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Abstract:

The main aim of this paper is to examine the effectiveness of the Half-Sweep Arithmetic
Mean (HSAM) iterative method in solving dense linear systems generated from the discretiza-
tion of the first and second kind linear Fredholm integral equations. The formulation and
implementation of the proposed method is also presented. Numerical tests and comparisons
with other existing methods are given to illustrate the effectiveness of the proposed method.
Keywords: Linear Fredholm equations, half-sweep iteration, quadrature, Arithmetic Mean.

1 Introduction

Studies on iterative methods play an important role to accelerate convergence rate in solving any
system of linear equations generated by discretizing mathematical models in science and engineering
problems. The discovery of the half-sweep iteration method has been inspired by Abdullah [2] via
the Explicit Decoupled Group (EDG) iterative method for solving a sparse linear system obtained
from the discretization of the two-dimensional Poisson equations. Following to that, an application
of the half-sweep iteration concept with iterative methods has been extensively studied by many
researchers. For instance, further studies of the half-sweep iteration concept, especially with EDG
method in solving partial differential equations problems have been conducted, see [3, 7, 19].

Besides EDG method, effectiveness of the half-sweep iteration concept with the two-stage it-
erative methods in solving the sparse linear system has been also studied. Two-stage iterative
method also called as inner and outer iteration schemes have been proposed widely to be one of
the feasible and successful classes of numerical algorithms for solving any linear system. In 2004,
the standard Arithmetic Mean (AM) method [14] which is one of the two-stage iterative methods
has been modified by combining the concept of the half-sweep iteration and then called as the
Half-Sweep Arithmetic Mean (HSAM) method to solve two-point boundary value problems [15].
Standard AM method can be also named as the Full-Sweep Arithmetic Mean (FSAM) method.
From the perspective of HSAM method, many researches have been carried out to examine the
effectiveness of the HSAM method [16, 17]. However, in this paper, the application of the HSAM
iterative method for solving first and second kind linear integral equations type of Fredholm are
examined.
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The remainder of this paper is organized in following way. In next section, the formulation
of the full- and half-sweep quadrature approximation equations will be elaborated. The latter
sections of this paper will discuss the formulations of the FSAM and HSAM iterative methods
in solving linear systems generated from discretization of the Eq. (2.1) and then some numerical
results will be shown to assert the performance of the proposed method. Besides that, analysis on
computational complexity is also included and the concluding remarks are given in final section.

2 Quadrature Approximation Equations

Generally, linear integral equations of Fredholm type in the standard form can be defined as follows

λy (x) +

∫
Γ

K (x, t) y (t) dt = f (x) ,Γ = [a, b] (2.1)

where the parameter λ, kernel K (x, t) ∈ L2[a, b] × [a, b] and free term f (x) ∈ L2[a, b] are given,
and y (x) is the unknown function to be determined. K (x, t) is called Fredholm kernel if the kernel
in Eq. (2.1) is continuous on the square S = {a ≤ x ≤ b, a ≤ t ≤ b} or at least square integrable
on this square [11]. By referring Eq. (2.1), linear Fredholm integral equations can be classified as
the first and second kind whenever λ = 0 and λ 6= 0 respectively.

By considering numerical technique, there are many methods can be used to discretize the linear
Fredholm integral equations into linear systems such as quadrature [1, 4, 8] and projection [6, 9,
10, 13] methods. However, in this paper discretization scheme based on quadrature method was
used to discretize the linear Fredholm integral equations of the first and second kind. Basically,
quadrature method can be defined as follows∫ b

a

y (t) dt =

n∑
j=0

Ajy (tj) + εn (y) (2.2)

where tj (j = 0, 1, 2, · · · , n) is the abscissas of the partition points of the integration interval, Aj

(j = 0, 1, 2, · · · , n) is numerical coefficients that do not depend on the function y (t) and εn (y)
is the truncation error of Eq. (2.2). Meanwhile, Fig. 1 shows the finite grid networks in order to
form the full- and half-sweep quadrature approximation equations.

(a)

(b)

Figure 1: a) and b) show distribution of uniform node points for the full- and half-sweep cases respectively

Based on Fig. 1, the full- and half-sweep iterative methods will compute approximate values
onto node points of type only until the convergence criterion is reached. Then, other approximate
solutions at remaining points (points of the different type, ) can be computed using the direct
method [2, 3, 7, 19].
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By applying Eq. (2.2) into Eq. (2.1) and neglecting the error, εn (y), a system of linear
equations can be formed for approximation values of y (t). The following linear system generated
using quadrature method can be easily shown in matrix form as follows

M y
∼

= f
∼

(2.3)

where

M =


λ+A0K 0,0 ApK 0,p A2pK 0,2p · · · AnK 0,n

A0K p,0 λ+ApK p,p A2pK p,2p · · · AnK p,n

A0K 2p,0 ApK 2p,p λ+A2pK 2p,2p · · · AnK 2p,n

...
...

...
. . .

...
A0K n,0 ApK n,p A2pK n,2p · · · λ+AnK n,n


((n

p )+1)x((n
p )+1)

,

y
∼

= [y0 yp y2p · · · yn−2p yn−p yn]
T
,

and
f
∼

= [f0 fp f2p · · · fn−2p fn−p fn]
T
.

In order to facilitate the formulation of the full- and half-sweep quadrature approximation
equations for problem (2.1), further discussion will be restricted onto repeated trapezoidal (RT)
scheme, which is based on linear interpolation formula with equally spaced data. Based on RT
scheme, numerical coefficient Aj will satisfy the following relation

Aj =

{
1
2ph, j = 0, n
ph, otherwise

(2.4)

where the constant step size, h is defined as follows

h =
b− a
n

(2.5)

and n is the number of subintervals in the interval [a, b]. Meanwhile, the value of p, which corre-
sponds to 1 and 2, represents the full- and half-sweep cases respectively.

3 Arithmetic Mean Methods

As stated in previous section, AM methods are one of the two-stage iterative methods and the
iterative process involves of solving two independent systems such as y

∼
1 and y

∼
2. To develop the

formulation of AM methods, express the coefficient matrix M as the matrix sum

M = L+D + U (3.1)

where L, Dand U are the strictly lower triangular, diagonal and strictly upper triangular matrices
respectively. Thus, by adding positive acceleration parameter, ω the general scheme for FSAM
and HSAM methods is defined by

(D + ωL) y
∼

1 = ((1− ω)D − ωU)
(k)
y
∼

+ω f

(D + ωU) y
∼

2 = ((1− ω)D − ωL)
(k)
y
∼

+ω f

(k+1)
y
∼

= 1
2

(
y
∼

1 + y
∼

2

)


(3.2)
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where
(0)
y
∼

is an initial vector approximation to the solution and 0 < ω < 2.

The AM methods require a slight additional computational effort of the sum of two matrices
at each iteration k, but its rate of convergence is relatively insensitive to the exact choice of the
parameter ω [14]. Practically, the value of ω will be determined by implementing some computer
programs and then choose one value of ω, where its number of iterations is the smallest. By
determining values of matrices L, Dand U as stated in Eq. (3.1), the general algorithm for FSAM
and HSAM iterative methods to solve problem (2.1) would be generally described in Algorithm 1.
Algorithm 1: FSAM and HSAM methods

1. Level (2.1)

For i = 0, p, 2p, · · · , n− 2p, n− p, n and j = 0, p, 2p, · · · , n− 2p, n− p, n, Calculate

y 1
i ←


(1− ω) y

(k)
i +

(
ω
∑n

j=pAjKijy
(k)
j + ω fi

)/
(λ+AiKii) , i = 0

(1− ω) y
(k)
i +

(
ω
∑n−p

j=0 AjKijy
1
j + ω fi

)/
(λ+AiKii) , i = n

(1− ω) y
(k)
i +

(
ω
∑i−p

j=0AjKijy
1
j + ω

∑n
j=i+pAjKijy

(k)
j + ω fi

)/
(λ+AiKii) , others

1. Level (2.2)

For i = n, n− p, n− 2p · · · , 2p, p, 0 and j = 0, p, 2p, · · · , n− 2p, n− p, n, Calculate

y 2
i ←


(1− ω) y

(k)
i +

(
ω
∑n

j=pAjKijy
2
j + ω fi

)/
(λ+AiKii) , i = 0

(1− ω) y
(k)
i +

(
ω
∑n−p

j=0 AjKijy
(k)
j + ω fi

)/
(λ+AiKii) , i = n

(1− ω) y
(k)
i +

(
ω
∑i−p

j=0AjKijy
(k)
j + ω

∑n
j=i+pAjKijy

2
j + ω fi

)/
(λ+AiKii) , others

1. For i = 0, p, 2p, · · · , n− 2p, n− p, n

Calculate

y
(k+1)
i ← 1

2

(
y 1
i + y 2

i

)
The FSAM and HSAM algorithms are explicitly performed by using all equations at level (2.1)
and (2.2) alternatively until the specified convergence criterion is satisfied. Generally, the basic
idea for the convergence analysis of the AM methods has been proven by [14].

4 Numerical Simulations

In order to compare the performances of the iterative methods described in the previous section,
several experiments were carried out on the following well-posed Fredholm integral equations prob-
lems and case where a = 0 and b = 1. In comparison, the Full-Sweep Gauss-Seidel (FSGS) method
acts as the control of comparison of numerical results. Three criteria such as number of iterations,
execution time and maximum absolute error will be considered in comparison for FSGS, FSAM
and HSAM iterative methods. For the following examples, interval [a, b] will be uniformly divided
into n = 2q, q ≥ 2 and convergence test for the implementation of the iterative methods considered
the tolerance error, ε = 10−10.
Example 1 [12]
Consider the Fredholm integral equations of the first kind∫ 1

0

K(x, t) y(t) dt = ex + (1− e)x− 1, 0 < x < 1 (4.1)

with kernel

K(x, t) =

{
t(x− 1), t ≤ x
x(t− 1), x < t
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and the exact solution of the problem (4.1) is given by

y(x) = ex.

Example 2 [5]
Consider the Fredholm integral equations of the first kind∫ 1

0

K(x, t) y(t) dt =
1

6
(x3 − x), 0 < x < 1 (4.2)

with kernel

K(x, t) =

{
t(x− 1), t < x
x(t− 1), x ≤ t .

Exact solution of the problem (4.2) is
y(x) = x.

Results of numerical simulations, which were obtained from implementations of the FSGS, FSAM
and HSAM iterative methods for Examples 1 and 2 have been recorded in Tables 1 and 2 respec-
tively.

Table 1: Comparison of a number of iterations, execution time and maximum absolute error for the iterative methods at
optimum value of ω (Example 1)

Number of iterations
Methods n

512 1024 2048 4096 8192
FSGS
FSAM
HSAM

394
143
140

479
144
143

568
145
144

667
146
145

778
149
146

Execution time (seconds)
Methods n

512 1024 2048 4096 8192
FSGS
FSAM
HSAM

3.64
2.56
0.64

17.31
10.33
2.60

81.49
41.62
10.39

382.33
167.14
41.78

1792.86
682.84
171.22

Maximum absolute error
Methods n

512 1024 2048 4096 8192
FSGS
FSAM
HSAM

8.6244 E-7
8.6107 E-7
8.5921 E-6

2.1571 E-7
2.1456 E-7
2.1528 E-6

5.5889 E-8
5.3522 E-8
5.3797 E-7

2.5713 E-8
1.3573 E-8
1.3413 E-7

4.2551 E-8
6.8853 E-9
3.3494 E-8

Example 3 [18]
Consider the Fredholm integral equation of the second kind

y(x) = x+

∫ 1

0

(4x t− x2)y(t)dt, 0 ≤ x ≤ 1 (4.3)

and the exact solution is given by
y(x) = 24x− 9x2.

Example 4 [11]
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Table 2: Comparison of a number of iterations, execution time and maximum absolute error for the iterative methods at
optimum value of ω (Example 2)

Number of iterations
Methods n

512 1024 2048 4096 8192
FSGS
FSAM
HSAM

381
135
131

461
135
135

550
137
135

646
139
137

753
142
139

Execution time (seconds)
Methods n

512 1024 2048 4096 8192
FSGS
FSAM
HSAM

3.48
2.75
0.95

16.67
11.04
3.92

79.55
44.42
15.69

379.97
181.69
63.70

1774.25
742.33
258.07

Maximum absolute error
Methods n

512 1024 2048 4096 8192
FSGS
FSAM
HSAM

6.8225 E-10
1.2307 E-9
1.8384 E-9

8.3429 E-10
1.4924 E-9
1.2307 E-9

8.4449 E-10
1.1483 E-9
1.4924 E-9

9.7143 E-10
6.0293 E-10
1.1483 E-9

9.7966 E-10
1.0732 E-9
6.0293 E-10

Consider the Fredholm integral equation of the second kind

y(x) = x6 − 5x3 + x+ 10 +

∫ 1

0

(x 2 + t2)y(t)dt, 0 ≤ x ≤ 1 (4.4)

with the exact solution

y(x) = x6 − 5x3 +
1045

28
x2 + x+

2141

84
.

For Examples 3 and 4, numerical results of the iterative methods have recorded in Table 3 and 4
respectively.

Meanwhile, reduction percentage of the number of iterations and execution time for the FSAM
and HSAM methods compared with FSGS method have been summarized in Table 5.

5 Computational Complexity Analysis

In order to measure the computational complexity of the FSAM and HSAM iterative methods, an
estimation amount of the computational work required for both methods have been conducted. The
computational work is estimated by considering the arithmetic operations performed per iteration.
Based on Algorithm 1, it can be observed that there are 2n

p +5 additions/subtractions (ADD/SUB)

and 4n
p + 9 multiplications/divisions (MUL/DIV) in computing a value for each node point in the

solution domain for first kind linear Fredholm integral equations. Meanwhile, for second kind
linear Fredholm integral equations, it can concluded that there are 2n

p + 7 additions/subtractions

(ADD/SUB) and 4n
p + 9 multiplications/divisions (MUL/DIV) operations. From the order of the

coefficient matrix, M in Eq. (2.3), the total number of arithmetic operations per iteration for the
FSAM and HSAM iterative methods in solving first and second kinds Fredholm integral equations
has been summarized in Table 6.
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Table 3: Comparison of a number of iterations, execution time and maximum absolute error for the iterative methods at
optimum value of ω (Example 3)

Number of iterations
Methods n

512 1024 2048 4096 8192
FSGS
FSAM
HSAM

194
84
84

194
84
84

195
84
84

195
84
84

195
84
84

Execution time (seconds)
Methods n

512 1024 2048 4096 8192
FSGS
FSAM
HSAM

2.20
1.82
0.40

8.75
7.30
1.56

35.06
28.91
6.17

140.31
116.74
24.62

560.50
465.32
98.41

Maximum absolute error
Methods n

512 1024 2048 4096 8192
FSGS
FSAM
HSAM

4.6922 E-4
4.6922 E-4
1.8771 E-3

1.1730 E-4
1.1730 E-4
4.6922 E-4

2.9325 E-5
2.9325 E-5
1.1730 E-4

7.3307 E-6
7.3311 E-6
2.9325 E-5

1.8321 E-6
1.8326 E-6
7.3311 E-6

6 Conclusions

In the previous section, it has shown that the formulation of full- and half-sweep quadrature
approximation equations based on repeated trapezoidal scheme can easily generate a linear system
as shown in Eq. (2.3). Through numerical results obtained in Tables 1-4, clearly show that
by applying the AM methods can reduce number of iterations compared to the FSGS method.
Through the observation in Tables 1-4, found that application of the half-sweep iteration concept
reduce the execution time of the iterative method. Since the implementation of the half-sweep
iteration only considers approximately half of all interior node points in a solution domain. In
terms of accuracy, approximate solutions for the FSAM and HSAM methods are in good agreement
compared to the FSGS method. Overall, the numerical results show that the HSAM method is
a better method compared to the FSGS and FSAM methods in the sense of number of iterations
and execution time.
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