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Abstract:

In this paper, we consider a higher-order two-point boundary value problem. We study

the existence of solutions of a non-eigenvalue problem and of at least one positive solution of

an eigenvalue problem. Later we establish the criteria for the existence of at least two positive

solutions of a non-eigenvalue problem.
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1 Introduction

We are concerned with two-point boundary value problem (TPBVP)
y(n)(t) + f(t, y(t)) = 0, t ∈ [a, b],

y(i)(a) = 0, 0 ≤ i ≤ n− 2,

y(p)(b) = 0, (1 ≤ p ≤ n− 1, but fixed),

(1.1)

and the eigenvalue problem y(n)(t) + λf(t, y(t)) = 0 with the same boundary conditions where λ

is a positive parameter, and f : [a, b]× R→ R is continuous.
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Today, the boundary value problems (BVPs) play a major role in many fields of engineering

design and manufacturing. Major established industries such as the automobile, aerospace, chem-

ical, pharmaceutical, petroleum, electronics and communications, as well as emerging technologies

such as nanotechnology and biotechnology rely on the BVPs to simulate complex phenomena at

different scales for design and manufactures of high-technology products. In these applied settings,

positive solutions are meaningful. Due to their important role in both theory and applications, the

BVPs have generated a great deal of interest over the recent years.

There is currently a great deal of interest in positive solutions for several types of boundary

value problems. A large part of the literature on positive solutions to BVPs seems to be traced

back to Krasnoselskii’s work on nonlinear operator equations [16], especially the part dealing with

the theory of cones in Banach space. In 1994, Erbe and Wang [12] applied Krasnoselskii’s work

to establish intervals of the parameter λ for which there is at least one positive solution. In 1995,

Eloe and Henderson [6] obtained the solutions that are positive to a cone for the boundary value

problem

u(n)(t)+a(t)f(u) = 0, 0 < t < 1,

u(i)(0) =u(n−2)(1) = 0, 0 ≤ i ≤ n− 2.

In 2008, Shahed [21] established the existence of positive solutions to nonlinear nth order boundary

value problems:

u(n)(t)+λa(t)f(u(t)) = 0, 0 < t < 1,

u(0) = u′′(0) =u′′′(0) = .... = u(n−1)(0), u′(1) = 0,

u(0) = u′(0) =u′′(0) = .... = u(n−2)(0), u′(1) = 0,

u(0) = u′(0) =u′′(0) = .... = u(n−1)(0), u′′(1) = 0,

where λ is a positive parameter.

In this paper, existence results of bounded solutions of a non-eigenvalue problem are first

established as a result of the Schauder fixed-point theorem. Second, we establish criteria for the

existence of at least one positive solution of the eigenvalue problem by using the Krasnosel’skii

fixed-point theorem. Later, we investigate the existence of at least two positive solutions of TPBVP

(1.1) by using the Avery-Henderson fixed-point theorem.

2 The Green’s Function and Bounds

In this section, we construct the Green’s function for the homogeneous boundary value problem

corresponding to the boundary value problem (1.1). And then we prove some inequalities on

bounds of the Green’s function which are needed later.
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Let Gn(t, s) be the Green’s function of the boundary value problem,
−y(n)(t) = 0,

y(i)(a) = 0, 0 ≤ i ≤ n− 2,

y(p)(b) = 0, (1 ≤ p ≤ n− 1, but fixed).

(2.1)

Theorem 2.1. The Green’s function Gn(t, s) for the boundary value problem (2.1) is given by

Gn(t, s) =


(t−a)n−1(b−s)n−p−1

(n−1)!(b−a)n−p−1 , a ≤ t ≤ s ≤ b,

(t−a)n−1(b−s)n−p−1

(n−1)!(b−a)n−p−1 − (t−s)n−1

(n−1)! , a ≤ s ≤ t ≤ b.

Lemma 2.2. For (t, s) ∈ [a, b]× [a, b], we have

Gn(t, s) ≤ Gn(b, s). (2.2)

Proof. For a ≤ t ≤ s ≤ b, we have

Gn(t, s) =
(t− a)n−1(b− s)n−p−1

(n− 1)!(b− a)n−p−1

≤ (b− a)n−1(b− s)n−p−1

(n− 1)!(b− a)n−p−1

= Gn(b, s).

Similarly, for a ≤ s ≤ t ≤ b, we have Gn(t, s) ≤ Gn(b, s). Thus, we have

Gn(t, s) ≤ Gn(b, s), for all (t, s) ∈ [a, b]× [a, b].

Lemma 2.3. Let I =
[
3a+b
4 , a+3b

4

]
. For (t, s) ∈ I × [a, b], we have

Gn(t, s) ≥ γGn(b, s). (2.3)

Proof. The Green’s function Gn(t, s) for the boundary value problem (2.1) is clearly shows that

Gn(t, s) > 0 on (a, b)× (a, b).

For a ≤ t ≤ s ≤ b and t ∈ I, we have

Gn(t, s)

Gn(b, s)
=

(
t− a
b− a

)n−1
≥ 1

4n−1
.
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Similarly, for a ≤ s ≤ t ≤ b and t ∈ I we have

Gn(t, s)

Gn(b, s)
=

(t− a)n−1(b− s)n−p−1 − (t− s)n−1(b− a)n−p−1

(b− a)n−1(b− s)n−p−1 − (b− s)n−1(b− a)n−p−1

≥ (t− a)n−p−1(b− s)n−p−1[(t− a)p − (t− s)p]
(b− a)n−1(b− s)n−p−1 − (b− s)n−1(b− a)n−p−1

=
1

p

(
t− a
b− a

)n−2
≥ 1

p

(
t− a
b− a

)n−1
≥ 1

p.4n−1
.

Therefore

Gn(t, s) ≥ γGn(b, s), for (t, s) ∈ I × [a, b],

where γ = min
{

1
4n−1 ,

1
p.4n−1

}
.

3 Existence of Positive Solutions

In this section, first we obtain the existence of bounded solutions to the TPBVP (1.1). The proof

of this result is based on an application of the Schauder fixed-point theorem.

Let B denote the Banach space C[a, b] with the norm

‖ y ‖= max
t∈[a,b]

| y(t) | .

Theorem 3.1. Suppose the function f(t, ξ) is continuous with respect to ξ ∈ R. If R > 0 satisfies

Q
∫ b
a
Gn(b, s)ds ≤ R, where Q > 0 satisfies

Q ≥ max
‖y‖≤R

| f(t, y(t) |,

for t ∈ [a, b], then TPBVP (1.1) has a solution y(t).

Proof. Let P = {y ∈ B :‖ y ‖≤ R}. Note that P is closed, bounded and convex subset of B to

which the Schauder fixed-point theorem is applicable.

Define T : P → B by

Ty(t) =

∫ b

a

Gn(t, s)f(s, y(s))ds,

for t ∈ [a, b]. Obviously the solutions of the TPBVP (1.1) are the fixed points of operator T . It

can be shown that T : P → B is continuous.
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Claim that T : P → P. Let y ∈ P. By using Lemma 2.2, we get

| Ty(t) | =|
∫ b

a

Gn(t, s)f(s, y(s))ds |

≤
∫ b

a

| Gn(t, s) || f(s, y(s)) | ds

≤ Q
∫ b

a

Gn(b, s)ds

≤ R,

for every t ∈ [a, b]. This implies that ‖ Ty ‖≤ R.

It can be shown that T : P → P is a compact operator by the Arzela-Ascoli theorem. Hence T

has a fixed point in P by the Schauder fixed point theorem.

Corollary 3.2. If the function f is continuous and bounded on [a, b]×R, then the TPBVP (1.1)

has a solution.

Proof. Since the function f(t, y) is bounded, it has a supremum for t ∈ [a, b] and y ∈ R. Let us

choose P > sup{| f(t, y) |: (t, y) ∈ [a, b]× R}. Pick R large enough such that P < R. Then there

is a number Q > 0 such that

P > Q, where Q ≥ max{|f(t, y)| : t ∈ [a, b], | y |≤ R}.

Hence

1 <
R

P
≤ R

Q
,

and thus the TPBVP (1.1) has a solution by Theorem 3.1.

4 Existence of One Positive Solution

In this section, we consider the following TPBVP with parameter λ,
y(n)(t) + λf(t, y(t)) = 0, t ∈ [a, b],

y(i)(a) = 0, 0 ≤ i ≤ n− 2,

y(p)(b) = 0, (1 ≤ p ≤ n− 1, but fixed).

(4.1)

We need the following fixed-point theorem to prove the existence of at least one positive solution

to TPBVP (4.1).

Theorem 4.1. [16] Let B be a Banach space, and let P ⊂ B be a cone. Assume Ω1 and Ω2 are

open bounded subsets of B with 0 ∈ Ω1, Ω1 ⊂ Ω2, and let

T : P ∩ (Ω2\Ω1)→ P

be a completely continuous operator such that either
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(i) ‖ Tu ‖≤‖ u ‖, u ∈ P ∩ ∂Ω1, ‖ Tu ‖≥‖ u ‖, u ∈ P ∩ ∂Ω2; or

(ii) ‖ Tu ‖≥‖ u ‖, u ∈ P ∩ ∂Ω1, ‖ Tu ‖≤‖ u ‖, u ∈ P ∩ ∂Ω2,

holds. Then T has a fixed point in P ∩ (Ω2\Ω1).

We assume that f ∈ C([a, b]× R+,R+), and the limits

f0 = lim
y→0+

f(t, y)

y
, f∞ = lim

y→∞

f(t, y)

y

exist uniformly in the extended reals. The case f0 = 0 and f∞ =∞ is called the superlinear case,

and the case f0 =∞ and f∞ = 0 is called the sublinear case.

Theorem 4.2. For each λ satisfying

(a)
1

[γ2
∫
s∈I Gn(b, s)ds]f∞

< λ <
1∫ b

a
Gn(b, s)ds]f0

, (4.2)

(b)
1

[γ2
∫
s∈I Gn(b, s)ds]f0

< λ <
1∫ b

a
Gn(b, s)ds]f∞

, (4.3)

there exists at least one positive solution of the TPBVP (4.1). Moreover, in the case f is super-

linear(sublinear), then Eq.(4.2)(Eq.(4.3)) becomes 0 < λ <∞.

Proof. Define B to be a Banach space of all continuous functions on [a, b] equipped with the norm

‖ . ‖ defined by

‖ y ‖= max
t∈[a,b]

| y(t) | .

Define the cone P ⊂ B by

P =
{
y ∈ B : y(t) ≥ 0, min

t∈I
y(t) ≥ γ ‖ y ‖

}
,

where γ is as in Lemma 2.3. Define an operator Tλ by

Tλy(t) = λ

∫ b

a

Gn(t, s)f(s, y(s))ds,

for t ∈ [a, b]. The solutions of the TPBVP(4.1) are the fixed points of the operator Tλ.

Firstly, we show that Tλ : P → P. Note that y ∈ P implies that Tλy(t) ≥ 0 on [a, b] and

Tλy(t) = λ

∫ b

a

Gn(t, s)f(s, y(s))ds

≤ λ
∫ b

a

Gn(b, s)f(s, y(s))ds.

Note that by the nonnegative of f , we have

‖ Tλy ‖≤ λ
∫ b

a

Gn(b, s)f(s, y(s))ds
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from which

min
t∈I

Tλy(t) = min
t∈I

λ

∫ b

a

Gn(t, s)f(s, y(s))ds

≥ γλ
∫ b

a

Gn(b, s)f(s, y(s))ds

≥ γ ‖ Tλy ‖, y ∈ P.

Hence Tλy ∈ P and so Tλ : P → P which is what we want to prove. Therefore Tλ is completely

continuous.

Assume that (a) holds. Since λ < 1
[
∫ b
a
Gn(b,s)ds]f0

, there exists ε1 > 0 so that 0 < λ ≤
1

[
∫ b
a
Gn(b,s)ds](f0+ε1)

.

Using the definition of f0, there is an r1 > 0, sufficiently small, so that

f(t, y) < (f0 + ε1)y, for 0 < y ≤ r1, t ∈ [a, b].

If y ∈ P with ‖ y ‖= r1, then

Tλy(t) = λ

∫ b

a

Gn(t, s)f(s, y(s))ds

≤ λ(f0 + ε1)

∫ b

a

Gn(t, s)y(s)ds

≤ λ(f0 + ε1) ‖ y ‖
∫ b

a

Gn(b, s)ds

≤‖ y ‖

for t ∈ [a, b]. So if we set Ω1 = {y ∈ B :‖ y ‖≤ r1}, then ‖ Tλy ‖≤‖ y ‖, for y ∈ P ∩ ∂Ω1.

Now, we use assumption 1
[γ2

∫
s∈I Gn(b,s)ds]f∞

< λ.

First, we consider the case when f∞ <∞. In this case pick an ε2 > 0 so that

λγ2
∫
s∈I

Gn(b, s)ds(f∞ − ε2) ≥ 1.

Using the definition of f∞, there exists r2 > r1, sufficiently large, so that

f(t, y) > (f∞ − ε2)y, for y ≥ r2, t ∈ [a, b].

We now show that there exists r2 ≥ r2 such that if y ∈ ∂Pr2 , then

‖ Tλy ‖≥‖ y ‖. Let r2 = max{2r1, 1γ r2} and set Ω2 = {y ∈ B :‖ y ‖≤ r2}. If y ∈ P ∩ ∂Ω2, then

min
t∈I

y(t) ≥ γ ‖ y ‖= γr2 ≥ r2,
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and so

Tλy(t) = λ

∫ b

a

Gn(t, s)f(s, y(s))ds

≥ λ(f∞ − ε2)

∫ b

a

Gn(t, s)y(s)ds

≥ λ(f∞ − ε2)

∫
s∈I

Gn(t, s)y(s)ds

≥ λ(f∞ − ε2)γ2 ‖ y ‖
∫
s∈I

Gn(b, s)ds

≥‖ y ‖= r2.

Consequently, ‖ Tλy ‖≥‖ y ‖, for t ∈ [a, b].

Finally, we consider the case f∞ = ∞. In this case the hypothesis becomes λ > 0. Choose

N > 0 sufficiently large so that

λNγ

∫ b

a

Gn(b, s)ds ≥ 1.

Hence there exists r2 > r1 so that f(t, y) > Ny for y ≥ r2 and for all t ∈ [a, b]. Now define r2 as

before and assume y ∈ ∂Pr2 . Then

Tλy(t) = λ

∫ b

a

Gn(t, s)f(s, y(s))ds

≥ λN
∫ b

a

Gn(t, s)y(s)ds

≥ λNγ ‖ y ‖
∫ b

a

Gn(b, s)ds

≥‖ y ‖= r2

for t ∈ [a, b]. Hence ‖ Tλy ‖≥‖ y ‖ for y ∈ P ∩ ∂Ω1 and ‖ Tλy ‖≤‖ y ‖ for y ∈ P ∩ ∂Ω2 hold. Then

Tλ has a fixed point in P ∩ (Ω2\Ω1).

Now we show (b). Since 1
γ2[

∫
s∈I G(b,s)ds]f0

< λ, there exits ε3 > 0 so that λγ2
∫
s∈I G(b, s)ds(f0−

ε3) ≥ 1.

From the definition of f0, there exists an r3 > 0 such that f(t, y) ≥ (f0 − ε3)y for 0 < y ≤ r3.

If y ∈ P with ‖ y ‖= r3, then

Tλy(t) = λ

∫ b

a

Gn(t, s)f(s, y(s))ds

≥ λ(f0 − ε3)

∫ b

a

Gn(t, s)y(s)ds

≥ λγ2 ‖ y ‖ (f0 − ε3)

∫
s∈I

Gn(b, s)ds

≥‖ y ‖= r3.

Hence ‖ Tλy ‖≥‖ y ‖. So, if we set Ω3 = {y ∈ B :‖ y ‖≤ r3}, then ‖ Tλy ‖≥‖ y ‖ for y ∈ P ∩ ∂Ω3.
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Now, we use assumption 1∫ b
a
Gn(b,s)dsf∞

> λ. Pick an ε4 > 0 so that

λ

∫ b

a

Gn(b, s)ds(f∞ + ε4) ≤ 1.

Using the definition of f∞, there exists an r4 > 0 such that f(t, y) ≤ (f∞+ ε4)y for all y ≥ r4. We

consider the two cases.

Case I: Suppose f(t, y) is bounded on [a, b] × (0,∞). In this case, there is L > 0 such that

f(t, y) ≤ L for t ∈ [a, b], y ∈ (0,∞). Let r4 = max{2r3, λL
∫ b
a
Gn(b, s)ds}. Then for y ∈ P with

‖ y ‖= r4,

Tλy(t) = λ

∫ b

a

Gn(t, s)f(s, y(s))ds

≤ λL
∫ b

a

Gn(b, s)ds

≤‖ y ‖= r4,

so that ‖ Tλy ‖≤‖ y ‖.

Case II: Suppose f(t, y) is unbounded on [a, b]× (0,∞). In this case,

g(r) = max{f(t, y) : t ∈ [a, b], 0 ≤ y ≤ r}

satisfies

lim
r→∞

g(r) =∞.

We can therefore choose

r4 = max{2r3, r4}

such that

g(r4) ≥ g(r)

for 0 ≤ r ≤ r4 and hence for y ∈ P and ‖ y ‖= r4, we have

Tλy(t) = λ

∫ b

a

Gn(t, s)f(s, y(s))ds

≤ λ
∫ b

a

Gn(t, s)g(r4)ds

≤ λ(f∞ + ε4)r4

∫ b

a

Gn(b, s)ds

≤ r4 =‖ y ‖,

and again we hence have ‖ Tλy ‖≤‖ y ‖ for y ∈ P ∩ ∂Ω4, where Ω4 = {y ∈ B :‖ y ‖≤ r4} in both

cases. It follows from part (ii) of Theorem 4.1 that T has a fixed point in P ∩ (Ω4\Ω3), such that

r3 ≤‖ y ‖≤ r4. The proof of part (b) of this theorem is complete. Therefore, the TPBVP (4.1) has

at least one positive solution.
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5 Existence of Two Positive Solutions

In this section, using Theorem 5.1 (Avery-Henderson fixed-point theorem) we prove the existence

of at least two positive solutions of the TPBVP(1.1).

Theorem 5.1. [4]. Let P be a cone in a real Banach space. If ϕ and ψ are increasing, non-

negative continuous functionals on P, let θ be a non-negative continuous functional on P with

θ(0) = 0 such that, for some positive constants r and γ,

ψ(u) ≤ θ(u) ≤ ϕ(u) and ‖ u ‖≤ γψ(u)

for all u ∈ P(ψ, r). Suppose that there exist positive numbers p < q < r such that

θ(λu) ≤ λθ(u), for all 0 ≤ λ ≤ 1 and u ∈ ∂P(θ, q).

If T : P(ψ, r)→ P is a completely continuous operator satisfying

(i) ψ(Tu) > r for all u ∈ ∂P(ψ, r),

(ii) θ(Tu) < q for all u ∈ ∂P(θ, q),

(iii) P(ϕ, p) 6= {} and ϕ(Tu) > p for all u ∈ ∂P(ϕ, p),

then T has at least two fixed points u1 and u2 such that

p < ϕ(u1) with θ(u1) < q and q < θ(u2) with ψ(u2) < r.

Let the Banach space B = C[a, b] with the norm ‖ . ‖ defined by ‖ y ‖= maxt∈[a,b] | y(t) |.

Again define the cone P ⊂ B by

P =
{
y ∈ B : y(t) ≥ 0, min

t∈I
y(t) ≥ γ ‖ y ‖

}
,

where γ is as in Lemma 2.3, and the operator T : P → B by

Ty(t) =

∫ b

a

Gn(t, s)f(s, y(s))ds.

Let the non-negative, increasing, continuous functionals ψ, θ, and ϕ be defined on the cone P by

ψ(y) = min
t∈I

y(t), θ(y) = max
t∈I

y(t), ϕ(y) = max
t∈[a,b]

y(t) (5.1)

and let P(ψ, r) = {y ∈ P : ψ(y) < r}.

Define

C = γ

∫
s∈I

Gn(b, s)ds, D =

∫ b

a

Gn(b, s)ds.

In the next theorem, we will assume

(H) f ∈ C([a, b]× [0,∞), [0,∞)).
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Theorem 5.2. Assume (H) holds. Suppose there exist positive numbers 0 < p < q < r such that

the function f satisfies the following conditions:

(D1) f(t, y) > p
C for t ∈ I and y ∈ [γp, p],

(D2) f(t, y) < q
D for t ∈ [a, b] and y ∈ [0, qγ ],

(D3) f(t, y) > r
C for t ∈ I and y ∈ [r, rγ ],

where γ is defined in Lemma 2.3. Then the TPBVP (1.1) has at least two positive solutions y1

and y2 such that

p < max
t∈[a,b]

y1(t) with max
t∈I

y1(t) < q,

q < max
t∈I

y2(t) with min
t∈I

y2(t) < r.

Proof. From Lemma 2.2 and Lemma 2.3, TP ⊂ P. Moreover, T is completely continuous. From

(5.1), for each y ∈ P we have

ψ(y) ≤ θ(y) ≤ ϕ(y), (5.2)

‖ y ‖≤ 1

γ
min
t∈I

y(t) =
1

γ
ψ(y) ≤ 1

γ
θ(y) ≤ 1

γ
ϕ(y). (5.3)

For any y ∈ P, (5.2) and (5.3) imply

ψ(y) ≤ θ(y) ≤ ϕ(y), ‖ y ‖≤ 1

γ
ψ(y).

For all y ∈ P, λ ∈ [0, 1] we have

θ(λy) = max
t∈I

(λy)(t) = λmax
t∈I

y(t) = λθ(y).

It is clear that θ(0) = 0.

We now show that the remaining conditions of Theorem 5.1 are satisfied.

Firstly, we shall verify that condition (iii) of Theorem 5.1 is satisfied. Since 0 ∈ P and p > 0,

P(ϕ, p) 6= {}. Since y ∈ ∂P(ϕ, p), γp ≤ y(t) ≤‖ y ‖= p for t ∈ I. Therefore,

ϕ(Ty) = max
t∈[a,b]

Ty(t)

≥ Ty(t)

=

∫ b

a

Gn(t, s)f(s, y(s))ds

≥ γ
∫
s∈I

Gn(b, s)f(s, y(s))ds

≥ p

C
γ

∫
s∈I

Gn(b, s)ds

≥ p
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using hypothesis (D1).

Now we shall show that condition (ii) of Theorem 5.1 is satisfied. Since y ∈ ∂P(θ, q), from

(5.3) we have that 0 ≤ y(t) ≤‖ y ‖≤ q
γ for t ∈ [a, b]. Thus

θ(Ty) = max
t∈I

Ty(t)

= max
t∈I

∫ b

a

Gn(t, s)f(s, y(s))ds

≤
∫ b

a

Gn(b, s)f(s, y(s))ds

≤ q

D

∫ b

a

Gn(b, s)ds

≤ q

using hypothesis (D2).

Finally using hypothesis (D3), we shall show that condition (i) of Theorem 5.1 is satisfied.

Since y ∈ ∂P(ψ, r), from (5.3) we have that mint∈I y(t) = r and r ≤‖ y ‖≤ r
γ . Then

ψ(Ty) = min
t∈I

Ty(t)

= min
t∈I

∫ b

a

Gn(t, s)f(s, y(s))ds

=

∫ b

a

min
t∈I

Gn(t, s)f(s, y(s))ds

≥ γ
∫
s∈I

Gn(b, s)f(s, y(s))ds

≥ γ r
C

∫
s∈I

Gn(b, s)ds

≥ r.

This completes the proof.
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