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Abstract:

A linear analysis of Kelvin-Helmholtz instability of cylindrical interface is carried out using

viscous potential flow theory. In the inviscid potential flow theory, the viscous term in Navier-

Stokes equation vanishes as viscosity is zero. In viscous potential flow, the viscous term in

Navier-Stokes equation vanishes as vorticity is zero but viscosity is not zero. Viscosity enters

through normal stress balance in viscous potential flow theory and tangential stresses are not

considered. Both asymmetric and axisymmetric disturbances are considered. A dispersion

relation has been obtained and stability criterion is given in the terms of the critical value of

relative velocity. A comparison between inviscid potential flow and viscous potential flow has

been made. It has been observed that Reynolds number and inner fluid fraction both have

destabilizing effect on the stability of the system.
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1 Introduction

When two fluids of different physical properties are superposed one over other and are moving
with a relative horizontal velocity, the instability occurs at the plane interface. It is called Kelvin-
Helmholtz instability [1, 2]. Kelvin-Helmholtz instability occurs in various situations like mixing
of clouds, meteor is entering on the earth’s atmosphere etc.

Cylindrical geometry is very important while studying stability problems related to liquid jets
and cooling of fuel rods by liquid coolants in the nuclear reactor. Nayak and Chakrborty [3]
considered the Kelvin-Helmholtz instability of the cylindrical interface of inviscid fluids with heat
and mass transfer and showed that plane geometry configuration is more stable than cylindrical
one. The Kelvin-Helmholtz instability of a cylindrical flow with a shear layer has been considered
by Wu and Wang [4].

Viscous potential theory has played an important role in studying various stability problems.
Joseph and Liao [5] have shown that irrotational flow of a viscous fluid satisfies Navier-Stokes
equations. Tangential stresses are not considered in viscous potential theory and viscosity enters
through normal stress balance. In this theory no-slip condition at the boundary is not enforced
so that two dimensional solutions satisfy three dimensional solutions. Various vortocity and cir-
culation theorems of inviscid potential flow also hold well in viscous potential flow. Joseph et al.
[6] studied viscous potential flow of Rayleigh-Taylor instability. Funada and Joseph [7] have done
the viscous potential flow analysis of Kelvin-Helmholtz instability in a channel and found that the
stability criterion for viscous potential flow is given by the critical value of the relative velocity.
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From the above study Funada and Joseph [7] concluded that the critical value of relative velocity
is maximum when viscosity ratio equals the density ratio. Asthana and Agrawal [8] applied the
viscous potential theory to analyze Kelvin-Helmholtz instability with heat and mass transfer and
observed that heat and mass transfer has destabilizing effect on relative velocity when lower fluid
viscosity is low while it has stabilizing effect when lower fluid viscosity is high.

The viscous potential flow analysis of capillary instability has been studied by Funada and
Joseph [9]. They observed that viscous potential flow is better approximation of the exact solution
than the inviscid model. Funada and Joseph [10] extended their study of capillary instability to the
viscoelastic fluids of Maxwell types and observed that the growth rates are larger for viscoelastic
fluids than for the equivalent Newtonian fluids. Stability of liquid jet into incompressible gases and
liquids was computed by Funada et al. [11]. They consider both Kelvin-Helmholtz and capillary
instabilities and observed that Kelvin-Helmholtz instability cannot occur in vacuum but capillary
instability can occur in vacuum.

In this paper, viscous potential theory has been applied to analyze Kelvin-Helmholtz instability
of cylindrical interface. Both fluids have been taken as viscous with different kinematic viscosities.
Both asymmetric and axisymmetric disturbances are considered. A dispersion relation is derived
and stability criteria are given in the terms of the critical value of relative velocity. The effect of
Reynolds number on growth rate is observed. Finally a comparison has been made between the
results of present study with the results obtained by inviscid potential flow.

2 Problem Formulation

Our system of interest consists of two incompressible, viscous fluid layers separated by a cylindrical
interface in an annular configuration, as demonstrated in Figure 1. Kim et al. [12] consider the
problem of capillary instability with heat and mass transfer and in this problem fluids are not
flowing. The undisturbed cylindrical interface is taken radiusR. In the undisturbed state, inner
fluid of density ρ(1) and viscosity µ(1)occupies the region r1 < r < Rand outer fluid of density
ρ(2) and viscosity µ(2)occupies the regionR < r < r2. The inner and outer fluids have uniform
velocities U1 and U2 respectively along the z-axis. The bounding surfaces r = r1 and r = r2 are
considered to be rigid. After disturbance, the interface is given by

Figure 1: The equilibrium configuration of the fluid system.

F (r, θ, z, t) = r −R− η (z, θ, t) = 0 (2.1)

In each fluid layer, velocity potential satisfies the Laplace equations:

∇2φ(j) = 0 (j = 1, 2) (2.2)
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This can be rewritten as

∇2φ(j) =
∂2φ(j)

∂r2
+

1

r

∂φ(j)

∂r
+

∂2φ(j)

∂z2
+

1

r2
∂2φ(j)

∂θ2
= 0 (j = 1, 2) (2.3)

Conditions on the walls are given by

∂φ(1)

∂r
= 0 at r = r1, (2.4)

∂φ(2)

∂r
= 0 at r= r2, (2.5)

Kinematic conditions are given by:

∂η

∂t
+ Uj

∂η

∂z
=

∂φ(j)

∂r
at r = R (2.6)

Interfacial condition for conservation of momentum is

ρ(1)
(

∇φ(1) · ∇F
) (

∂F
∂t

+∇φ(1) · ∇F
)

= ρ(2)
(

∇φ(2) · ∇F
) (

∂F
∂t

+∇φ(2) · ∇F
)

+
(

p2 − p1 − 2µ(2)n · ∇ ⊗∇φ(2) · n+ 2µ(1)n · ∇ ⊗∇φ(1) · n+ σ∇ · n
)

|∇F |
2

at r = R+ η

(2.7)
In initial state we assume

φ
(j)
0 = Ujz ( j= 1, 2) (2.8)

Using Bernoulli’s equation in Equation (2.7) and subsequently linearizing it, we get

[[

ρ

(

∂φ

∂t
+

∂φ

∂z

∂φ0

∂z

)

+ 2µ
∂2φ

∂r2

]]

= −σ

(

∂2η

∂z2
+

η

R2
+

1

R2

∂2η

∂θ2

)

(2.9)

[[x]] =x(2) − x(1)in which superscripts refer to upper and lower fluid respectively.

3 Dispersion Relation

Let
η = A exp [i (kz +mθ − ωt)] + c.c (3.1)

where k,m and ωdenotes the wave number, azimuthal wave number and complex growth rate
respectively.
On solving Eq.(2.3) with the help of boundary conditions, we get

φ(1) =
1

k
(ikU1 − iω)AE(1) (kr) exp [i (kz +mθ − ωt)] + c.c (3.2)

φ(2) =
1

k
(ikU2 − iω)AE(2) (kr) exp [i (kz +mθ − ωt)] + c.c (3.3)

where c.c stands for complex conjugate of preceding term. E(1) (kr)and E(2) (kr)are given by

E(1) (kr) =
Im(kr)K

′

m
(kr1)−Km(kr)I

′

m
(kr1)

I
′
m
(kR)K′

m
(kr1)−K

′
m
(kR)I′

m
(kr1)

and

E(2) (kr) =
Im(kr)K

′

m(kr2)−Km(kr)I
′

m(kr2)

I
′

m(kR)K ′

m(kr2)−K
′

m(kR)I ′

m(kr2)

Substituting the values of η, φ(1)and φ(2) in Equation (2.9), we get the dispersion relation

D (ω, k) = a0ω
2 + (a1 + ib1)ω + a2 + ib2 = 0 (3.4)
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where
a0 = ρ(1)E(1) (kR)− ρ(2)E(2) (kR)

a1 = −2k
(

ρ(1)U1E
(1) (kR)− ρ(2)U2E

(2) (kR)
)

b1 = 2k2
(

µ(1)F (1) (kR)− µ(2)F (2) (kR)
)

a2 = k2
(

ρ(1)U2
1E

(1) (kR)− ρ(2)U2
2E

(2) (kR)
)

+
σk(1−m2

−k2R2)
R2

b2 = −2k3
(

µ(1)U1F
(1) (kR)− µ(2)U2F

(2) (kR)
)

F (1) (kR) = E(1) (kR)−
1

kR
+

m2

k2R2
E(1) (kR)

F (2) (kR) = E(2) (kR)−
1

kR
+

m2

k2R2
E(2) (kR)

If both fluids are inviscid i.e. µ(1) = µ(2) = 0, the dispersion relation for inviscid potential flow
(IPF) is given by;

[

ρ(1)E(1) (kR)− ρ(2)E(2) (kR)
]

ω2 +
[

−2k
(

ρ(1)U1E
(1) (kR)− ρ(2)U2E

(2) (kR)
)]

ω
[

k2
(

ρ(1)U2
1E

(1) (kR)− ρ(2)U2
2E

(2) (kR)
)

+
σk(1−m2

−k2R2)
R2

]

= 0
(3.5)

4 Dimensionless Form of Dispersion Relation

k̂ = kh, ĥ2 = h2

h
, Û2 = U2

U0

ĥ1 = h1

h
= ĥ = β, Û1 = U1

U0
, ρ̂ = ρ(2)

ρ(1) ,

V̂ = Û2 − Û1, µ̂ = µ(2)

µ(1) , ω̂ = ωh
U0

,

σ̂ = σ
ρ(1)hU2

0
, Re = hU0

ν(1) , ẑ = z
h
,

R̂ = R
h
, r̂1 = r1

h
, r̂2 = r2

h,

where Re denotes Reynolds number and ĥ = βis the inner fluid fraction.
The dimensionless form of Equation (3.4) is

D
(

ω̂, k̂
)

= â0ω̂
2 +

(

â1 + ib̂1

)

ω̂ + â2 + ib̂2 = 0 (4.1)

â0 = E(1)
(

k̂R̂
)

− ρ̂E(2)
(

k̂R̂
)

â1 = −2k̂
(

Û1E
(1)

(

k̂R̂
)

− ρ̂Û2E
(2)

(

k̂R̂
))

b̂1 = 2k̂2

Re

(

F (1)
(

k̂R̂
)

− µ̂F (2)
(

k̂R̂
))

â2 = k̂2
(

Û2
1E

(1)
(

k̂R̂
)

− ρ̂Û2
2E

(2)
(

k̂R̂
))

+
σ̂k̂(1−m2

−k̂2R̂2)
R̂2

b̂2 = − 2k̂3

Re

(

Û1F
(1)

(

k̂R̂
)

− µ̂Û2F
(2)

(

k̂R̂
))

Equation (3.5) in dimensionless form cane written as;

[

E(1)
(

k̂R̂
)

− ρ̂E(2)
(

k̂R̂
)]

ω̂2 +
(

−2k̂
(

Û1E
(1)

(

k̂R̂
)

− ρ̂Û2E
(2)

(

k̂R̂
)))

ω̂

+ k̂2
(

Û2
1E

(1)
(

k̂R̂
)

− ρ̂Û2
2E

(2)
(

k̂R̂
))

+
σ̂k̂(1−m2

−k̂2R̂2)
R̂2

= 0
(4.2)



135

Let ω̂ = ω̂R + i ω̂I, then Equation (4.1) is reduced to

â0
(

ω̂2
R − ω̂2

I

)

+
(

â1ω̂R − b̂1ω̂I

)

+ â2 = 0 (4.3)

and

ω̂R = −
â1ω̂I + b̂2

2â0ω̂I + b̂1
(4.4)

Eliminating the value of ω̂Rfrom above equations we obtained a quartic equation in ω̂Ias

A4ω̂
4
I +A3ω̂

3
I +A2ω̂

2
I +A1ω̂I +A0 = 0 (4.5)

where
A4 = −4â30 (4.6)

A3 = −8â20b̂1 (4.7)

A2 = 4â20â2 − 5â0b̂
2
1 − â0â

2
1 (4.8)

A1 = 4â0â2b̂1 − b̂31 − â21b̂1 (4.9)

A0 = â0b̂
2
2 − â1b̂1b̂2 + â2b̂

2
1 (4.10)

Neutral curves are obtained by puttingω̂I (k) = 0. Equation (4.5) reduces toA0 = 0, which in turn
implies that

â0b̂
2
2 − â1b̂1b̂2 + â2b̂

2
1 = 0 (4.11)

Substituting the values of â0, â1, b̂1, â2, b̂2in the above equation we get

V̂ 2 =
σ̂

k̂R̂2

(

1−m2 − k̂2R̂2
)

(

µ̂F 2
(

k̂R̂
)

− F (1)
(

k̂R̂
))2

(

ρ̂E(2)
(

k̂R̂
)

F (1)2
(

k̂R̂
)

− µ̂2E(1)
(

k̂R̂
)

F (2)2
(

k̂R̂
)) (4.12)

Here relative velocity V̂ is given byV̂≡Û2 − Û1.

5 Results and Discussion

We have considered the situation when water is lying in the inner region and air is lying in the
outer region. Following parametric values have been taken.

ρ̂ = 0.0012, µ̂ = 0.018, σ̂ = 72.3,

The radii of inner and outer cylinders are 1 cm and 2 cm respectively. For numerical computation
length scale h is taken as 1 cm and the reference velocity U0is taken as 1 cm/s. Neutral curve
for relative velocity divide the plane into a stable region (below the curve) and an unstable region
(above the curve). We have taken the asymmetric case (m = 1) for numerical computation purpose
form figures 2- 6.

In Figure 2, neutral curves have been drawn for relative velocity V̂ withρ̂ = 0.0012, µ̂ =
0.018, Re = 1000for different values of inner fluid fractionβ. It is observed that as inner fluid
fraction increases, stable region (below region) decreases. So it concludes that the inner fluid
fraction has destabilizing effect on the stability of the system. Figure 3 shows the neutral curves
for relative velocity for the different values of viscosity ratio and density ratio. We observe that
the stable region is maximum when viscosity ratio is equal to the density ratio. Similar result was
obtained by Funada and Joseph [7] for plane geometry.
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Figure 2: Neutral curve for relative velocity with
ρ̂ = 0.0012, µ̂ = 0.018, Re = 1000 for different
value of inner fluid fractionβ.

Figure 3: Neutral curve for relative velocity with
Re = 1000, β = 0.5 for different value of density
ratio ρ̂ and viscosity ratioµ̂.

In Figure 4, growth rate curves for various values of Reynolds number have been plotted and
observe that growth rate curve increases with Reynolds number. Hence Reynolds number has
destabilizing effect. On increasing Reynolds number viscosity of inner fluid will decrease and less
resistance to fluid flow will take place. So the flow will become unstable. Also if density of the
lower fluid increases Reynolds number increases, so lower fluid density has destabilizing effect on
the stability of the system. The characteristic velocity and length scale both are also playing
destabilizing role as Reynolds number increases with increasingU0or h.

Figure 4: Imaginary part of growth rate

ω̂I vs. k̂ withρ̂ = 0.0012, µ̂ = 0.018, ĥ =
0.5andV̂ = 900 for different values of Re.

Figure 5: Imaginary part of growth rate

ω̂I vs. k̂ withρ̂ = 0.0012, µ̂ = 0.018, Re =
850andV̂ = 900 for different values of β.

Figure 5 shows the behavior of growth rate curves for different values of inner fluid fraction. It
has been observed that the growth rate curves increases as inner fluid fraction β increases. It also
concludes that the inner fluid fraction β has destabilizing effect on the stability of the system.

We have compared our results with the results obtained by inviscid potential flow in the Figure
6. It has been observed that viscosity has stabilizing effect on the stability of the system. We have
compared growth rate of axisymmetric and asymmetric perturbation in Figure 7. It is concluded
that axisymmetric perturbation is more stable. Funada et al. [11] have also concluded that
asymmetric perturbation will dominate at low Reynolds number.
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Figure 6: Comparison of growth rates for inviscid
potential flow and viscous potential flow whenρ̂ =
0.0012, µ̂ = 0.018, Re = 1000, V̂ = 900.

Figure 7: Comparison of growth rates for Asym-
metric disturbance and Axisymmetric disturbance
whenρ̂ = 0.0012, µ̂ = 0.018, Re = 1000, V̂ = 900.

6 Conclusion

Viscous potential flow analysis of Kelvin-Helmholtz instability of cylindrical interface has been
made. The dispersion relation for both asymmetric and axisymmetric disturbances is a quadratic
equation in growth rate. The stability condition is given in the terms of critical value of relative
velocity. It is observed the critical value of relative velocity is maximum when density ratio is
equal to the viscosity ratio. Reynolds number and inner fluid fraction both have destabilizing
effect on the stability of the system. A comparison between inviscid potential flow (IPF) and
viscous potential flow (VPF) has been made. It is concluded that VPF is more stable than IPF.
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