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Abstract:

In this paper, the problem of internal penny shaped crack subject to varying normal pres-
sure in non-local elasticity is solved. The stress intensity factor is calculated and the corre-
sponding results of the classical theory are obtained as particular cases.
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1 Introduction

A systematic approach to non-local elasticity was presented by A.C. Eringen and Edelen [1],
through both the balance laws and thermodynamic and non-local variational principles. A few
problems that have been studied recently using the non-local theory of elasticity include stress
concentration at the tip of crack [2], line crack subject to shear [3], line crack subject to anti plane
shear [4], line crack subject to varying internal pressure [5], line crack subject to varying shear load
[6] and line crack subject to antiplane varying shear [7].

In this paper an attempt is made to discuss the problem of flat crack in the form of circular
disc called penny shaped crack in non-local elasticity. The resulting dual integral equations are
completely solved. Removing the singularity that is present in the stress distribution then stress
intensity factor is calculated. And the results tallies with the result obtained in classical elasticity
[8].

2 Basic eqations of non-local elasticity

Basic equations of linear, homogeneous, isotropic, non-local elastic solids with vanishing body
inertia forces, are

tkl,k = 0 (2.1)

tkl =

∫
V

[
λ1
(∣∣∣∣ ∧x1− ∧x∣∣∣∣) err

( ∧
x1
)
δkl + 2µ1

(∣∣∣∣ ∧x1− ∧x∣∣∣∣) ekl

( ∧
x1
)]

dv

( ∧
x1
)

(2.2)

ekl =
1

2
(uk,l + ul,k) (2.3)

Eringen [1] has obtained the forms of λ1
(∣∣∣∣ ∧x1− ∧x∣∣∣∣)and µ1

(∣∣∣∣ ∧x1− ∧x∣∣∣∣) for which the dispersion

curves of plane waves coincide within the entire Brillonin zone with those obtained in the Born-
Von-Karman theory of lattice dynamics. Accordingly
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(
λ1, µ1

)
= (λ, µ) α

(∣∣∣∣ ∧x1− ∧x
∣∣∣∣) where

α

(∣∣∣∣ ∧x1− ∧x
∣∣∣∣) =


α0

(
a−

∣∣∣∣ ∧x1− ∧x
∣∣∣∣) if

∣∣∣∣ ∧x1− ∧x
∣∣∣∣ ≤ a

0 if

∣∣∣∣ ∧x1− ∧x
∣∣∣∣ > a

(2.4)

where a is the lattice parameter, λ and µ are the classical Lame’ constants and α0 is normal-
ization constant to be determined from∫

V

α

(∣∣∣∣ ∧x1− ∧x
∣∣∣∣) dv

( ∧
x1

)
= 1 (2.5)

Where

α

(∣∣∣∣ ∧x1− ∧x
∣∣∣∣) = α0 exp

[
−
(
β

a

)2 (
x1k − xk

) (
x1k − xk

)2]
(2.6)

and β is a constant.
For two-dimensional case (2.6) has the specific form

α

(∣∣∣∣ ∧x1− ∧x
∣∣∣∣) =

1

π

(
β

a

)2

exp

{
−
(
β

a

)2 [(
x11 − x1

)2
+
(
x12 − x2

)2]}
(2.7)

Employing (2.4) in (2.2) we write

tkl =

∫
V

α

(∣∣∣∣ ∧x1− ∧x∣∣∣∣) σkl

( ∧
x1
)

dv

( ∧
x1
)

(2.8)

where

σkl = λerr

( ∧
x1
)
δkl + 2µekl

( ∧
x1
)

= λ ur1r

( ∧
x1
)
δkl + µ

[
uk,l

( ∧
x1
)

+ ul,k

( ∧
x1
)] (2.9)

It is the classical Hooke’s law. Substituting (2.8) in (2.1) and using Green-Gauss theorem, we
obtain∫

V

α

(∣∣∣∣ ∧x1− ∧x
∣∣∣∣)σkl,k ( ∧x1) dv

( ∧
x1
)
−
∮
∂v

α

(∣∣∣∣ ∧x1− ∧x
∣∣∣∣)σkl( ∧x1) dak ( ∧x1) = 0 (2.10)

Here the surface integral may be dropped if then only surface of the body is at infinity.

3 Penny shaped crack under varying normal pressure

Let an infinite elastic solid be weakened by a penny shaped crack of radius r = 1lying in the
XY-Plane. Let its center be the origin of coordinates. Let the solid be subjected to an internal
pressure p(r). Using the cylindrical polar coordinates (r,θ, z), taking z-symmetry into account, the
points on the plane z = 0, lying outside the circle r = 1, the normal component of displacement
uz is zero. Thus the boundary conditions for this problem are

σrz (r, 0) = 0 for r ≥ 0
tzz (r, 0) = −p (r) for 0 ≤ r ≤ 1
uz (r, 0) = 0 for r > 1

(3.1)
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Also all components of displacement and stress should tend to zero as
(
r2 + z2

)1/2 →∞ through
positive values of z.

The general solution of (2.10) in cylindrical polar coordinates is given by

ur = − 1
2

∫∞
0

(
µ

λ+µ − ξz
)

A (ξ) e−ξz J1 (ξr) dξ

uz = 1
2

∫∞
0

(
λ+2µ
λ+µ + ξz

)
A (ξ) e−ξz J0 (ξr) dξ and uθ = 0

(3.2)

where A(ξ) is to be determined from the boundary conditions (3.1). The components of strain
in cylindrical polar coordinates are

err = ∂ur
∂r , eθθ = ur

r , ezz = ∂uz
∂z

eθz = 0, ezr = ∂ur
∂z + ∂uz

∂r , erθ = 0
(3.3)

Substituting (3.2) into (3.3), we have

err = − 1
2

∫∞
0

(
µ

λ+µ − ξz
)

A (ξ) e−ξz
[
J0 (ξr)− 1

rJ1 (ξr)
]
dξ

eθθ = − 1
2r

∫∞
0

(
µ

λ+µ − ξz
)

A (ξ) e−ξz J1 (ξr) dξ

ezz = − 1
2

∫∞
0

(
µ

λ+µ + ξz
)

A (ξ) e−ξz J0 (ξr) dξ

eθz = 0
erθ = 0
ezr = − 1

2z
∫∞
0
A (ξ) ξ2 e−ξz J1 (ξr) dξ

(3.4)

Using (3.2), from (2.9) the local stresses takes the following form:

σrz = −µzH1

[
ξ A (ξ) e−ξz, ξ → r

]
σθz = 0
σzz = −µ H0

[
A (ξ) (1 + ξz) e−ξz, ξ → r

] (3.5)

where Hυ [G (r, z) , r → ξ] is the Hankel transform.∫∞
0
r G (r, z) Jυ (rξ) dr of order υ with respect to the variable r of an axisymmetric function

G(r,z).
The z-components of the non-local stress field can be expressed as

trz =
∫
V
α

(∣∣∣∣ ∧x1− ∧x∣∣∣∣ [σrz ( ∧x1) cos
(
θ1 − θ

)
+ σθz

( ∧
x1
)

sin
(
θ − θ1

)])
dv

( ∧
x1
)

tθz =
∫
V
α

(∣∣∣∣ ∧x1− ∧x∣∣∣∣ [σrz ( ∧x1) sin
(
θ1 − θ

)
+ σθz

( ∧
x1
)

cos
(
θ1 − θ

)])
dv

( ∧
x1
)

tzz =
∫
V
α

(∣∣∣∣ ∧x1− ∧x∣∣∣∣) σzz

( ∧
x1
)
dv

( ∧
x1
) (3.6)

where we introduced the cylindrical coordinates at
∧
xand

∧
x1 by

x1 = r cos θ, x2 = r sin θ, x3 = z
x11 = r1 cos θ1, x1

2 = r1 sin θ1, x1
3 = z1 and∣∣∣∣ ∧x1− ∧x

∣∣∣∣ =
[(
r1
)2

+ r2 − 2rr1 cos
(
θ1 − θ

)
+
(
z1 − z

)2]1/2
dv

( ∧
x1

)
= r1 dr1 dθ1 dz1

(3.7)
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Using (3.5)2, (3.6) takes the following form:

trz =
∫
V
α

(∣∣∣∣ ∧x1− ∧x∣∣∣∣) σrz

( ∧
x1
)

cos
(
θ1 − θ

)
dv

( ∧
x1
)

tθz =
∫
V
α

(∣∣∣∣ ∧x1− ∧x∣∣∣∣) σθz

( ∧
x1
)

sin
(
θ1 − θ

)
dv

( ∧
x1
)

tzz =
∫
V
α

(∣∣∣∣ ∧x1− ∧x∣∣∣∣) σzz

( ∧
x1
)

dv

( ∧
x1
) (3.8)

The evaluation of the integrals in (3.8) depends on the form of the function α

(∣∣∣∣ ∧x1− ∧x∣∣∣∣). In

this study, we take

α

(∣∣∣∣ ∧x1− ∧x∣∣∣∣) = α0 exp

[
−
(
β
a

)2 ∣∣∣∣ ∧x1− ∧x∣∣∣∣2
]

where α0 = π−
3/2
(
β
a

)3
and using standard inte-

grals [9]we can express (3.8) as

trz = −µe−mz
2

∫ ∞
0

A (ξ) ξ2

 1

2 (πm)
1 / 2

− γ

4m
e

(
γ2

4m

)(
1−φ

(
γ

2
√
m

)) e ξ24m J1 (ξr) dξ

tθz = 0

tzz = −µe
−mz2

4

∫ ∞
0

A (ξ) ξ

[
e

(
γ2

4m

)(
1−φ

(
γ

2
√
m

))
(1− ξr

2m ) + (πm)
−1/2

ξ

]
e
− ξ2

4mJ
0 (ξr) dξ (3.9)

where γ = ξ − 2mz and φ (z) is the error function defined by

φ (z) =
2√
π

∫ z

0

exp
(
−t2

)
dt

The normal component of non-local stress in the plane z=0 can be expressed as

tzz (r, 0) = −
(
µ
4

) ∫∞
0
ξ A (ξ) K (ξ,m) J0 (ξr) dξ where

K (ξ,m) =
[
1− φ

(
ξ

2
√
m

)](
1− ξ2

2m

)
+ (πm)

− 1 / 2 ξ exp
(
− ξ2

4m

) (3.10)

Thus, the boundary condition (3.1) and (3.1) reduces to the dual integral equations like∫∞
0
ξ A (ξ) [1 + k (∈ ξ) ] J0 (ξr) dξ = 4p(r)

µ for 0 ≤ r ≤ 1∫∞
0

A (ξ) J0 (ξr) dξ = 0 for r > 1
(3.11)

where

∈= 1
2
√
m

k (∈ ξ) = K (ξ,m)− 1 = −2 (∈ ξ)2 [1−φ (∈ ξ)]− φ (∈ ξ) + 2π−
1/2 (∈ ξ) exp

(
− ∈2 ξ2

)
For ∈= 0, k (∈ ξ) = 0 and the dual integral equations (3.11) reduces to the dual integral

equations in classical elasticity [8].
The solution of the dual integral equations (3.11) can be obtained by reducing the problem to

that of solving the Fredholm integral equation of the second kind [10].

h (r) +

∫ 1

0

h (u) L (r,u) du =
4

µ
√
π

∫ r

0

u p (u)√
(r2 − u2)

du (3.12)

for the function h(r), where
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L (r, u) = (2π)
−1/2 {kc (|r − u|)− kc (|r + u|)} where kc (ξ)is the Fourier cosine transform of

k (∈ t). Then A (ξ) is given by

A (ξ) =
2√
π

∫ 1

0

h (t) sin (ξt) dt (3.13)

For ∈=0, k(∈t) =0 and (3.12) gives

h0 (r) =
4

µ
√
π

∫ r

0

u p (u)√
(r2 − u2)

du (3.14)

Hence from (3.13) and (3.14), A0 (ξ) is given by

A0 (ξ) =
4

µ

∫ 1

0

g (t) sin (ξt) dt where g (t) =
2

π

∫ t

0

u p (u)√
(t2 − u2)

du

Since ∈ is very small number, k (∈ ξ) is very small compared to unity and hence it is sufficient
to take the solution of (3.11) to calculate the stress field as

A (ξ) =
4

µ

∫ 1

0

g (t) sin (ξt) dt (3.15)

Neglecting the higher order terms in the expression of k (∈ ξ) and retaining upto second order
and by using (3.15), we can express (3.10) as

tzz (r, 0) = −
∫ 1

0

g (t)

[∫ ∞
0

ξ J0 (ξr)
(
1− 2 ∈2 ξ2

)
sin (ξt) dξ

]
dt (3.16)

Since
∫∞
0
J0 (ξr) cos (ξt) dξ = H(r−t)√

(r2−t2)
, (3.16) can be expressed as

tzz (r, 0) =

∫ 1

0

g (t)

[
d

dt

H (r − t)√
(r2 − t2)

+ 2 ∈2 d3

dt3
H (r − t)√

(r2 − t2)

]
dt (3.17)

For r > t and H(r-t) = 1, integrating by parts we get

tzz (r, 0) =
g (1)√
(r2 − 1)

−
∫ 1

0

g1 (t)√
(r2 − t2)

dt+2 ∈2
 r2g (1)

(r2 − 1)
5/2
−
∫ 1

0

g1 (t)√
(r2 − t2)

(
t2

(r2 − t2)
+ 1

)
dt


(3.18)

Now if we choose the internal pressure p(r) in such a way that g(t) is differentiable in the
neighbourhood of t = 1, (??) takes the following form:

tzz (r, 0) =
g (1)√
(r2 − 1)

− 0 (1) + 2 ∈2
 r2g (1)

(r2 − 1)
5/2
− 0 (1)

 as r→ 1+ (3.19)

If the crack is of radius c, then (3.19) becomes

tzz (r, 0) =
g (c)√
(r2 − c)

− 0 (1) + 2 ∈2
 r2g (c)

(r2 − c)
5/2
− 0 (1)

 (3.20)
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Then by removing the singularity of order (5/2), the non-local stress intensity factor I1 is given
by

I1 =
4 ∈2

πc

∫ c

0

r p (r)√
(c2 − r2)

dr

For ∈ = 0, (3.19) takes the following form:

tzz (r, 0) =
g (1)√
(r2 − 1)

−
∫ 1

0

g1 (t)√
(r2 − t2)

dt (3.21)

Removing the singularity of order (1/2), the local stress intensity factor I is given by
I = g(??) which coincides with the classical result [8].
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