=1.

8. Conclusions

In this work, the convection-diffusion equations was dealt by using Method-I in which time derivative
is discretized by using Crank Nicolson scheme and apply cubic B-splines for spatial derivative. The
stability of this method is discussed by using von Neumann stability and shown that it is unconditionally
stable. This method works very well for different values of Péclet number, 0.1 < P, < 100 and time
T < 20. In Method- II, we apply cubic B-splines for spatial variable and its derivatives, then the
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Table 6: Lo and Ly errors ( Example-5)

T Method-I Method-I Method-II | Method-II
L Lo Lo Lo

0.2 | 273E—-03 | 1.7T7TE —03 | 2.74F — 03 | 1.77E — 03
04| 217E—-03 | 1.92E —03 | 2.18E —03 | 1.92E — 03
06| 211E—-03 | 1.98E —03 | 2.11E —03 | 1.99E — 03
0.8 | 211E—-03 | 2.00E —03 | 2.12FE — 03 | 2.01E — 03
1.0 | 212E—-03 | 201E—-03 | 2.13E —03 | 2.02E — 03

resulting system of first order ordinary differential equations are solved by using SSP-RK54 scheme.
Method-II also worked successfully and gives reliable but less accurate solutions. The implementations
of algorithms for these methods are very easy and economical. The accuracy of the numerical solutions
indicates that the presented methods are well suited for convection-diffusion equations with Neumann’s
boundary conditions.
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