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Abstract:

In this paper, we propose a preconditioned AOR iterative method for solving the
systems of linear equations with M-matrix coefficient. Some numerical results are
given to compare the proposed preconditioner with an available preconditioner.
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1 Introduction
Consider the system of linear equations
Az =D, (1.1)

where A = (a;;) € R™™" is nonsingular and b € R". Without loss of generality, let the
matrix A of Eq. (1.1) can be written as

A=I1-L-T,

where I is the identity matrix, —L and —U are strictly lower and upper triangular matrices
obtained from A, respectively. The accelerated overrelaxation (AOR) iterative method [4]
to solve Eq. (1.1) is given by

e = £ La® 4 o(I — L), (1.2)
with the iteration matrix

Low= (1= L) (A — )T + (@ — )L + U],
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and w and + are real parameters with w # 0. For certain values of the parameters w and
v the AOR iterative method results in the successive overrelaxation (SOR), Gauss-Seidel
and Jacobi methods [4]. To improve the convergence rate of the basic iterative methods,
several preconditioned iterative methods have been proposed in the literature. In these
methods the original system is transformed into the preconditioned form

PAz = Pb, (1.3)

where P = (p;;) € R™™" is nonsingular and nonnegative with p;; = 1,4 =1,--- ,n. Then,
a basic iterative method is applied to solve Eq. (1.3). If we use the AOR iterative method
to solve (1.3), then we obtain

20D = 7 2 ®) 4 (D — L)1, (1.4)

where

Low=(D—-~yL)7 (1 —w)D+ (w—7)L +wl],
and A= PA=D— L —U with D, L and U being diagonal, strictly lower and strictly
upper triangular matrices, respectively, and b = Pb.

For convenience, some notations, definitions and results that will be used in the
sequel are given below. A matrix A is called nonnegative, semi-positive and positive if
each entry of A is nonnegative, nonnegative but at least a positive entry and positive,
respectively. We denote them by A > 0, A > 0 and A > 0. Similarly, for n-dimensional
vectors, by identifying them with n x 1 matrices, we can also define x > 0, z > 0 and
x> 0. Additionally, we denote the spectral radius of A by p(A).

Definition 1.1. ([1]) A matrix A = (a;;) is said to be a Z-matriz if for any i # j, a;; < 0;
an M-matriz if it is a Z-matrix with a; > 0 fori = 1,...,n, A is nonsingular and A=! > 0.

Lemma 1.1. ([1]) Let A be a Z-matriz. A is an M-matriz if and only if there is a vector
x > 0 such that Az > 0.

In [11], Wang and Song proposed the following interesting theorem concerning the
preconditioned AOR iterative method.

Theorem 1.2. ([11]) Let A = (ai;) € R™*™ be an M-matriz. Assume that0 <y <w <1,
w# 0, P=(pij) >0 is a nonsingular preconditioner with p;j = —asja;5, 0 < a5 < 1, for
1<i#j<nandp; =1 for1<i<n. Then, we have

p(Lyw) < p(Lyw) < 1.

The preconditioner P for the special cases of the parameters o;; results in many
known preconditioners. As mentioned in [11], if a;; = 0, j # 1, then P is reduced to the
preconditioner proposed first by Milaszewicz [8] and generalized in [5]. If a;; = 0, j # i+1,
and j # i, then P is reduced to the preconditioner presented in [3] and parameterized in
[6]. If a;; = 0 for ¢ > j, then P is the preconditioner proposed in [7], etc. Many of these
preconditioners are lower or upper triangular matrices. In [10], Usui et al. proposed the
preconditioner P = I + L. In this paper, we improve this preconditioner.

The rest of the paper is organized as follows. In section 2, we our main results.
Section 3 is devoted to some numerical results. Concluding remarks are given in section

4.
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2 Main results

In this section, we assume that the matrix A of Eq. (1.1) is an M-matrix and the precon-
ditioner P is of the form P = I + L. By Theorem 1.2, P is a suitable preconditioner for
Eq. (1.1). We first give the next lemma.

Theorem 2.1. If A is an M-matrix and P =1 + L, then PA is also an M-matrix.

Proof. First, we see that
i—1

(PA)ZJ = Q55 — Z A5k < 0.
k=1
This shows that the matrix PA is a Z-matrix. Since A is an M-matrix, by Lemma 1.1,
there exists > 0 such that Az > 0. Evidently, PAx > 0 and Lemma 1.1 shows that
PA is an M-matrix. O

We now investigate the properties of the matrix A = PA. We have
A=I+LA=1-U-L*>-LU.

Let LU = D + L + U, where D, L and U are diagonal, strictly lower and strictly upper
triangular matrices, respectively. Obviously, D, L, U > 0. The matrix A can be written as

A=(I~-D)—(L*+L)— (U+D).

By Theorem 2.1, A is an M-matrix. Therefore,

0<(I—-D); <1, i=1,...,n.
This shows that I — D is nonsingular. Now, we have

(I-D)'*PA=1—-(I-D)YL*+L)-(I-D) (U+D).
It is easy to see that the matrix (I — D)"!PA is an M-matrix. Hence, by Theorem 1.2,
I+(I-D)"YU+U),

is a suitable preconditioner for the system

(I — D) 'PAz = (I — D)"'Pb. (2.1)
On the other hand, we have

I+(I-D)y'U+U)>I+(I-D)y'U>1+U=Q.

This shows that, one may use the matrix () = I+ U as a left preconditioner for the system
(2.1). In this case, we should compute the diagonal matrix (I — D)~! and in this case
the computational cost is high. To overcome on this problem we use the preconditioner
@ as a right preconditioner for the system (2.1) and neglect the diagonal preconditioner
(I — D)~!. In this case the proposed preconditioned system may be written as

PAQy = Pb, x = Quy. (2.2)

In the case that the coefficient matrix A of the original system is symmetric, we have
Q = P7 and the coefficient matrix of the system (2.2) would be symmetric. This means
that the proposed preconditioner preserves the symmetry.
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Table 1: Numerical results for Example 1.

n No Precon. PAx = Pb PAQy = Pb, x = Qy
2500 14(0.27) 12(0.28) 7(0.19)
10000 39(2.75) 25(2.41) 14(1.81)
22500 61(10.16) 46(9.88) 22(5.25)
40000 72(20.95) 67(23.75) 31(13.16)

3 Numerical experiments

All the numerical experiments presented in this section were computed in double precision
with some MATLAB codes. In all the experiments, vector b = A(1,1,...,1)” was taken
to be the right-hand side of the linear system and a null vector as an initial guess. The
stopping criterion used was always

16 — Axy|2

< 10719,
0]l

We present two examples to compare the numerical results of the GMRES(m) [9] for
solving Egs. (1.1), (1.3) and (2.2).

Example 1. We consider the two dimensional convection-diffusion equation (see [11])
_(ux:p + uyy) + 2€z+y(xux + yuy) = f(xay>a n Q= (Oa 1) X (07 1)7

with the homogeneous Dirichlet boundary conditions. Discretization of this equation on a
(p+1) x (p+1) grid, by using the second order centered differences for the second and first
order differentials gives a linear system of equations of order n = p? with n unknowns.

We first assume p = 30. In this case, the coefficient matrix of the obtained system
is of dimension n = 900. In Figure 1, we depict the eigenvalues of A, (I + L)A and
(I + L)A(I + U). This figure shows that the spectrum of the preconditioned matrix
(I + L)A(I +U) is more clustered than those of the matrices A and (I + L)A.

We also set p = 50,100, 150,200 which yield four matrices of order n = 2500,

10000, 22500, and 40000, respectively. Number of iterations for the convergence of the
GMRES(30) method for solving Egs. (1.1), (1.3) and (2.2) are given Table 1. We mention
that, the CPU times (in seconds) are reported in the parenthesis. As we observe our
preconditioner is more effective than the preconditioner P = I + L.

Example 2. (see [2]) In this example, we consider the three-dimensional convection-
diffusion equation

_(u:):x + Uyy + uzz) + Q(ux + uy + Uz) = f(:l:a Y, Z)v

on the unit cube ©Q = [0, 1] x [0,1] x [0, 1], with constant ¢ and subject to Dirichlet-type
boundary conditions. Discretizing this equation with seven-point finite difference (the
centered differences to the diffusive terms and first-order upwind approximation to the
convective terms) and assuming the numbers of grid points in all three directions are the
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Figure 1: Spectra of A (top), spectra of (I + L)A (middle) and spectra of (I + L)A(I + U) (down) for Example 1.
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Table 2: Numerical results for Example 2.

n No Precon. PAx = Pb PAQy = Pb, x = Qy
15625 33(1.05) 27(1.28) 12(0.70)
27000 44(2.52) 36(2.84) 15(1.52)
42875 58(5.41) 46(5.89) 18(2.89)
64000 73(10.08) 57(10.67) 24(6.06)

same and equal to p 4 1, we obtain a system of linear equations with coefficient matrix A
of order n = p3. The matrix A can be written as

A=T, L L+, Ty, +,®I,®T,
where
T, = tridiag(ts, t1,t3), T, = tridiag(te,0,t3), T, = tridiag(ts,0,13),

in which
t1=6+6r, to=-—-1-—2r, t3=-—1,

with r = (¢gh)/2. We set ¢ = 100.

The spectrum pictures of the matrices A, (I+L)A and (I+L)A(I+U) for n = 10° =
1000 are plotted in Figure 2. As we observe the eigenvalues of the original matrix A are real
(imaginary parts of the eigenvalues are almost equal to zero). Whereas, several eigenvalues
of the matrix (I + L) A are complex but all of the eigenvalues of the preconditioned matrix
(I + L)A(I 4+ U) are all real. Moreover, the spectrum of the preconditioned matrix (I 4+
L)A(I + U) is more clustered than those of the matrices A and (I + L)A.

We also set p = 25,30,35 and 40. Therefore four matrices of dimensions n =
15625, 27000, 42875 and 64000 are obtained. Numerical results are given in Table 2. All
the notations and assumptions are as before. Here we mention that we have used the
GMRES(10) iterative method. As we observe our preconditioner is more effective than
the preconditioner P =1 + L.

4 Conclusion

We have proposed a two-sided preconditioner for M-matrices. We have shown that our
preconditioner improves the convergence rate of the AOR iterative method. Numerical
results have been presented to show the effectiveness of the preconditioner. The presented
numerical results show that the proposed preconditioner is more effective than that of an
available preconditioner.
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Figure 2: Spectra of A (top), spectra of (I + L)A (middle) and spectra of (I + L)A(I + U) (down) for Example 2.
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