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ABSTRACT

A dominating set S of a graph G is perfect if each vertex of G is dominated by exactly one vertex in S. We study the
minimum perfect dominating sets in the Petersen graph and in the Clebsch graph. In this paper we show that every
minimum perfect dominating set in the Petersen graph and the Clebsch graph induces K1,3 and C4 respectively. Further
we establish that these classes of minimum perfect dominating sets of Clebsch graph form Partially Balanced Incomplete
Block Designs with the parameters (16, 40, 10, 4, 1, 4).

Keywords: Partially balanced incomplete block designs; Minimum perfect dominating set; Perfect domination
number; strongly regular graphs.

c© 2012 Darbose. All rights reserved.

1. Introduction

In combinatorial mathematics, a block design is a particular kind of hyper graph or set system which
has applications to finite geometry, cryptography and algebraic geometry. In the class of incomplete
block design, the balanced incomplete block design (here after called BIBD) given by Yates, in 1936, is
the simplest one. A BIBD is one among the many variations that have been studied in block designs
and it is a set of v elements arranged in b blocks of k elements each in such a way that each element
occurs in exactly r blocks and every pair of unordered elements occurs in l blocks and it is denoted
by the representation (v, b, r, k, l)-design. The connection between graph theory and designs were first
observed by Berge [3]. Motivated by the works of Berge, Paola [14] has given a link between some classes
of graphs and BIBD’s. As the class of BIBD’s do not fit for many experimental situations as these
design requires large number of replications, to overcome this Bose and Nair [5] introduced a class of
binary, equireplicate and proper designs called Partially Balanced Incomplete Block Designs (here after
called PBIBD’s) which was included as a special case of the BIBD’s. Bose and Shimamoto [6] are first
to introduce the concept of association schemes in PBIBD’s. More about association schemes can be
found in Bannai and Ito [2], Godsil and Royal [10] and Bailey [1] and a catalogue of different PBIB on
two associate class designs can be found in Clatworthy [8]. Bose in his pioneering paper [4], used the
graph theoretic method for the study of association schemes of PBIBD’s and also shown that the concept
of strongly regular graphs is isomorphic with the association schemes of PBIBD’s (with two associate
classes). Walikar et. al. [? ] introduced the designs called (ν, β0, µ)-designs whose blocks are maximum
independent sets in regular graphs on ν vertices. Walikar et. al. [16] have also established the relation
between minimum dominating sets of a graph with the blocks of PBIBD’s. We know that it is possible
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to construct the strongly regular graph G with the parameters (ν, n1, P
1
11, P

2
11)from a given PBIBD with

two association schemes having parameters (ν, b, r, k, λ1, λ2)(see Bose [4] and Rao [15]). In this paper,
we prove that every minimum perfect dominating set (here after called MPDS) in Clebsch graph induces
C4. Further we establish that the set of all MPDS’s forms PBIBD with parameters (16,40,10,4,1,4).

2. Background

In this section, we discuss some definitions and preliminary results (see Berge [3], Chartrand and Zhang
[7], Harary [9], Godsil and Royl [10], Haynes et.al. [11]). Suppose G = (V,E) is a graph with vertex set
V and edge set E. Throughout the paper G = (V,E)stands for finite, connected and undirected simple
graph. A vertex u is said to dominate a vertex ν if E contains an edge from u to ν or u = ν. A set of
vertices S ⊆ V is called a dominating set of G if every vertex of G is dominated by at least one member
of S. When each vertex of G is dominated by exactly one member of S, the set S is called a perfect
dominating set (here after called PDS) of G. The perfect domination number γp(G)is the cardinality
of smallest PDS of G. The Petersen graph G is a cubic strongly regular graph with the parameters
(10,3,0,1) whose vertices are 2-element subset of a set {1, 2, 3, 4, 5} and two vertices in G are adjacent
if their intersection is empty (see Holtan and Sheehan [13]). The figure 1 shows the construction of
Petersen graph G.
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Figure 1. Construction of Peterson graph

The Clebsch graph G is a strongly regular Quintic graph on 16 vertices and 40 edges with parameters
(16, 5, 0, 2). It is also known as the Greenwood-Gleason Graph. The Clebsch graph as vertices all
subsets of {1, 2, 3, 4, 5} of even cardinality; two vertices are adjacent if their symmetric difference has
cardinality 4. The figure 2 shows the construction of Clebsch graph G.

Definition 2.1 ([11]). A strongly regular graph G with parameters (n, k, λ, µ) is a graph on n vertices
which is regular with valency k and has the following properties:

• any two adjacent vertices have exactly λ common neighbors;

• any two nonadjacent vertices have exactly µ common neighbors.

So the Petersen graph and the Clebsch graph are strongly regular graph with the parameters (10, 3,
0, 1) and (16, 5, 0, 2) respectively. The four parameters n, k, λ and µ are not independent. Choose a
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Figure 2. Construction of Clebsch graph

vertex ν; counting in two ways the ordered pairs (x, y) of adjacent vertices such that x is adjacent to ν
but y is not, we obtain the following result.

Proposition 2.1 ([11]). The parameters (n, k, λ, µ) of a strongly regular graph satisfies the equation,
k(k − λ− 1) = (n− k − 1)µ.

Definition 2.2 ([15]). Given ν symbols 1, 2, ..., ν, a relation satisfying the following conditions is called
an m-class association scheme (m ≥ 2)

• any two symbols are either 1st, 2nd, · · · or mthassociates; this relation being symmetric i.e., if the
symbol αis the ith associate of β then β is the ith associate of α.

• each symbol α has ni i
th associates, the number ni being independent of α.

• If α and β are two ith associates, then the number of symbols that are jth associates of α and kth

associates of β is P i
jk and is independent of the pair of ith associate α and β.

Definition 2.3 ([15]). Given ν treatment symbols 1, 2, · · · , ν and an association of m-classes with m ≥ 2,
we have a Partially balanced incomplete block design (PBIBD) if v treatment symbols can be arranged
into b blocks each of them containing k symbols such that

• each of the symbol occurs in rblocks

• every symbol occurs at most once in a block.

• two symbols that are mutually ithassociates occur together in exactly λiblocks.

The numbers ν, b, r, k, λi (i = 1, 2, · · · ,m) are called the parameters of the first kind, whereas the numbers
ni and P i

jk, (i, j, k = 1, 2, · · · ,m) are called the parameters of the second kind. It can be easily seen that

vr = bkand
∑m

i=0 niλi = r(k − 1).

Proposition 2.2 ([7]). If G is a graph of order n,
[

n
∆+1

]
, where ∆ denotes the maximum degree of any

vertex of G.
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Figure 3. Construction of Clebsch graph with simplest node values.

Observation: For any graph G, γ(G) ≤ γp(G).

Lemma 2.3. The perfect domination number of a Petersen graph is four.

Proof. Let G be a Petersen graph. We know that γ(G)=3. From the observation 2.6, γp(G) ≥ 3. To
prove this, it is sufficient to show that γp(G) 6= 2 and γp(G) 6= 3. Clearly γp(G) 6= 1, since G is a
cubic regular graph on 10 vertices. We now claim that γp(G) 6= 2. For if γp(G) = 2, let S = {u, v}
be MPDS. If u and ν are adjacent then they can cover maximum of six vertices including themselves
and remaining four vertices of G are uncovered. On the other hand, if u and ν are non-adjacent then
they have a common neighbor which is a contradiction to the fact that S is PDS. Thus, γp(G) 6= 2.
Now, for if γp(G) = 3. Let S = {u, v, w} be MPDS. Then, the vertices of S induce one of the following
non-isomorphic sub graphs in G as shown in the figure 4.

H1 H2 H3

u v w u v w u v w

Figure 4.

As G is cubic strongly regular graph with parameters (10,3,0,1), any two nonadjacent vertices have
exactly one common neighbor. If S induces any of the sub graphs H1 or H2 or H3, then in all the three
sub graphs the vertex u and w are nonadjacent and hence they must have common neighbor say z. Hence
z is dominated by two of the vertices u and w of S, which is a contradiction to the fact that S is MPDS.
Therefore, γp(G) 6= 3. On the other hand, by the regularity of G and since any two nonadjacent vertices
have common neighbor, S must consist of four vertices to dominate G perfectly. Thus, γp(G) = 4, this
proves the lemma.

Lemma 2.4. Every MPDS in Petersen graph induces a claw graph K1,3.

Proof. Let G be a Petersen graph. Then, by the above lemma 2.7 we have γp(G) = 4. Let S =
u1, u2, u3, u4 be a MPDS of G. We claim that S is a claw graph K1,3. For if, S is not a claw graph K1,3
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and then as G is triangle free cubic graph S induces one of the following non-isomorphic sub graphs in
G as shown in the figure 5.

H1 H2 H3

H4 H5 H6

u1 u2 u3 u4 u1 u2 u3 u4 u1 u2 u3 u4

u1 u2 u3 u4 u1 u2 u3 u4

u1 u2

u3 u4

Figure 5.

To prove the lemma it is enough to show that following cases fails.
Case 1: 〈S〉 = H1 or 〈S〉 = H2 or 〈S〉 = H3 or 〈S〉 = H4 or 〈S〉 = H5

As G is cubic strongly regular graph with parameters (10, 3, 0, 1), any two nonadjacent vertices have
exactly one common neighbor. By this property of G, we can see that if S induces any of the sub graphs
H1 or H2 or H3 or H4 or H5 then as the vertex u1 is non-adjacent with the vertex u4, they have a
common neighbor say z. Hence the vertex zis dominated by the two vertices u1 and u4, which is a
contradiction to the fact that S is MPDS.
Case 2: 〈S〉 = H6

As G is strongly regular graph with each of vertex of valency three, S can cover maximum of seven
vertices in G and remaining three vertices of G and hence S is not a PDS. Thus, in all the above cases
S is not PDS. Hence S must induce K1,3. This proves the result.

3. MPDS’s in Clebsch graph

In this section, we study the MPDS in the Clebsch graph G. Let us partition the vertex set V of Clebsch
graph G into two subsets V1 = N [z] and V2 = V − V 1, where z is any vertex in G. By the structure of
Clebsch graph G, we can observe the following structural properties of G.
Observation 3.1: Clebsch graph is a triangle free strongly regular Quintic graph.
Observation 3.2: The sub graph on the non-neighbors of a point in the Clebsch graph is the Petersen
graph.
Observation3.3: As G is strongly regular graph with parameters (16, 5, 0, 2), any two nonadjacent
vertices are adjacent to two common vertices. Let u and ν be two nonadjacent vertices in G, then

• if u, µ ∈ V , then they are adjacent to two common vertices namely z and other in V2.

• if u = z and µ ∈ V2, then both are adjacent to two nonadjacent vertices in V1.

• if u, µ ∈ V2, then both are adjacent to one common vertex in V2 and the other in V1.

Lemma 3.1. The perfect domination number of Clebsch graph is four.

Proof. Let Gbe a Clebsch graph. Without loss of generality, let us partition the vertex set of G into two
subsets V1 = N [z] and V2 = V − V1, as defined above. We now show that γp(G) = 4. To prove this we
show that γp(G) 6= 3. For if γp(G) = 3, then let S = {u, v, w} be any MPDS in G. As Gis triangle free
graph, S induces one of the following non-isomorphic sub graphs as shown in figure 6.

Case 1 Let 〈S〉 = G
As Gis a strongly regular graph with parameters (16, 5, 0, 2), any pair of nonadjacent vertices have
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G1 G2 G3

u v w u v w u v w

Figure 6.

two common neighbors. By this property and the regularity of G, we have
⋃

z∈S N [z] = 10. Hence
there are at least six vertices in G uncovered by S. Hence S is not a PDS.

Case 2 Let 〈S〉 = G2

The two vertices u and µ in G2 can cover ten vertices of G and the remaining six vertices induce
3 K ′

2s in G. By choosing one vertex w in 3 K ′
2s, we can cover two more vertices in G. Therefore

there are four vertices of G which are uncovered by S. Hence S is not a PDS.

Case 3 Let 〈S〉 = G3

The two nonadjacent vertices uand whave common neighbor in G and they can cover eleven vertices
of G. As the vertex µ is adjacent to both u and w and by the regularity of G, we have

⋃
z∈S N [z] =

13. Thus, there are three vertices of G, which are uncovered by Sand hence S is not a PDS. Thus
in all the above cases S is not a PDS, hence γp(G) = 4 holds. In fact, the three vertices of MPDS in
a Petersen graph induced by V2 and one vertex in V1 forms a MPDS in G, which gives γp(G) = 4.
This proves the result.

Theorem 3.2. If S is a MPDS in the Clebsch graph G, then S induces C4.

Proof. By the above lemma 3.6, we have γp(G) = 4. Let S = {u1, u2, u3, u4} be a MPDS in G. We prove
that the set S induces C4 in G. As G is triangle free graph, the following are the possible non-isomorphic
graphs induced by S as shown in figure 7.

G1 G2 G3 G4

G5 G6 G7

u1 u2

u3 u4

u1 u2

u3 u4

u1 u2

u3 u4

u1 u2

u3 u4

u1 u2

u3 u4

u1 u2

u3 u4

u1 u2

u3 u4

Figure 7.
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Figure 8.

Two vertices u1 and u2 of G1 can cover ten vertices in G and the remaining six vertices induce 3K2’s
in G. As u3 and u4 are nonadjacent, we can cover four other vertices of G and hence at least two vertices
in G are not covered by S. Therefore S is not a PDS (Refer figure 8).

Case 2: 〈S〉 = G3 or 〈S〉 = G4 or 〈S〉 = G5 = K1,3.

u
u u u u u

u
u

u1

u2

u3

u4

v

Fig.9

If S induces any of the graphs G3 or G4 or G5. In all the cases without loss of generality, let us assume
that u1, u2, u3 ∈ V and u4 ∈ V2. By the structure of Clebsch graph, u2 and u3 must be adjacent to a
common vertex in V2 and this vertex must be other than u4 as none of the vertices u1, u2 and u3 are
adjacent to u4. This contradicts the fact that S is a PDS. Hence, S is not a PDS (Refer figure 9).

Case 3 : 〈S〉 = G6 = K4

In this case we prove that if S induces K4 then S is not a PDS. To prove this we consider the following
possibilities for the set S (See figure 10).
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(i) S ⊂ V1 or S ⊂ V2.

(ii) Partition S into two subsets V1 and V2 such that u1, u2 ∈ V1 and u3, u4 ∈ V2.

(iii) Partition Sinto two subsets V1and V2such that u1, u2, u3 ∈ V1and u4 ∈ V2.

In the first sub case, as S ⊂ V1 or S ⊂ V2 and two vertices in S are non-adjacent, hence they have two
common neighbors in V1 or V2 accordingly as S ⊂ V1 or S ⊂ V2, which is a contradiction to the fact
that S is PDS. Hence S is not a PDS. On the other hand, in the second and third sub case, there is at
least one vertex in V1 which is non-adjacent to a vertex in V2. By the structure of Clebsch graph, these
non-adjacent vertices will have common neighbors in V1 and V2 which contradicts that S is a PDS. Thus,
S is not a PDS.

Case 3: 〈S〉 = G7 = C4
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As G is strongly regular graph with each of the vertex of degree five. Each of the vertices of S will cover
three distinct vertices in G as N [ui]

⋃
N [uj ]= φ, for every pair of ui and uj adjacent vertices of S in G.

Thus, S covers every vertex of G. i.e.,
⋃4

i=1N [ui] = V . Hence S is a MPDS of G (Refer figure 11). This
completes the proof.

The following is the list of MPDS which induces C4in Clebsch graph G.
{1, 2, 3, 11}, {1, 2, 15, 5}, {1, 2, 12, 7}, {1, 2, 8, 14}, {1, 5, 4, 14}, {1, 5, 6, 11}, {1, 5, 13, 7}, {1, 7, 9, 14},
{1, 7, 10, 11}, {1, 11, 16, 14}, {2, 3, 4, 12}, {2, 3, 13, 8}, {2, 3, 9, 15}, {2, 8, 6, 12}, {2, 8, 10, 15},
{2, 12, 16, 15}, {3, 4, 5, 13}, {3, 4, 14, 9}, {3, 4, 10, 11}, {3, 9, 6, 11}, {3, 9, 7, 13}, {3, 11, 16, 13},
{4, 5, 6, 12}, {4, 5, 15, 10}, {4, 10, 7, 12}, {4, 10, 8, 14}, {4, 12, 16, 14}, {5, 6, 8, 13}, {5, 6, 9, 15},
{5, 13, 16, 15}, {6, 9, 7, 12}, {6, 8, 14, 9}, {6, 8, 10, 11}, {6, 11, 16, 12}, {7, 10, 8, 13},
{7, 9, 15, 10}, {7, 12, 16, 13}, {8, 13, 16, 14}, {9, 14, 16, 15}, {10, 11, 16, 15}.

4. PBIBD’s associated with MPDS’s of Clebsch graph

Let us define the 2 class association scheme of Clebsch graph by using the defintion 2.3 as follows: Let
S be the MPDS’s of Clebsch graph which induces C4. Then, S is the set of blocks of PBIBD with
parameters of first kind as (16,40,10,4,1,4) and parameters of second kind as

P1 =

(
P 1

11 P
1
12

P 1
21 P

1
22

)
=

(
0 4
4 6

)

P2 =

(
P 2

11 P
2
12

P 2
21 P

2
22

)
=

(
2 3
3 6

)
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