
c© Copyright, Darbose

International Journal of Applied Mathematics and Computation
Volume 3(3),pp 169–180, 2011
http://ijamc.psit.in

New approach for numerical solution of Fokker-Planck
equations

M. Zarebnia and S. Jalili
Department of Mathematics, University of Mohaghegh Ardabili, 56199-11367,
Ardabil, Iran

Abstract:

In this paper numerical solution of Fokker-Planck equations by means of the Chebyshev
spectral collocation method is considered. Firstly, properties of the Chebyshev spectral col-
location method required for our subsequent development are given and utilized to reduce
the computation of different kinds of Fokker-Planck equations to some system of ordinary
differential equations. Secondly, we use fourth-order Runge-Kutta formula for the numerical
solution of the system of ordinary differential equations. The method is applied to a few test
examples to illustrate the accuracy and the implementation of the method.
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1 Introduction

Fokker-Planck equation (FPE) arises in a number of different fields in natural science, including
solid-state physics, quantum optics, chemical physics, theoretical biology and circuit theory. The
Fokker-Planck equation was first used by Fokker and Planck [1] to describe the Brownian motion
of particles. If a small particle of mass m is immersed in a fluid, the equation of motion for the
distribution function W (x, t) is given by:

∂W

∂t
= γ

∂υW

∂υ
+ γ

KT

m

∂2W

∂2υ
, (1.1)

where υ is the velocity for the Brownian motion of a small particle, t is the time, γ is the
fraction constant, K is Boltzmann’s constant and T is the temperature of fluid [1]. Eq. (1) is
one of the simplest type of Fokker-Planck equations. By solving (1) starting with distribution
function W (x, t) for t = 0 and subject to the appropriate boundary conditions, one can obtain the
distribution function W (x, t) for t > 0.

The general Fokker-Planck equation for the variable x has the form [1]:

∂u

∂t
=

[
− ∂

∂x
A(x) +

∂2

∂x2
B(x)

]
u, (1.2)

with initial condition

u(x, 0) = f(x), x ∈ D, (1.3)

and boundary conditions

u(x, t) = g(t), (x, t) ∈ ∂D × [0, T ], (1.4)
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where D = {x : a < x < b} and ∂D is its boundary and u(x, t) is unknown. In (2) B(x) > 0 is
called the diffusion coefficient and A(x) is the drift coefficient. The drift and diffusion coefficients
may also depend on time, i.e.

∂u

∂t
=

[
− ∂

∂x
A(x, t) +

∂2

∂x2
B(x, t)

]
u. (1.5)

Eq. (1) is seen to be a special case of the Fokker-Planck equation where the drift coefficient is
linear and the diffusion coefficient is constant. Eq. (2) is an equation of motion for the distribution
function u(x, t). Mathematically, this equation is a linear second order partial differential equation
of parabolic type. Roughly speaking, it is a diffusion equation with an additional first order
derivative with respect to x. In the mathematical literatures, (2) is also called forward Kolmogorov
equation. The similar partial differential equation is a backward Kolmogorov equation that is in
the form [1]:

∂u

∂t
= −

[
A(x, t)

∂

∂x
+B(x, t)

∂2

∂x2

]
u. (1.6)

There is a more general form of FPE which is nonlinear FPE. Nonlinear FPE has important ap-
plications in various areas such as plasma physics, surface physics, population dynamic, biophysics,
engineering, neurosciences, nonlinear hydrodynamics, polymer physics, laser physics, pattern for-
mation, psychology and marketing [2]. The nonlinear FPE for one variable is in the following
form.

∂u

∂t
=

[
− ∂

∂x
A(x, t, u) +

∂2

∂x2
B(x, t, u)

]
u. (1.7)

A great deal of interest has been focused on Fokker-Planck equations, these are well addressed
in [1-8]. The variational iteration method is implemented to solve linear and nonlinear Fokker-
Planck equations, and some similar equations in [3]. Also, Alawneh et al. [4] by means of the
variational iteration method, numerical solutions are computed for some stochastic models, with-
out any linearization or weak assumptions. Two stochastic models, the Fokker-Planck equation
for non-equilibrium statistical systems and the Black-Scholes model for pricing stock options, are
solved numerically. The homotopy perturbation method (HPM) is applied for the space- and time-
fractional Fokker-Planck equation in [5]. He in [6] is considered the regularities of the solutions
to the Fokker-Planck-Boltzmann equation. Masud et al. [7] used an application of multi-scale
finite element methods to the solution of the multi-dimensional Fokker-Planck equation. Finally, a
semianalytic partition of unity finite element method (PUFEM) is presented to solve the transient
Fokker-Planck equation (FPE) by Kumar et al. in [8]. In this paper a Chebyshev spectral colloca-
tion method is developed for the numerical solution of Equations (2) and (5)-(7) with initial and
boundary conditions (3) and (4).

The layout of the paper is as follows. First, in Section 2 we review some of the main properties of
chebyshev polynomials that are necessary for the formulation of the discrete system. In Section 3,
we illustrate how the Chebyshev spectral collocation method may be used to replace equations (2)-
(7) by explicit system of ordinary differential equations, which is solved by fourth-order RungeKutta
method. In Section 4, we report our numerical results and demonstrate the efficiency and accuracy
of the proposed numerical scheme by considering some numerical examples.

2 Preliminaries

The goal of this section is to recall notations and definition of the Chebyshev polynimials,
state some known results, and derive useful formulas that are important for this paper. These are
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discussed thoroughly in [9].

The well known Chebyshev polynomial Tn(x) of the first kind is a polynomial in x of degree n,
defined by the relation

Tn(x) = cosnθ when x = cos θ. (2.1)

If the range of the variable x is the interval [-1,1], then the range of the corresponding variable θ
can be taken as [0, θ]. These ranges are traversed in opposite directions, since x = −1 corresponds
to θ = π and x = 1 corresponds to θ = 0.

It is well known that cosnθ is a polynomial of degree n in cos θ, and indeed we are familiar
with the elementary formulae

cos 0θ = 1, cos 1θ = cos θ, cos 2θ = 2 cos2 θ − 1,

cos 3θ = 4 cos3 θ − 3 cos θ, cos 4θ = 8 cos4 θ − 8 cos2 θ + 1, . . . .

We may immediately deduce from (7), that the first few Chebyshev polynomials are

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x, T4(x) = 8x4 − 8x2 + 1, . . . .

In practice it is neither convenient nor efficient to work out each Tn(x) from first principles. Rather
by combining the trigonometric identity

cosnθ + cos(n− 2)θ = 2 cos θ cos(n− 1)θ,

with Definition (7), we obtain the fundamental recurrence relation

Tn(x) = 2xTn−1(x)− Tn−2(x), n = 2, 3, . . . , (2.2)

which together with the initial conditions

T0(x) = 1, T1(x) = x, (2.3)

recursively generates all the polynomials {Tn(x)} very efficiently.

Clenshaw and Curtis [10] introduced the following approximation of the function u(x, t):

u(x, t) =

N∑
j=0

′′ajT
∗
j (x), (2.4)

where T ∗j (x) = Tj
(
(2x − (b + a))/(b − a)

)
denotes the jth shifted Chebyshev polynomial of the

first kind. Note the double prime indicating that the first and last terms of the sum are to be halved.

we can use the discrete orthogonality relation

N∑
n=0

′′T ∗i (xn)T ∗j (xn) = αi,j , (2.5)

where

αi,j =

 0, i 6= j (≤ N),
1
2N, 0 < i = j < N ,
N, i = j = 0, N ,

(2.6)
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and also, the collocation points xn are given by

xn =
1

2

(
(a+ b)− (b− a) cos

(πn
N

))
, n = 0, 1, . . . , N. (2.7)

We can invert the interpolating polynomial defined as (13) and find

aj =
2

N

N∑
n=0

′′T ∗j (xn)u(xn, t). (2.8)

The relation between the Chebyshev functions and the first derivative is given by [20]:

T ∗j
′(x) = 2jλ

j−1∑
n=0,n+j odd

cnT
∗
n(x), (2.9)

where λ = 2
b−a and

cn =

{
1, 1 ≤ n ≤ N − 1,
1
2 , n = 0, N .

(2.10)

3 The Chebyshev spectral collocation method

In this section, we use the spectral collocation method for Fokker-Planck equations of the form
(2)-(7) with initial and boundary conditions (3) and (4) by using the Chebyshev polynomials.

3.1 Forward Kolmogorov equation

Let us consider the Fokker-Planck equation(forward Kolmogorov equation)

∂u

∂t
=

[
− ∂

∂x
A(x, t) +

∂2

∂x2
B(x, t)

]
u(x, t), (x, t) ∈ D × [0, T ], (3.1)

with the initial condition

u(x, 0) = f(x), x ∈ D, (3.2)

and boundary conditions

u(x, t) = g(t), (x, t) ∈ ∂D × [0, T ], (3.3)

where D = {x : a < x < b} and ∂D is its boundary. For convenience, we rewrite the Eq. (18)
as follows:

∂u

∂t
=

(
−∂A(x, t)

∂x
+
∂2B(x, t)

∂x2

)
u(x, t) +

(
−A(x, t) + 2

∂B(x, t)

∂x

)
∂

∂x
u(x, t)

+B(x, t)
∂2

∂x2
u(x, t) (3.4)

We assume u(x, t) defined over the D × [0, T ] be the exact solution of the problem (18)-(20)
that is approximated as follows:

u(x, t) =

N∑
j=0

′′ajT
∗
j (x). (3.5)
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By considering the Equation (21) and the Chebyshev coefficients aj that is defined by (15), we
can obtain the first derivative of u(x, t) at the collocation points (14) as follows:

d

dx
u(xi, t) = ux(xi, t) =

N∑
j=0

′′ajT
∗
j
′(xi)

=

N∑
j=0

′′
( 2

N

N∑
n=0

′′T ∗j (xn)u(xn, t)
)
T ∗j
′(xi)

=

N∑
n=0

′′
( 2

N

N∑
j=0

′′T ∗j
′(xi)T

∗
j (xn)

)
u(xn, t)

=

N∑
n=0

Dx
i,nu(xn, t), (3.6)

where

Dx
i,n =

2cn
N

N∑
j=0

′′T ∗j
′(xi)T

∗
j (xn), i, n = 0, 1, . . . , N − 1, N, (3.7)

and also, T ∗j
′(xi) and cn are defined by (16) and (17) respectively.

Having used the boundary conditions (20), we rewrite the Eq. (23) as follows:

ux(xi, t) =

N∑
n=0

Dx
i,nu(xn, t) = Dx

i,0u(x0, t) +

N−1∑
n=1

Dx
i,nu(xn, t) +Dx

i,Nu(xN , t), (3.8)

For the sake of simplicity, consider:

Fi(t) = Dx
i,0u(x0, t) +Dx

i,Nu(xN , t),

thus we can write:

ux(xi, t) = Fi(t) +

N−1∑
n=1

Dx
i,nu(xn, t), (3.9)

Now for the second derivative of u(x, t) by similarly manner and using Equation (23), we obtain:

d2

dx2
u(xi, t) = uxx(xi, t) =

N∑
n=0

Dx
i,n

( d
dx
u(xn, t)

)
=

N∑
n=0

Dx
i,n

( N∑
j=0

Dx
n,ju(xj , t)

)

=

N∑
j=0

( N∑
n=0

Dx
i,nD

x
n,j

)
u(xj , t). (3.10)

By assumption

Dxx
i,j =

N∑
n=0

Dx
i,nD

x
n,j , i, j = 0, 1, . . . , N, (3.11)



174

we have:

uxx(xi, t) =

N∑
j=0

Dxx
i,ju(xj , t). (3.12)

By using the boundary conditions (20), we obtain:

uxx(xi, t) =

N∑
j=0

Dxx
i,ju(xj , t) = Dxx

i,0u(x0, t) +

N−1∑
n=1

Dxx
i,nu(xn, t) +Dxx

i,Nu(xN , t). (3.13)

We consider the notation F ∗i (t) as follows:

F ∗i (t) = Dxx
i,0u(x0, t) +Dxx

i,Nu(xN , t), (3.14)

then we can write:

uxx(xi, t) = F ∗i (t) +

N−1∑
n=1

Dxx
i,nu(xn, t). (3.15)

Having replaced the ∂
∂xu(x, t) and ∂2

∂x2u(x, t) on the right-hand side of (21) with the Eqs. (26)
and (32) respectively and also setting collocation points x = xi, i = 0, 1, . . . , N that are defined
by (14) we get the collocation result as

ut(xi, t) =
(
−Ax(xi, t) +Bxx(xi, t)

)
u(xi, t) +

(
−A(xi, t) + 2Bx(xi, t)

)
ux(xi, t)

+B(xi, t)uxx(xi, t) (3.16)

u(xi, 0) = f(xi).

We denote

Gi(t, u(t)) =
(
−Ax(xi, t) +Bxx(xi, t)

)
u(xi, t) +

((
−A(xi, t) + 2Bx(xi, t)

)
Fi(t) +B(xi, t)F

∗
i (t)

)

+
((
−A(xi, t) + 2Bx(xi, t)

)N−1∑
n=1

Dx
i,nu(xn, t) +B(xi, t)

N−1∑
n=1

Dxx
i,nu(xn, t)

)
,

u(t) = [u(x1, t), u(x2, t), . . . , u(xN−1, t)]
T ,

u0 = [u(x1, 0), u(x2, 0), . . . , u(xN−1, 0)]T ,

du(t) = [ut(x1, t), ut(x2, t), . . . , ut(xN−1, t)]
T ,

then the system of (33) can be given in the matrix form as:

du(t) = G(t, u(t)),

u0 = P, (3.17)

where

G(t, u(t)) = [G1(t, u(t)), G2(t, u(t)), . . . , GN−1(t, u(t))]T ,

P = [f(x1), f(x2), . . . , f(xN−1)]T .
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The above system is a system of ordinary differential equations. Solving this system by the
fourth-order Runge-Kutta method, we can obtain an approximation to the solution of (18). The
fourth-order Runge-Kutta method that is one of the well-known numerical methods for differential
equations, can be presented as:

u1 = htG
(
tn, u(tn)

)
,

u2 = htG
(
tn + ht, u(tn +

u1

2
)
)
,

u3 = htG
(
tn + ht, u(tn +

u2

2
)
)
, (3.18)

u4 = htG
(
tn + ht, u(tn + u3)

)
,

u(tn+1) = u(tn) +
1

6

(
u1 + 2u2 + 2u3 + u4

)
.

3.2 Backward Kolmogorov equation

In this subsection, we consider the Fokker-Planck equation(backward Kolmogorov equation)

∂u

∂t
= −

[
A(x, t)

∂

∂x
+B(x, t)

∂2

∂x2

]
u(x, t), (3.19)

with the initial and boundary conditions (19) and (20). By considering approximate solution u(x, t)
as in (22) and then setting x = xi we get:

ut(xi, t) = −
(
A(xi, t)ux(xi, t) +B(xi, t)uxx(xi, t)

)
. (3.20)

Having replaced the ux(xi, t) and uxx(xi, t) on the right-hand sides of (37) with the Eqs. (26) and
(32), we get:

ut(xi, t) = −

[
A(xi, t)

(
Fi(t) +

N−1∑
n=1

Dx
i,nu(xn, t)

)
+B(xi, t)

(
F ∗i (t) +

N−1∑
n=1

Dxx
i,nu(xn, t)

)]
(3.21)

u(xi, 0) = f(xi).

Now by assumption

Gi(t, u(t)) = −
(
A(xi, t)Fi(t)+B(xi, t)(F

∗
i (t)

)
−
(
A(xi, t)

N−1∑
n=1

Dx
i,nu(xn, t)+B(xi, t)

N−1∑
n=1

Dxx
i,nu(xn, t)

)
,

and also

u(t) = [u(x1, t), u(x2, t), . . . , u(xN−1, t)]
T ,

u0 = [u(x1, 0), u(x2, 0), . . . , u(xN−1, 0)]T , (3.22)

du(t) = [ut(x1, t), ut(x2, t), . . . , ut(xN−1, t)]
T ,

we may rewrite the system (38) in the form

du(t) = G(t, u(t)),

u0 = P, (3.23)
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where

G(t, u(t)) = [G1(t, u(t)), G2(t, u(t)), . . . , GN−1(t, u(t))]T ,

P = [f(x1), f(x2), . . . , f(xN−1)]T . (3.24)

Solving system of ordinary differential equations (40) by Runge-Kutta method (35), we can
obtain an approximation to the solution of (36).

3.3 Nonlinear Fokker-Planck equation

Finally in this subsection, we illustrate how the spectral collocation method based on the
chebyshev polynomial may be used to find approximate solution for the nonlinear Fokker-Planck
equation

∂u

∂t
=

[
− ∂

∂x
A(x, t, u) +

∂2

∂x2
B(x, t, u)

]
u(x, t), (x, t) ∈ D × [0, T ], (3.25)

with initial condition

u(x, 0) = f(x), x ∈ D, (3.26)

and boundary conditions

u(x, t) = g(t), (x, t) ∈ ∂D × [0, T ], (3.27)

where D = {x : a < x < b} and ∂D is its boundary.

We assume the solution

u(x, t) =

N∑
j=0

′′ajT
∗
j (x), (3.28)

be the approximate solution of the problem (42). By considering righ-hand side of Eq.(42), We
know that

− ∂

∂x
[A(x, t, u)u(x, t)] ,

∂2

∂x2
[B(x, t, u)u(x, t)] , (3.29)

consist of ux(x, t) and uxx(x, t). Similarly, by replecing ux(x, t) and uxx(x, t) as in (26) and (32) in
the equation (42), applying the Chebyshev spectral collocation method, and setting the collocation
points

xi =
1

2

(
(a+ b)− (b− a) cos

(πn
N

))
, i = 0, 1, . . . , N,

we get the collocation result in the general form as follows:

∂u(xi, t)

∂t
= − ∂

∂x
[A(x, t, u(x, t))u(x, t)]

∣∣∣
x=xi

+
∂2

∂x2
[B(x, t, u)u(x, t)]

∣∣∣
x=xi

, (x, t) ∈ D × [0, T ], (3.30)

u(xi, 0) = f(xi).
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By using the notations (39) and (41), and also,

Gi(t, u(t)) = − ∂

∂x
[A(x, t, u(x, t))u(x, t)]

∣∣∣
x=xi

+
∂2

∂x2
[B(x, t, u)u(x, t)]

∣∣∣
x=xi

,

i = 1, . . . , N − 1,

u(xi, 0) = f(xi),

we then rewrite the system (47) in the following form which is the system of ordinary differential
equations.

du(t) = G(t, u(t)),

u0 = P. (3.31)

Solving the system (48) by Runge-Kutta method (35), we can obtain an approximation to the
solution of (42).

4 Numerical examples

In order to illustrate the performance of the chebyshev spectral collocation method in solving
the problems (2)-(7) and efficiency of the presented method, the following examples are considered.
We assume ui and u∗i be exact and approximate solutions and use the maximum of absolute and
relative errors, defined as

‖E‖∞ = max
0<i<N

|ui − u∗i |, (4.1)

and

‖E‖ =

√√√√∑N−1
i=1 (u∗i − ui)2∑N−1

i=1 (ui)2
. (4.2)

The numerical results are tabulated in Tables 1-4.

Example 1. Consider the Fokker-Planck equation [3]

∂u

∂t
=

[
− ∂

∂x
A(x, t) +

∂2

∂2x
B(x, t)

]
u(x, t),

A(x, t) = et
(

coth(x) cosh(x) + sinh(x)
)
− coth(x) (4.3)

B(x, t) = et cosh(x),

subject to initial condition

u(x, 0) = sinhx, 0 ≤ x ≤ 1, (4.4)

and boundary conditions

u(0, t) = 0, u(1, t) = et sinh 1, t > 0. (4.5)

which has the exact solution given by

u(x, t) = et sinhx. (4.6)

We solve (51) for different values of t, ht = 10−4. The maximum of absolute and relative errors
are tabulated in Table 1 for N = 4, 6, 8, 10.
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Table 1: Results for Example 1.

‖E‖∞ ‖E‖
N t = 0.05 t = 0.1 t = 0.2 t = 0.05 t = 0.1 t = 0.2
4 1.61818E-5 1.81697E-5 2.02421E-5 2.87354E-6 4.19616E-6 5.46189E-6
6 2.05446E-8 1.63740E-8 2.35967E-8 1.74520E-9 1.63486E-9 1.24567E-9
8 1.21707E-11 1.26541E-11 1.34075E-11 3.58668E-13 1.29937E-13 5.01469E-13
10 8.99858E-12 1.05249E-11 1.44167E-11 1.46569E-12 1.62906E-12 2.01518E-12

Table 2: Results for Example 2.

‖E‖∞ ‖E‖
N t = 0.05 t = 0.1 t = 0.2 t = 0.05 t = 0.1 t = 0.2
5 4.44089E-15 1.77636E-14 3.197444E-14 8.79340E-16 3.91766E-15 6.57221E-15
8 8.17124E-13 5.05.18E-12 2.737190E-11 2.21091E-14 1.33760E-13 7.34940E-13
10 8.57856E-11 6.33937E-9 4.829490E-7 1.59534E-12 1.23751E-10 9.96470E-9

Example 2. Consider the backward Kolmogorov equation [2]

∂u

∂t
= −

[
A(x, t)

∂

∂x
+B(x, t)

∂2

∂2x

]
u(x, t), (4.7)

u(x, 0) = (x+ 1),

u(−10, t) = −9et, u(10, t) = 11et,

where A(x, t) = −x− 1 and B(x, t) = x2et. The exact solution to Eq. (55) is given by

u(x, t) = et(x+ 1). (4.8)

We solve the example 2 for different values of t, ht = 10−4. The maximum of absolute and
relative errors are tabulated in Table 2 for N = 5, 8, 10.
Example 3. For the sake of comparison, we consider the following forward Kolmogorov equation
discussed by Odibat et al [11]. The authors used the variational iteration (VIM) and Adomian
decomposition methods (ADD) to obtain their numerical solution.

∂u

∂t
=

[
− ∂

∂x
A(x, t) +

∂2

∂2x
B(x, t)

]
u(x, t), (4.9)

where A(x, t) = x
6 and B(x, t) = x2

12 . The exact solution to Eq. (57) is given by

u(x, t) = x2e
t
2 . (4.10)

The initial and boundary conditions are taken from the exact solutions.

We compare the results with the ADM and VIM [11] applied to same equation. For this purpose,
we consider the same parameter values for the Fokker-Planck equation (52) as considered in [11],
namely; t = 0.2, 0.4, 0.6. Table 3 exhibits the compared results (ht = 10−3).

Example 4. Consider the fllowing nonlinear Fokker-Plank equation[5]

∂u

∂t
=

[
− ∂

∂x
A(x, t, u) +

∂2

∂x2
B(x, t, u)

]
u(x, t), (4.11)
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Table 3: Table 3: Results for Example 3.

t x Present method ADM VIM Exact
0.25 0.069073 0.069062 0.069062 0.069073

0.2 0.5 0.276290 0.276259 0.276250 0.276293
0.75 0.621659 0.621563 0.621563 0.621659

1 1.105170 1.105000 1.105000 1.105171
0.25 0.076338 0.076250 0.076250 0.076338

0.4 0.5 0.305351 0.305000 0.305000 0.305351
0.75 0.687039 0.686250 0.686250 0.687039

1 1.221400 1.220000 1.220000 1.221403
0.25 0.084366 0.084062 0.084063 0.084366

0.6 0.5 0.337465 0.336250 0.336250 0.337465
0.75 0.759296 0.631709 0.756562 0.759296

1 1.349860 1.345000 1.345000 1.349859

Table 4: Table 4: Results for Example 4.

‖E‖∞ ‖E‖
N ht t = 0.1 t = 0.15 t = 0.2 t = 0.1 t = 0.15 t = 0.2
5 0.0001 4.24105E-14 4.98490E-14 5.73985E-14 2.45812E-14 2.78877E-14 2.96201E-14
10 0.0001 1.46505E-11 1.71874E-11 2.01721E-11 3.47143E-12 3.87402E-12 4.32464E-12
10 0.0005 2.37042E-8 3.11860E-8 4.25258E-8 5.57912E-9 6.97858E-9 9.04676E-9
15 0.0001 1.04837E-9 1.40039E-9 1.95562E-9 1.55443E-10 1.97393E-10 2.62032E-10

u(x, 0) = x2,

u(0, t) = 0, u(1, t) = et,

where A(x, t, u) = 4u(x,t)
x − x

3 and B(x, t, u) = u(x, t). The exact solution to Eq. (59) is given by

u(x, t) = x2et. (4.12)

We solved example 4 for different values of N and ht. The maximum of absolute and relative errors
on the Chebyshev collocation points are tabulated in Table 4 for t = 0.1, 0.15, 0.2.

5 Conclusion

The Chebyshev spectral collocation method is used to solve the Fokker-Planck equations with
initial and boundary conditions. From the numerical results and Tables 1-4, we can say that errors
are very small and they are very better than the results of another methods cited in this article.
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