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ABSTRACT

In this paper, an SEIRS mathematical model for the spread of malaria that incorporates recruitment of human population
through constant immigration is considered. Susceptible humans can be infected when they are bitten by an infectious
mosquito. They then progress through the exposed, infectious, and recovered class, before reentering the susceptible class.
Susceptible mosquitoes can become infected when they bite infectious or recovered humans, and once infected they move in
infectious class. The growth rate of mosquito population density is taken to be logistic. We define a reproductive number,
H0, for the number of secondary cases that one infected individual will cause through the duration of the infectious period.
We find that the disease-free equilibrium is locally asymptotically stable when H0 < 1 and unstable when H0 > 1.We prove
the existence and local asymptotic stability of endemic equilibrium point for H0 > 1. By stability analysis of ordinary
differential equation, the conditions for global stability of endemic equilibrium are obtained. Numerical simulations are
also carried out to investigate the influence of certain parameters on the spread of disease, to support the analytical results
and illustrate possible behavioral scenario of the model. The analysis of the model shows that if the growth rate of human
population and vector mosquito population increase, the spread of Malaria increases and the disease becomes more endemic
due to human immigration.

Keywords: Susceptible; infective; recovered; reproductive number; stability analysis; mosquito population;
malaria; numerical simulation.
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1. Introduction

Malaria disease is a major public health problem in the world. These diseases continue to afflict the poor
nations. It is one of the top ten killer diseases in the world. In each year, there are estimated between 300
to 500 million clinical episodes of malaria and 1.5 to 2.7 million deaths worldwide, 90% of which occur in
tropical Sahara. Outsides Africa, some two-thirds of remaining cases occur in just three countries; Brazil,
India and Sri Lanka. However, it exists in some 100 countries [1]. It is an infectious disease caused by the
parasite genus Plasmodium. There are four species of this parasite causing Malaria, namely, Plasmodium
Vivax, Plasmodium falciparum, Plasmodium ovale and Plasmodium malariae [2]. Malaria is transmitted
through the vectors, Anopheles mosquitoes and not directly from human to human. The disease infects
humans of all ages and can be lethal. According to the world Health organizations in year 2007, about
40% of the world population, mostly those living in the poorest countries, are at risk of malaria of the
billion people at risk, more than 500 million become severely ill with malaria every year and more than
1 million die from the effects of the disease.

There has been a rural-urban movement in search for jobs: this currently is a major phenomenon and
a major determinant of disease spread in Africa. This has been resulted into unregulated urban growth
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that leads to an increase in malaria transmission because of poor housing and sanitation, improper
drainage of surface water and use of unprotected water reservoirs that increase human-mosquito contact
and mosquito breeding. This has been compounded by wars, natural disasters such as droughts and
floods that have resulted in displacement of communities into environmental refugees [3].

Mathematical models have long provided important insights into disease dynamics and control. Gen-
eral epidemiological compartmental models that include infective immigrants but with no age structure
have been studied in [4–6]. However most of the host-vector mathematical models used have focused on
the dynamics of the disease in the absence of infective immigrants. They consider the immigration of
susceptible humans (see [7], for a mass action model and [8], for standard incidence) for the horizontal
transmission of malaria. The Chitnis et al. [8] model does not include immigration of infectious humans,
as they assume that sick people do not travel. However, some of the immigrants from malaria-endemic
areas are infected with malaria parasites and can be a source of malaria when they move to a malaria-
free zone that has uninfected mosquitoes. Thus, the role of infective migrants cannot be ignored in the
spread of malaria. In Tumwiine et al.,[9] a model based on susceptible-infectious-recovered-susceptible
SIRS pattern for humans and susceptible-infectious SI pattern for mosquitoes was considered. It was
established that recoveries and temporary immunity keep the populations at oscillation patterns and
eventually converge to a steady state. In particular Shukla et al. [10] studied the spread of malaria with
environmental effects. We have modified this model by considering the growth rate of mosquito popu-
lation as an increasing function of human populations and also, introduced an exposed class of human
population to incorporate the time lag between the events of susceptible population entering into the
infective population. This paper is organized as follows: in section 2, we introduce mathematical model.
Section 3 focuses on the analysis of the model which includes the study of region of attraction. Section
4 deals with the equilibria of the system. In sections 5 and 6 local and global stability of the equilibrium
points are established. Section 7 highlights the results of our analysis using numerical simulation. Section
8 presents a short discussion.

2. The Mathematical Model

We consider here that the total human population densityN1(t)is divided into four classes, the susceptible
S1(t),the exposed E1(t),the infective I1(t),and the removed class R1(t). Let mosquito population density
N2(t)is divided into two classes, viz. the susceptible class S2(t)and the infective class I2(t). Now by
considering the criss-cross interaction, SEIRS model can be written as,

dS1

dt
= A− µ1S1 − β1S1I2 + δ1R1 ,

dE1

dt
= β1S1I2 − ν1E1 − µ1E1 ,

dI1
dt

= ν1E1 − γ0I1 − α1I1 − µ1I1 ,

dR1

dt
= γ0I1 − µ1R1 − δ1R1 ,

dN1

dt
= A− µ1N1 − α1I1 ,

dS2

dt
= s(N1)N2 −

s0N
2
2

L(N1)
− β2S2I1 − µ2S2 − α2S2 ,

dI2
dt

= β2S2I1 − µ2I2 − α2I2 ,

dN2

dt
= s(N1)N2 −

s0N
2
2

L(N1)
− µ2N2 − α2N2 , (2.1)
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with S1 +E1 + I1 +R1 = N1 ,S2 + I2 = N2 ,s(N1) = s0 + S1N1 ,S1(0) ≥ 0,E1(0) ≥ 0,I1(0) ≥ 0,R1(0) ≥
0,S2(0) ≥ 0,I2(0) ≥ 0. Also,

L(N1) = L0 + L1N1, L0 > 0, L1 > 0 (2.2)

Now using S1 + E1 + I1 + R1 = N1 and S2 + I2 = N2 , the model (2.1) are reduced in the variables
E1, I1, R1, N1, I2, N2 as follows;

dE1

dt
= β1(N1 − I1 − E1 −R1)I2 − ν1E1 − µ1E1 ,

dI1
dt

= ν1E1 − γ0I1 − α1I1 − µ1I1 ,

dR1

dt
= γ0I1 − µ1R1 − δ1R1 ,

dN1

dt
= A− µ1N1 − α1I1,

dI2
dt

= β2(N2 − I2)I1 − µ2I2 − α2I2 ,

dN2

dt
= s(N1)N2 −

s0N
2
2

L(N1)
− µ2N2 − α2N2 . (2.3)

In the above model (2.3), A is the constant immigration rate of human population; µ1the natural death
rate constant of human population; β1 the interaction coefficient of susceptible human with infective
mosquito population; γ0 the recovery rate coefficient of the human population; α1the disease related
death rate constant of human population; δ1the rate coefficient at which individuals in the removed
class again become susceptible; µ2the natural death rate constant of mosquito population; α2the death
rate of mosquito due to control measure; β2is the interaction coefficient of susceptible mosquito with
infective human class; s(N1)is the growth rate per capita of the mosquito population density under the
assumption that growth rate increases as total human population increases, so that s(0) = s0 > 0 and
s′(N1) ≥ 0 where s0 is the value of s(N1) when N1 = 0. s0 is the intrinsic growth rate of mosquito
population; L(N1) is the carrying capacity of the mosquito population and it is taken as to be increasing
function of human population density and its value is L(N1) {s(N)− (µ2 + α2)} /s0.

3. Region of attraction

Theorem 3.1. The region of attraction for the system (2.3) is given by;

Ω =

{
(E1, I1, R1, N1, I2, N2) :

A

µ1 + α1
≤ N1 ≤

A

µ1
, 0 ≤ I2 ≤ N2 ≤ N̄m

}
which attracts all solutions initiating in the positive orthant, where

N̄m = L(N1) {s(N1)− (µ2 + α2)} /s0.

Proof. From fourth equation of model (2.3) the total population N(t) satisfies,

dN1

dt
= A− µ1N1 − α1I1.

It follows from I(t) < N(t) thatA− (µ1 + α1)N(t) ≤ dN
dt ≤ A− µ1N(t).

This implies that, A
µ1+α1

≤ N1 ≤ A
µ1

.
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From sixth equation of model (2.3) we can write,

dN2

dt
≤ s(N1)N2 −

s0N
2
2

L(N1)
− (µ2 + α2)N2.

This implies that, 0 ≤ N2 ≤ L(N1) {s(N1)− (µ2 + α2)} /s0 or 0 ≤ S2 + I2 ≤ N̄m.

4. Equilibrium Analysis

The system (2.3) has three non negative equilibria

M1(0, 0, 0, N̄1, 0, 0), M2(0, 0, 0, ¯̄N1, 0,
¯̄N2) and M3(Ê1, Î1, R̂1, N̂1, Î2, N̂2).

4.1 Existence of M1(0, 0, 0, N̄1, 0, 0)

Here N̄1is the solution of the following equation

A− µ1N1 = 0.

Clearly, N̄1 = A
µ1
> 0. So the equilibrium point M1(0, 0, 0, N̄1, 0, 0) exists.

4.2 Existence of M2(0, 0, 0, ¯̄N1, 0,
¯̄N2)

Here ¯̄N1 and ¯̄N2 are given by the solution of the following equations;

A− µ1
¯̄N1 = 0

and

s( ¯̄N1) ¯̄N2 −
s0N

2
2

L( ¯̄N1)
− (µ2 + α2) ¯̄N2 = 0

Clearly,

¯̄N1 =
A

µ1
> 0

and

¯̄N2 =
L( ¯̄N1)

{
s( ¯̄N1)− (µ2 + α2)

}
s0

> 0

if

s( ¯̄N1) > (µ2 + α2)

So the equilibrium point M2(0, 0, 0, ¯̄N1, 0,
¯̄N2) exists if s( ¯̄N1) > (µ2 + α2).
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4.3 Existence of M3(Ê1, Î1, R̂1, N̂1, Î2, N̂2)

The non trivial interior equilibrium point M3 is the positive solution of the following algebraic equations

β1(N1 − I1 − E1 −R1)I2 − ν1E1 − µ1E1 = 0. (4.1)

ν1E1 − γ0I1 − α1I1 − µ1I1 = 0. (4.2)

γ0I1 − µ1R1 − δ1R1 = 0. (4.3)

A− µ1N1 − α1I1 = 0. (4.4)

β2(N2 − I2)I1 − µ2I2 − α2I2 = 0. (4.5)

s(N1)N2 −
s0N

2
2

L(N1)
− (µ2 + α2)N2 = 0. (4.6)

Now from equation (4.4) and (4.3) we get,

I1 =
(A− µ1N1)

α1

and

R1 =
γ0(A− µ1N1)

α1(µ1 + δ1)
= g1(N1)(say)

Also from equation (4.2), (4.6) and (4.2) we get,

E1 =
(γ0 + α1 + µ1)(A− µ1N1)

ν1α1
, N2 =

L(N1) {s(N1 − (µ2 + α2)}
s0

and

I2 =
β2N2I1

(β2I1 + µ2 + α2)
=
β2L(N1) {s(N1)− (µ2 + α2)} (A− µ1N1)

s0α1

[
β2(A−µ1N1)

α1
+ (µ2 + α2)

] .

Now putting the value of I1, E1, R1, I2 and N2in equation (4.1) then whole equation reduces to N1. So
we can write,

F (N1) =
β1β2L(N1) {s(N1)− (µ2 + α2)}

[
N1 − (A−µ1N1)

α1
− (γ0+α1+µ1)(A−µ1N1)

ν1α1
− g1(N1)

]
s0

[
β2(A−µ1N1)

α1
+ (µ2 + α2)

]
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− (ν1 + µ1)(γ0 + α1 + µ1)

ν1
(4.7)

It is clear from equation (4.7) that,

F

(
A

µ1 + α1

)
=
−β1β2L

(
A

µ1+α1

){
s
(

A
µ1+α1

)
− (µ2 + α2)

}[
(γ0+α1+µ1)A
ν1(µ1+α1) + γ0A

(µ1+δ1)(µ1+α1)

]
s0

[
β2A

(µ1+α1) + (µ2 + α2)
]

− (ν1 + µ1)(γ0 + α1 + µ1)

ν1
< 0.

(4.8)

and

F

(
A

µ1

)
=
β1β2L(A/µ1) {s(A/µ1)− (µ2 + α2)}A

µ1s0(µ2 + α2)
− (ν1 + µ1)(γ0 + α1 + µ1)

ν1
> 0.

If

H0 =
ν1β1β2L(A/µ1) {s(N1)− (µ2 + α2)}A
µ1s0(µ2 + α2)(ν1 + µ1)(γ0 + α1 + µ1)

> 1

It would be sufficient if we show that F (N) = 0has one and only one root. From equation (4.7), we note

that F
(

A
µ1+α1

)
< 0and F

(
A
µ1

)
> 0.This implies that there exists a root N̂1of F (N1) = 0in A

µ1+α1
<

N1 <
A
µ1
.

Also,F ′(N1) > 0 ,provided
[
N1 − (A−µ1N1)

α1
− (γ0+α1+µ1)(A−µ1N1)

ν1α1
− γ0(A−µ1N1)

α1(µ1+δ1)

]
> 0 in A

µ1+α1
< N1 <

A
µ1
. Thus, there exists a unique root of F (N1) = 0, (say N̂1) in A

µ1+α1
< N1 <

A
µ1
. So the equilibrium

point M3exists provided H0 > 1.

5. Local Stability Analysis

Now, we analyze the stability of equilibria M1,M2 and M3. The local stability results of these equilibria
are stated in the following theorem

Theorem 5.1. The disease free equilibrium point M1 is unstable if M2 exist and disease free equilibrium

point M2 is stable if H0 < 1 and unstable ifH0 > 1, where H0 = β1ν1
¯̄N1β2

¯̄N2

(γ0+α1+µ1)(µ2+α2)(ν1+µ1) .

The interior equilibrium point M3 when exists, is locally asymptotically stable provided the following
conditions are satisfied:

(ν1 − β1Î2)2 <

(
1

4

)
(β1Î2 + ν1 + µ1) (γ0 + α1 + µ1) ,

(β1Î2)2 <

(
1

2

)
(β1Î2 + ν1 + µ1) (µ1 + δ1) , (5.1)

[
β1(N̂1 − Î1 − Ê1 − R̂1)

]2
<

(
1

3

)
(β1Î2 + ν1 + µ1) (β2Î1 + µ2 + α2) ,
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(γ0)2 <

(
1

2

)
(γ0 + α1 + µ1) (µ1 + δ1) ,

(β1Î2)2 <

(
1

3

)
(β1Î2 + ν1 + µ1) (µ1) ,

(α1)2 <

(
1

4

)
(γ0 + α1 + µ1) (µ1) ,

[
β2(N̂2 − Î2)

]2
<

(
1

3

)
(γ0 + α1 + µ1) (β2Î1 + µ2 + α2) ,

s1N̂2 −
s0N̂

2
2L1[

L(N̂1)
]2


2

<

(
2

3

) [
µ2 + α2 − s(N̂1) +

2s0N̂2

L(N̂1)

]
(µ1) ,

(β2I1)2 <

(
2

3

)
(β2Î1 + α2 + µ2)

[
α2 + µ2 − s(N̂1) +

2s0N̂2

L(N̂1)

]
.

Proof. The variational matrix V1 at M1(0, 0, 0, N̄1, 0, 0)corresponding to the system of equation (2.3) is
given by;

V1 =


−ν1 − µ1 0 0 0 β1N̄1 0

ν1 −γ0 − α1 − µ1 0 0 0 0
0 γ0 −µ1 − δ1 0 0 0
0 −α1 0 −µ1 0 0
0 0 0 0 −µ2 − α2 0
0 0 0 0 0 s(N̄1)− (µ2 + α2)


Since one eigenvalue s(N̄1)−(µ2+α2)of matrix V1is positive because s(N̄1) > (µ2+α2).So M1is unstable.

The variational matrix V2 at M2(0, 0, 0, ¯̄N1, 0,
¯̄N2) corresponding to the system of equation (2.3) is

given by;

V2 =



−ν1 − µ1 0 0 0 β1
¯̄N1 0

ν1 −J 0 0 0 0
0 γ0 −µ1 − δ1 0 0 0
0 −α1 0 −µ1 0 0

0 β2
¯̄N2 0 0 −µ2 − α2 0

0 0 0 s1
¯̄N2 +

s0
¯̄N2
2

[L( ¯̄N1)]
2 0 −K


Where J = γ0 + α1 + µ1 and K = s( ¯̄N1)− (µ2 + α2).

Then the characteristic polynomial of V2 is given by;

P(λ) = (−µ1 − ν1 − λ) (−µ1 − λ) (−K − λ)(
−(ν1 + µ1 + λ) {(J + λ)(µ2 + α2 + λ)}+ β1

¯̄N1ν1β2
¯̄N2

)
= (µ1 + ν1 + λ) (µ1 + λ) (K + λ)(

(ν1 + µ1 + λ) {(J + λ) (µ2 + α2 + λ)} − β1
¯̄N1ν1β2

¯̄N2

)
= (µ1 + ν1 + λ) (µ1 + λ) (K + λ)

(
λ3 +Bλ2 + Cλ+D

)
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therefore the eigenvalues of the matrix V2 are −µ1 − ν1 ,−µ1 ,−
(
s( ¯̄N1)− (µ2 + α2)

)
and the roots of

the polynomial q(λ) = λ3 +Bλ2 + Cλ+D where;

B = (ν1 + γ0 + α1 + 2µ1 + µ2 + α2 ) ,

C = ((γ0 + α1 + µ1 + µ2 + α2)(ν1 + µ1) + (γ0 + α1 + µ1)(µ2 + α2)) and

D =
{

(γ0 + α1 + µ1) (µ2 + α2) (ν1 + µ1)− β1ν1
¯̄N1β2

¯̄N2

}
Here, we note that Band C are always positive and D is positive if H0 < 1 where,

H0 = β1ν1
¯̄N1β2

¯̄N2

(γ0+α1+µ1)(µ2+α2)(ν1+µ1) . Thus disease free equilibria is stable ifH0 < 1 because all the conditions

of Routh-Hurwitz criteria are satisfied. However, if H0 > 1although B > 0, BC −D > 0 but D < 0thus
disease free equilibria is unstable. At H0 = 1one of the eigenvalues of the disease free equilibria is zero.
So we cannot predict anything about the stability of the system in this case. H0 = 1 corresponds to the
stability switch in the disease free equilibria as for H0 < 1it is stable and for H0 > 1 it is unstable.

Now we find the conditions for locally asymptotically stability of interior equilibrium point; For this
we first linearize the system (2.3) around the positive equilibrium M3by taking the transformationE1 =
e1 + Ê1,I1 = i1 + Î1,R1 = r1 + R̂1 ,N1 = n1 + N̂1 ,I2 = i2 + Î2 andN2 = n2 + N̂2, where e1, i1, r1, n1,
i2 and n2 are small perturbations about M3.. We consider the following positive definite function in the
linearised system of model (2.3).

W1 =
1

2
e2

1 +
1

2
i21 +

1

2
r2
1 +

1

2
n2

1 +
1

2
i22 +

1

2
n2

2.

Now, differentiating W1 with respect to time t, we can find Ẇ1 along the solution of linearised system
of (2.3) as follows,

Ẇ1 =

[
−1

4
b11 e

2
1 + b12 e1 i1 −

1

4
b22 i

2
1

]
+

[
−1

4
b11 e

2
1 + b13 e1 r1 −

1

2
b33 r

2
1

]
+

[
−1

2
b33 r

2
1 + b23 r1 i1 −

1

4
b22 i

2
1

]
+

[
−1

4
b11 e1 + b15 e1 i2 −

1

3
b55 i

2
2

]
+

[
−1

3
b55 i

2
2 + b25 i1 i2 −

1

4
b22 i

2
1

]
+

[
−1

4
b11 e

2
1 + b14 e1 n1 −

1

3
b44 n

2
1

]
+

[
−1

4
b44 n

2
1 + b24 n1 i1 −

1

4
b22 i

2
1

]
+

[
−1

3
b44 n

2
1 + b46 n1n2 −

1

2
b66 n

2
2

]
+

[
−1

3
b55 i

2
2 + b56 i2n2 −

1

2
b66 n

2
2

]
.

Where, b12 = (ν1 − β1Î2), b11 = (β1Î2 + ν1 + µ1), b22 = (γ0 + α1 + µ1),

b13 = −β1Î2, b44 = µ1, b55 = (β2Î1 + µ2 + α2),

b15 = β1(N̂1 − Î1 − Ê1 − R̂1), b24 = −α1, b14 = β1Î2,

b25 = β2(N̂2 − Î2), , b23 = γ0,

b46 =

s1N̂2 −
s0N̂

2
2L1[

L(N̂1)
]2
 , b66 =

[
(µ2 + α2)− s(N̂1) +

2s0N̂2

L(N̂1)

]
, b33 = µ1 + δ1.

Sufficient condition for Ẇ1 to be negative definite are that the inequalities (5.1) holds. This completes
the proof of theorem.
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6. Global Stability

Theorem 6.1. In addition to the assumption (2.2), let L(N1)satisfy in the regionΩ, Lm ≤ L(N1) ≤ L0

and 0 ≤ −L′(N1) ≤ p ,for some positive constants Lmand p. Let the following inequalities are satisfied;

(ν1 − β1Î2)2 <

(
1

4

)
(β1Î2 + ν1 + µ1) (γ0 + α1 + µ1) ,

(γ0)2 <

(
1

2

)
(γ0 + α1 + µ1) (µ1 + δ1) ,

(−β1Î2)2 <

(
1

2

)
(β1Î2 + ν1 + µ1) (µ1 + δ1) ,

[β1(N1 − I1 − E1 −R1)]
2
<

(
1

3

)
(β1Î2 + ν1 + µ1) (β2Î1 + µ2 + α2) , (6.1)

[
β2(N̂2 − Î2

]2
<

(
1

3

)
(γ0 + α1 + µ1) (β2Î1 + µ2 + α2) ,

(β1Î2)2 <

(
1

3

)
(β1Î2 + ν1 + µ1) (µ1) ,

(β2Î1)2 <

(
2

3

)
(β2Î1 + µ2 + α2)

(
s0

L(N̂1)

)
,

[s1 − s0N2η(N1)]
2
<

(
2

3

)
(µ1)

(
s0

L(N1)

)
,

(−α1)2 <

(
1

3

)
(γ0 + α1 + µ1) (µ1) ,

then M3(Ê1, Î1, R̂1, N̂1, Î2, N̂2) is globally asymptotically stable with respect to the all solution initiating
in the positive orthant.

Proof. Let us consider the following positive definite function about M3(Ê1, Î1, R̂1.N̂1, Î2, N̂2).

V (E1, I1, R1, N1, I2, N2) =
1

2

(
E1 − Ê1

)2

+
1

2

(
I1 − Î1

)2

+
1

2

(
R1 − R̂1

)2

+
1

2

(
N1 − N̂1

)2

+
1

2

(
I2 − Î2

)2

+

(
N2 − N̂2 − N̂2 log

N2

N̂2

)
.

Now, differentiating above equation with respect to t we get,

dV

dt
=
(
E1 − Ê1

) dÊ1

dt
+
(
I1 − Î1

) dÎ1
dt

+
(
R1 − R̂1

) dR̂1

dt
+
(
N1 − N̂1

) dN̂1

dt

+
(
I2 − Î2

) dÎ2
dt

+

(
N2 − N̂2

)
N2

dN̂2

dt
.
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After some algebraic manipulation and considering functions,

η(N1) =


(

1
L(N1)

− 1
L(N̂1)

)
(N1−N̂1)

, N1 6= N̂1

− L′(N1)

L2(N̂1)
, N1 = N̂1.

Then by using assumptions of the theorem and the mean value theorem we have,

|η(N1)| < p

L2
m

,

derivative of V i.e. V̇ can be written as the sum of the quadratics,

dV

dt
= −1

4
a11

(
E1 − Ê1

)2

+ a12

(
E1 − Ê1

) (
I1 − Î1

)
− 1

4
a22

(
I1 − Î1

)2

−1

4
a22

(
I1 − Î1

)2

+ a23

(
I1 − Î1

) (
R1 − R̂1

)
− 1

2
a33

(
R1 − R̂1

)2

−1

2
a33

(
R1 − R̂1

)2

+ a13

(
E1 − Ê1

) (
R1 − R̂1

)
− 1

4
a11

(
E1 − Ê1

)2

−1

4
a11

(
E1 − Ê1

)2

+ a14

(
E1 − Ê1

)(
N1 − N̂1

)
− 1

3
a44

(
N1 − N̂1

)2

−1

4
a11

(
E1 − Ê1

)2

+ a15

(
E1 − Ê1

) (
I2 − Î2

)
− 1

3
a55

(
I2 − Î2

)2

−1

3
a55

(
I2 − Î2

)2

+ a25

(
I1 − Î1

) (
I2 − Î2

)
− 1

4
a22

(
I1 − Î1

)2

−1

3
a55

(
I2 − Î2

)2

+ a56

(
N2 − N̂2

)(
I2 − Î2

)
− 1

2
a66

(
N2 − N̂2

)2

−1

2
a44

(
N1 − N̂1

)2

+ a46

(
N1 − N̂1

)(
N2 − N̂2

)
− 1

3
a66

(
N2 − N̂2

)2

−1

3
a44

(
N1 − N̂1

)2

+ a24

(
I1 − Î1

) (
N1 − N̂1

)
− 1

4
a22

(
I1 − Î1

)2

.

Where, a11 =
(
β1Î2 + ν1 + µ1

)
, a22 = (γ0 + α1 + µ1) , a33 = (µ1 + δ1) ,

a13 =
(
−β1Î2

)
,a14 =

(
β1Î2

)
,a15 = β1 (N1 − E1 − I1 −R1) ,

a23 = (γ0) ,a24 = (−α1) ,a25 = β2 (N2 − I2) ,

a44 = (µ1) ,a56 =
(
β2Î1

)
,a55 =

(
β2Î1 + µ2 + α2

)
,

a66 =

(
s0

L(N̂1)

)
,a12 =

(
ν1 − β1Î2

)
,a46 = (s1 − s0N2η(N1)) .

After maximizing the L.H.S and minimizing the R.H.S of the inequalities given in (6.1), then the
term a15 , a25 and a46 can be written as β1N1 , β2N2 and s1. Then sufficient conditions for dV

dt to be
negative definite are,

(a12)
2
<

(
1

4

)
a11 a22 , (a23)

2
<

(
1

2

)
a22 a33 , (a13)

3
<

(
1

2

)
a11 a33 ,
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Figure 1: Variation of infective human population
for different rates of immigration A

Figure 2: Variation of infective human population
for different rates of recovery constant.

Figure 3: Variation of infective human population for
different rates of the interaction coefficients of suscep-
tible mosquito with infective human class.

Figure 4: Variation of infective human population for
different L1.

(a14)
2
<

(
1

3

)
a11 a44 , (a15)

2
<

(
1

3

)
a11 a55 , (a25)

2
<

(
1

3

)
a22 a55 , (6.2)

(a56)
2
<

(
2

3

)
a55 a66 , (a46)

2
<

(
2

3

)
a44 a66 , (a24)

2
<

(
1

3

)
a22 a44 .

7. Numerical simulation

In this section, we present numerical simulation to explain the applicability of the result discussed
above. We choose the following parameters in model (2.3) are, A = 10, µ1 = 0.8, β1 = 0.009, α1 = 0.011,
β2 = 0.015, s0 = 5, ν1 = 0.8, α2 = 0.001, µ2 = 0.001, γ0 = 0.09, L0 = 80, L1 = 0.05, s1 = 0.001,
δ1 = 0.05
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Figure 5: Variation of infective human population for
different s1

Figure 6: Variation of total human population with
infective human population.

With these values of parameters, it can be checked that the interior equilibrium M3 exists and is given
by,
Ê1 = 2.9013, Î1 = 2.5760, R̂1 = 0.2728, N̂1 = 12.4646, Î2 = 76.8161, N̂2 = 80.7920.
The eigenvalues of the variational matrix corresponding to the interior equilibrium of the model are
−5.01046462781, −0.8098302564, −0.1527458690, −0.0396957935, −1.755461224, −1.405230899.
Since all the eigenvalues are found to be negative, the interior equilibrium is locally asymptotically

stable for the above set of parameters. Again with the set of parameters given above it can be verified
that the conditions (5.1) and (6.1) in theorem (5.1) and (6.1) is satisfied. This shows that M3 is locally
and globally asymptotically stable respectively.

The results of numerical simulation are displayed graphically in Figs. (1-2) the effect of various
parameters, i.e. A and γ0 on the infective human population have been shown. It is noted that these
figures that as these parameter value increase, the infective human population increases and decreases
respectively.

In Figs. (3-4) shows the effect of various parameters, i.e. role of β2 and L1 on the infective human
population. It is noted from that these figures that as a parameter increases, the infective human
population increases. Also Fig. (??) show the effect of parameter s1 on the infective human population.
It shows that if value of the parameter s1 increases, the infective human population increases. Simulation
is performed for different initial positions in figures (6-7) to display global stability of the system. From
these figures, it is clear that all the trajectories starting from different initial starts, reach the interior
equilibrium M3.

8. Conclusion

We analyzed a system of the ordinary differential equations model for the transmission of malaria,
taking four variables for humans and two variables for mosquitoes. We showed that there exists a
domain where the model is epidemiologically and mathematically well-posed. We proved the existence
of an equilibrium point with no disease. We define a reproductive number, H0, that is epidemiologically
accurate in that it provides the expected number of new infections (in mosquitoes or humans) from one
infectious individual (human or mosquito) over the duration of infectious period, given that all other
members of the population are susceptible. We showed that if H0 < 1then disease-free equilibrium point
is locally asymptotically stable, and if H0 > 1,then disease free equilibrium point is unstable. We also
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Figure 7: Variation of total mosquito population with infective mosquito population.

prove that an endemic equilibrium point exists for all H0 > 1 and it is locally asymptotically stable.
The criteria for global stability of an endemic equilibrium are also obtained. It is concluded from the
computer simulation that if the constant immigration rate and the recovery rate coefficient of the human
population increases, then the infective human population increases and decreases respectively. Also,
when the interaction coefficients of susceptible mosquito with infective human class and the growth rate
coefficients of mosquito population increases, then the infective human population increases.
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