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1 Introduction

Let E be a real Banach space, E∗ the dual space of E. Let C be a nonempty closed convex
subset of E and Θ a bifunction from C × C to R, where R denotes the set of numbers
and ϕ : C → R be a real-valued functionand B : C −→ E∗ be a nonlinear mapping. The
generalized mixed equilibrium problem, is to find x ∈ C such that

Θ(x, y) + 〈Bx, y − x〉+ ϕ(y)− ϕ(x) ≥ 0, ∀y ∈ C. (1.1)

The set of solutions to (1.1) is denoted by Ω, i.e.,

Ω = {x ∈ C : Θ(x, y) + 〈Bx, y − x〉+ ϕ(y)− ϕ(x) ≥ 0, ∀y ∈ C}. (1.2)

If B = 0, the problem (1.1) reduce into the mixed equilibrium problem for Θ, denoted by
MEP (Θ, ϕ), is to find x ∈ C such that

Θ(x, y) + ϕ(y)− ϕ(x) ≥ 0, ∀y ∈ C. (1.3)

If ϕ ≡ 0, the problem (1.1) reduce into the equilibrium problem for Θ, denoted by EP (Θ),
is to find x ∈ C such that

Θ(x, y) ≥ 0, ∀y ∈ C. (1.4)

If Θ ≡ 0, the problem (1.1) reduce into the minimize problem, denoted by Argmin(ϕ), is
to find x ∈ C such that

ϕ(y)− ϕ(x) ≥ 0, ∀y ∈ C. (1.5)

The above formulation (1.4) was shown in [6] to cover monotone inclusion problems, sad-
dle point problems, variational inequality problems, minimization problems, optimization
problems, variational inequality problems, vector equilibrium problems, Nash equilibria
in noncooperative games. In addition, there are several other problems, for example, the
complementarity problem, fixed point problem and optimization problem, which can also
be written in the form of an EP (Θ). In other words, the EP (Θ) is an unifying model for
several problems arising in physics, engineering, science, optimization, economics, etc. In
the last two decades, many papers have appeared in the literature on the existence of solu-
tions of EP (Θ); see, for example [6, 12, 19, 34] and references therein. In 2005, Combettes
and Hirstoaga [10] introduced an iterative scheme of finding the best approximation to
the initial data when EP (Θ) is nonempty and they also proved a strong convergence the-
orem. Some solution methods have been proposed to solve the EP (Θ); see, for example,
[10, 12, 14, 15, 29, 30, 31, 34] and references therein.

Let A : C −→ E∗ be an operator. The classical variational inequality, denoted by
V I(A,C), is to find u ∈ C such that

〈Au, v − u〉 ≥ 0, ∀v ∈ C. (1.6)

Recall that let A : C −→ E∗ be a mapping. Then A is called
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(i) monotone if
〈Ax−Ay, x− y〉 ≥ 0, for all x, y ∈ C,

(ii) α−inverse−strongly monotone if there exists a constant α > 0 such that

〈Ax−Ay, x− y〉 ≥ α‖x− y‖2, for all x, y ∈ C.

Let E be a real Banach space with norm ‖ · ‖ and let J be the normalized duality
mapping from E into 2E

∗
given by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖‖x∗‖, ‖x‖ = ‖x∗‖}

for all x ∈ E, where E∗ denotes the dual space of E and 〈·, ·〉 the generalized duality
pairing between E and E∗. It is well known that if E∗ is uniformly convex, then J is
uniformly continuous on bounded subsets of E.

Recall that a mapping T : C → C is said to be nonexpansive if ‖Tx − Ty‖ ≤ ‖x −
y‖, ∀x, y ∈ C. A point x ∈ C is a fixed point of T provided Tx = x. Denote by F (T )
the set of fixed points of T ; that is, F (T ) = {x ∈ C : Tx = x}.

Consider the functional φ defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2 for x, y ∈ E. (1.7)

Observe that, in a Hilbert space H, (1.7) reduces to φ(x, y) = ‖x − y‖2, x, y ∈ H. The
generalized projection ΠC : E → C is a map that assigns to an arbitrary point x ∈ E the
minimum point of the functional φ(x, y), that is, ΠCx = x̄, where x̄ is the solution to the
minimization problem

φ(x̄, x) = inf
y∈C

φ(y, x) (1.8)

existence and uniqueness of the operator ΠC follows from the properties of the functional
φ(x, y) and strict monotonicity of the mapping J (see, for example, [1, 2, 8, 13, 32]). In
Hilbert spaces, ΠC = PC . It is obvious from the definition of function φ that

(‖y‖ − ‖x‖)2 ≤ φ(y, x) ≤ (‖y‖+ ‖x‖)2, ∀x, y ∈ E. (1.9)

Let C be a closed convex subset of E, and let T be a mapping from C into itself. A
point p in C is said to be an asymptotic fixed point of T [26] if C contains a sequence {xn}
which converges weakly to p such that limn→∞ ‖xn − Txn‖ = 0. The set of asymptotic

fixed points of T will be denoted by F̃ (T ). A mapping T from C into itself is said to be

relatively nonexpansive [20, 28, 40] if F̃ (T ) = F (T ) and φ(p, Tx) ≤ φ(p, x) for all x ∈ C

and p ∈ F (T ). The asymptotic behavior of a relatively nonexpansive mapping was studied
in [5, 7]. T is said to be φ-nonexpansive, if φ(Tx, Ty) ≤ φ(x, y) for x, y ∈ C. T is said to
be quasi-φ-nonexpansive if F (T ) 6= ∅ and φ(p, Tx) ≤ φ(p, x) for x ∈ C and p ∈ F (T ).

Remark 1.1 The class of quasi-φ-nonexpansive mappings is more general than the class
of relatively nonexpansive mappings [5, 7, 17] which requires the strong restriction: F (T ) =

F̃ (T ).



14

Recall that an operator T in a Banach space is call closed, if xn −→ x and Txn −→ y,
then Tx = y.

As we all know that if C is a nonempty closed convex subset of a Hilbert space H and
PC : H → C is the metric projection of H onto C, then PC is nonexpansive. This fact
actually characterizes Hilbert spaces and consequently, it is not available in more general
Banach spaces. In this connection, Alber [1] recently introduced a generalized projection
operator ΠC in a Banach space E which is an analogue of the metric projection in Hilbert
spaces.

Matsushita and Takahashi [18] introduced the following iteration sequence {xn}: de-
fined by

xn+1 = ΠCJ
−1(αnJxn + (1− αn)JTxn) (1.10)

where the initial guess element x0 ∈ C is arbitrary, {αn} is a real sequence in [0, 1], J is
the duality mapping on E, T is a relatively nonexpansive mapping and ΠC denotes the
generalized projection from E onto a closed convex subset C of E. They proved that the
sequence {xn} converges weakly to a fixed point of T .

In 2005, Matsushita and Takahashi [17] proposed the following hybrid iteration method
(it is also called the CQ method) with generalized projection for relatively nonexpansive
mapping T in a Banach space E:























x0 ∈ C chosen arbitrarily,
yn = J−1(αnJxn + (1− αn)JTxn),
Cn = {z ∈ C : φ(z, yn) ≤ φ(z, xn)},
Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qn

(x0).

(1.11)

They proved that the {xn} converges strongly to ΠF (T )x0, where ΠF (T ) is the generalized
projection from C onto F (T ).

In 2007, Plubtieng and Ungchittrakool [23] proved the new generalized processes of two
relatively nonexpansive mappings in a Banach space. Let C be a closed convex subset of
a Banach space E and S, T : C −→ C two relatively nonexpansive mappings such that
F := F (S) ∩ F (T ) 6= ∅. Define {xn} in the following ways:











































x0 = x ∈ C,

yn = J−1(αnJxn + (1− αn)Jzn),

zn = J−1(β
(1)
n Jxn + β

(2)
n JTxn + β

(3)
n JSxn),

Hn = {z ∈ C : φ(z, yn) ≤ φ(z, xn)},

Wn = {z ∈ C : 〈xn − z, Jx− Jxn〉 ≥ 0},

xn+1 = PHn∩Wn
x, n = 0, 1, 2, ...,

(1.12)

where {αn}, {β
(1)
n }, {β

(2)
n } and {β

(3)
n } are sequences in [0, 1] with β

(1)
n +β

(2)
n +β

(3)
n = 1 for

all n ∈ N ∪ {0}. They proved that the {xn} converges strongly to ΠFx.

In 2009, Qin et al. [25] modified the Halpern-type iteration algorithm for closed quasi-
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φ-nonexpansive mappings defined by:































x0 ∈ E chosen arbitrarily,
C1 = C,

x1 = ΠC1x0,

yn = J−1(αnJ(x1) + (1− αn)JT (xn)),
Cn+1 = {z ∈ Cn : φ(z, yn) ≤ αnφ(z, x1) + (1− αn)φ(z, xn)},
xn+1 = ΠCn+1x1, ∀n ≥ 1.

(1.13)

Then they proved that under appropriate control conditions the sequence {xn} converges
strongly to ΠF (T )x1.

In 2009, Qin et al. [24] proved that {xn} be a sequence generated by the following
manner:















































x0 ∈ E chosen arbitrarily,
C1 = C,

x1 = ΠC1x0,

yn = J−1(αnJxn + βnJTxn + γnJSxn),

un ∈ C such that Θ(un, y) +
1

rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)},
xn+1 = ΠCn+1x0,

(1.14)

where J is the duality mapping on E. Then {xn} converges strongly to ΠF (S)∩F (T )∩EP (Θ)x0.
Recently, Takahashi and Zembayashi [35], proposed the following modification of iter-

ation process (1.10) for a relatively nonexpansive mapping:































x0 = x ∈ C, C0 = C,

yn = J−1(αnJxn + (1− αn)JSxn),
un ∈ C such that Θ(un, y) +

1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn = {z ∈ C : φ(z, un) ≤ φ(z, xn)},
Qn = {z ∈ C : 〈xn − z, Jx− Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qn

x,

(1.15)

where J is the duality mapping on E, and ΠCn∩Qn
is the generalized projection from E

onto Cn ∩Qn. They proved that the sequence {xn} converges strongly to ΠF (S)∩EP (Θ)x0.

Very recently, Cholamjiak [9] introduce process for finding common elements of set of
equilibrium problems, set of variatinal inequality problems and the set of the fixed points
for quasi-φ-nonexpansive mappings in Banach spaces































x0 ∈ C, x1 = ΠC1x0, C1 = C

zn = ΠCJ
−1(Jxn − λnAxn),

yn = J−1(αnJxn + βnJTxn + γnJSzn),
un ∈ C such that Θ(un, y) +

1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ C : φ(z, un) ≤ φ(z, xn)},
xn+1 = ΠCn∩Qn

x0,

(1.16)

then, {xn} and {un} converge strongly to q = ΠFx0, where F = F (T ) ∩ F (S) ∩EP (Θ) ∩
V I(A,C).
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Motivated and inspired by the work of Plubtieng and Ungchittrakool [23], Qin et al.
[24], Takahashi and Zembayashi [35], Wattanawitoon and Kumam [37] and Cholamjiak
[9], we introduced the hybrid projection iterative scheme (so-call the CQ method) define
by (3.1) below for finding a common element of the set of solutions of an equilibrium
problem, set of solution of the variational inequality and the set of a common fixed points
of two quasi-φ-nonexpansive mappings in the framework Banach spaces. Moreover, we
obtain new result for finding a zero point of maximal monotone operators in a Banach
space. The results obtained in this paper improve and extend the recent ones announced
by Takahashi and Zembayashi [35], Cholamjiak [9] and many authors.

2 Preliminaries

A Banach space E is said to be strictly convex if ‖x+y
2 ‖ < 1 for all x, y ∈ E with ‖x‖ =

‖y‖ = 1 and x 6= y. It is said to be uniformly convex if limn→∞ ‖xn − yn‖ = 0 for any two
sequences {xn} and {yn} in E such that ‖xn‖ = ‖yn‖ = 1 and limn→∞ ‖xn+yn

2 ‖ = 1. Let
U = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. Then the Banach space E is said to be
smooth provided

lim
t→0

‖x+ ty‖ − ‖x‖

t

exists for each x, y ∈ U. It is also said to be uniformly smooth if the limit is attained
uniformly for x, y ∈ E.

The modulus of convexity of E is the function δ : [0, 2] → [0, 1] defined by

δ(ε) = inf{1− ‖
x+ y

2
‖ : x, y ∈ E, ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ε}. (2.1)

A Banach space E is uniformly convex if and only if δ(ε) > 0 for all ε ∈ (0, 2]. Let p be a
fixed real number with p ≥ 2. A Banach space E is said to be p-uniformly convex if there
exists a constant c > 0 such that δ(ε) ≥ cεp for all ε ∈ [0, 2]; see [3, ?] for more details.
Observe that every p-uniform convex Banach space is uniformly convex. One should note
that no a Banach space is p-uniform convex for 1 < p < 2. It is well known that a Hilbert
space is 2 -uniformly convex and uniformly smooth. For each p > 1, the generalized duality
mapping Jp : E → 2E

∗
is defined by

Jp(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖p, ‖x∗‖ = ‖x‖p−1} (2.2)

for all x ∈ E. In particular, J = J2 is called the normalized duality mapping. If E is a
Hilbert space, then J = I, where I is the identity mapping. It is also known that if E is
uniformly smooth, then J is uniformly norm-to-norm continuous on each bounded subset
of E.
We know the following (see [?]):
(1) If E is smooth, then J is single-valued;
(2) if E is strictly convex, then J is one-to-one and 〈x − y, x∗ − y∗〉 > 0 holds for all
(x, x∗), (y, y∗) ∈ J with x 6= y;
(3) if E is reflexive, then J is surjective;
(4) if E is uniformly convex, then it is reflexive;
(5) if E∗ is uniformly convex, then J is uniformly norm-to-norm continuous on each
bounded subset of E.
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The duality J from a smooth Banach space E into E∗ is said to be weakly sequentially
continuous [?] if xn ⇀ x implies Jxn ⇀∗ Jx, where ⇀∗ implies the weak∗ convergence.

Lemma 2.1 ([4, 38]). If E be a 2-uniformly convex Banach space. Then for all x, y ∈ E,

‖x− y‖ ≤
2

c2
‖Jx− Jy‖,

where J is the normalized duality mapping of E and 0 < c ≤ 1.

The best constant
1

c
in Lemma is called the 2 -uniformly convex constant of E; see [3].

Lemma 2.2 ([4, 39]). If E be a p-uniformly convex Banach space and let p be a given
real number with p ≥ 2. Then for all x, y ∈ E, Jx ∈ Jp(x) and Jy ∈ Jp(y)

〈x− y, Jx− Jy〉 ≥
cp

2p−2p
‖x− y‖p,

where Jp is the generalized duality mapping of E and
1

c
is the p-uniformly convexity con-

stant of E.

It is obvious from the definition of φ that (‖x‖− ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖+ ‖y‖)2 for all
x, y ∈ E. We also know that

φ(x, y) = φ(x, z) + φ(z, y) + 2〈x− z, Jz − Jy〉, (2.3)

for all x, y ∈ E.

Lemma 2.3 (Kamimura and Takahashi [13]). Let E be a uniformly convex and smooth
Banach space and let {xn} and {yn} be two sequences of E. If limn−→∞ φ(xn, yn) = 0 and
either {xn} or {yn} is bounded, then limn−→∞ ‖xn − yn‖ = 0.

Lemma 2.4 (Alber [1]). Let C be a nonempty closed convex subset of a smooth Banach
space E and x ∈ E. Then, x0 = ΠCx if and only if

〈x0 − y, Jx− Jx0〉 ≥ 0, ∀y ∈ C.

Lemma 2.5 (Alber [1]). Let E be a reflexive, strictly convex and smooth Banach space,
let C be a nonempty closed convex subset of E and let x ∈ E. Then

φ(y,ΠCx) + φ(ΠCx, x) ≤ φ(y, x), ∀y ∈ C.

Lemma 2.6 (Qin et al. [24, Lemma 2.4.]). Let E be a uniformly convex and smooth
Banach space, let C be a closed convex subset of E, and let T be a closed and quasi-φ-
nonexpansive mapping from C into itself. Then F (T ) is a closed convex subset of C.

Lemma 2.7 (Cho et al. [11]). Let X be a uniformly convex Banach space and Br(0)
be a closed ball of X. Then there exists a continuous strictly increasing convex function
g : [0,∞) → [0,∞) with g(0) = 0 such that

‖λx+ µy + γz‖2 ≤ λ‖x‖2 + µ‖y‖2 + γ‖z‖2 − λµg(‖x− y‖),

for all x, y, z ∈ Br(0) and λ, µ, γ ∈ [0, 1] with λ+ µ+ γ = 1.
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Lemma 2.8 (Kamimura and Takahashi [13]). Let E be a smooth and uniformly convex
Banach space and let r > 0. Then there exists a strictly increasing, continuous, and convex
function g : [0, 2r] → R such that g(0) = 0 and g(‖x− y‖) ≤ φ(x, y) for all x, y ∈ Br.

We make use of the following mapping V studied in Alber[1]:

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉+ ‖x∗‖2, (2.4)

for all x ∈ E and x∗ ∈ E∗, that is, V (x, x∗) = φ(x, J−1(x∗)).

Lemma 2.9 (Alber [1]). Let E be a reflexive, strictly convex and smooth Banach space
and let V be as in (2.4). Then

V (x, x∗) + 2〈J−1(x∗)− x, y∗〉 ≤ V (x, x∗ + y∗),

for all x ∈ E and x∗, y∗ ∈ E∗.

A set valued mapping T : H −→ 2H is called monotone if for all x, y ∈ H, f ∈ Tx

and g ∈ Ty imply 〈x − y, f − g〉 ≥ 0. A monotone mapping T : H −→ 2H is maximal
if the graph G(T ) of T is not properly contained in the graph of any other monotone
mapping. It is know that a monotone mapping T is maximal if and only if for (x, f) ∈
H ×H, 〈x − y, f − h〉 ≥ 0 for every (y, g) ∈ G(T ) implies f ∈ Tx. Let A be an inverse-
strongly monotone mapping of C into E∗ is said to be hemicontinuous if for all x, y ∈ C,
the mapping F of [0, 1] into E∗ defined by F (t) = A(tx + (1 − t)y) is continuous with
respect to the weak∗ topology of E∗. We define by NC(v) the normal cone for C at a
point v ∈ C, that is,

NC(v) = {x∗ ∈ E∗ : 〈v − y, x∗〉 ≥ 0, ∀y ∈ C}. (2.5)

Theorem 2.10 (Rockafellar [27]). Let C be a nonempty, closed convex subset of a Banach
space E and A a monotone, hemicontinuous operator of C into E∗. Let T ⊂ E × E∗ be
an operator defined as follows:

Tv =

{

Av +NC(v), v ∈ C;
∅, otherwise.

(2.6)

Then T is maximal monotone and T−10 = V I(A,C).

For solving the mixed equilibrium problem, let us assume that the bifunction Θ : C×C →
R and ϕ : C → R is convex and lower semi-continuous satisfies the following conditions:

(A1) Θ(x, x) = 0 for all x ∈ C;

(A2) Θ is monotone, i.e., Θ(x, y) + Θ(y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C,

lim sup
t↓0

Θ(tz + (1− t)x, y) ≤ Θ(x, y);

(A4) for each x ∈ C, y 7→ Θ(x, y) is convex and lower semi-continuous.
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Lemma 2.11 (Blum and Oettli [6]). Let C be a closed convex subset of a smooth, strictly
convex, and reflexive Banach space E, let Θ be a bifunction from C × C to R satisfying
(A1)-(A4) and let r > 0 and x ∈ E. Then, there exists z ∈ C such that

Θ(z, y) +
1

r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C.

The following lemma was also given by Combettes in [10].

Lemma 2.12 (Takahashi and Zembayashi [36]). Let C be a closed convex subset of a
uniformly smooth, strictly convex and reflexive Banach space E, and let Θ be a bifunction
from C×C to R satisfying (A1)-(A4). For r > 0 and x ∈ E, define a mapping Tr : E → C

as follows:

Trx = {z ∈ C : Θ(z, y) +
1

r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C},

for all x ∈ C. Then the following hold:

(1) Tr is single-valued;

(2) Tr is a firmly nonexpansive-type mapping, i.e., for all x, y ∈ E,

〈Trx− Try, JTrx− JTry〉 ≤ 〈Trx− Try, Jx− Jy〉;

(3) F (Tr) = EP (Θ);

(4) EP (Θ) is closed and convex.

Lemma 2.13 (Takahashi and Zembayashi [36]). Let C be a closed convex subset of a
smooth, strictly convex and reflexive Banach space E, let Θ be a bifunction from C×C to
R satisfying (A1)-(A4), and let r > 0. Then, for x ∈ E and q ∈ F (Tr),

φ(q, Trx) + φ(Trx, x) ≤ φ(q, x).

Lemma 2.14 (Zhang [41]). Let C be a closed convex subset of a smooth, strictly convex
and reflexive Banach space E. Let B : C −→ E∗ be a continuous and monotone mapping,
ϕ : C → R is convex and lower semi-continuous and Θ be a bifunction from C × C to R

satisfying (A1)-(A4). For r > 0 and x ∈ E, then there exists u ∈ C such that

Θ(u, y) + 〈Bu, y − u〉+ ϕ(y)− ϕ(u) +
1

r
〈y − u, Ju− Jx〉 ≥ 0, ∀y ∈ C.

Define a mapping Kr : C −→ C as follows:

Kr(x) = {u ∈ C : Θ(u, y) + 〈Bu, y − u〉+ ϕ(y)− ϕ(u) +
1

r
〈y − u, Ju− Jx〉 ≥ 0, ∀y ∈ C}(2.7)

for all x ∈ E. Then, the followings hold:

1. Kr is single-valued;
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2. Kr is firmly nonexpansive, i.e., for all x, y ∈ E, 〈Krx − Kry, JKrx − JKry〉 ≤
〈Krx−Kry, Jx− Jy〉;

3. F (Kr) = Ω;

4. Ω is closed and convex.

5. φ(p,Krz) + φ(Krz, z) ≤ φ(p, z) ∀p ∈ F (Kr), z ∈ E.

Remark 2.15 (Zhang [41]). It follows from Lemma 2.12 that the mapping Kr : C −→ C

defined by (2.7) is a relatively nonexpansive mapping. Thus, it is quasi-φ-nonexpansive.

3 Strong convergence theorems

In this section, using the CQ hybrid method, we prove a strong convergence theorem
for finding a common element of the set of solutions of a mixed equilibrium problem,
the set of solutions of the variational inequality problem and the set of fixed points of
quasi-φ-nonexpansive mappings in a Banach space.

Theorem 3.1 Let C be a nonempty closed convex subset of a smooth and 2-uniformly
convex Banach space E. Let Θ be a bifunction from C × C to R satisfying (A1)-(A4)
and let ϕ : C −→ R be a proper lower semicontinuous and convex function, let A be an
α-inverse-strongly monotone operator of C into E∗ and let T, S : C → C be closed quasi-
φ-nonexpansive mappings such that F := F (T )∩ F (S)∩ V I(A,C)∩MEP (Θ, ϕ) 6= ∅ and
‖Ay‖ ≤ ‖Ay − Au‖ for all y ∈ C and u ∈ F . Let {xn} be a sequence generated by the
following manner:















































x0 = x ∈ C,

wn = ΠCJ
−1(Jxn − λnAxn),

zn = J−1(βnJxn + γnJTxn + δnJSwn),
yn = J−1(αnJxn + (1− αn)Jzn),
un ∈ C such that Θ(un, y) + ϕ(y)− ϕ(un) +

1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn = {z ∈ C : φ(z, un) ≤ φ(z, xn)},
Qn = {z ∈ C : 〈xn − z, Jx− Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qn

x,

(3.1)

for every n ∈ N ∪ {0}, where J is the duality mapping on E. Assume that {αn}, {βn},
{γn} and {δn} are sequences in [0, 1] satisfying the restrictions:

(i) lim supn−→∞ αn < 1;

(ii) βn + γn + δn = 1;

(iii) lim infn→∞ βnγn > 0, lim infn→∞ βnδn > 0;

(iv) {rn} ⊂ [a,∞) for some a > 0;

IJAMC
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(v) {λn} ⊂ [d, e] for some d, e with 0 < d < e <
c2α

2
, where

1

c
is the 2-uniformly convex

constant of E

Then {xn} converges strongly to p ∈ F , where p = ΠFx.

Proof . We first show that Cn ∩ Qn is closed and convex for each n ≥ 0. It is obvious
that Cn is closed and Qn is closed and convex. Since

φ(z, un) ≤ φ(z, xn)

is equivalent to
2〈z, Jun〉 − 2〈z, Jxn〉 ≤ ‖un‖

2 − ‖xn‖
2,

Cn is convex. So, Cn ∩Qn is closed and convex subset of E for all n ∈ N ∪ {0}.
Put vn = J−1(Jxn − λnAxn). We observe that un = Krnyn for all n ≥ 1 and let p ∈ F , it
follows from the definition of quasi-φ-nonexpansive that

φ(p, un) = φ(p,Krnyn)

≤ φ(p, yn)

= φ(p, J−1(αnJxn + (1− αn)Jzn)

= ‖p‖2 − 2〈p, αnJxn + (1− αn)Jzn〉+ ‖αnJxn + (1− αn)Jzn‖
2

≤ ‖p‖2 − 2αn〈p, Jxn〉 − 2(1− αn)〈p, Jzn〉+ αn‖xn‖
2 + (1− αn)‖zn‖

2

= αnφ(p, xn) + (1− αn)φ(p, zn), (3.2)

and then

φ(p, zn) = φ(p, J−1(βnJxn + γnJTxn + δnJSwn))

= ‖p‖2 − 2βn〈p, Jxn〉 − 2γn〈p, JTxn〉 − 2δn〈p, Jwxn〉

+‖βnJxn + γnJTxn + δnJSwn‖
2

≤ ‖p‖2 − 2βn〈p, Jxn〉 − 2γn〈p, JTxn〉 − 2δn〈p, JSwn〉

+βn‖Jxn‖
2 + γn‖JTxn‖

2 + δn‖JSwn‖
2

= βnφ(p, xn) + γnφ(p, Txn) + δnφ(p, Swn)

≤ βnφ(p, xn) + γnφ(p, xn) + δnφ(p, wn). (3.3)

From Lemma 2.5 and Lemma 2.9

φ(p, wn) = φ(p,ΠCvn)

≤ φ(p, vn) = φ(p, J−1(Jxn − λnAxn))

≤ V (p, Jxn − λnAxn + λnAxn)− 2〈J−1(Jxn − λnAxn)− p, λnAxn〉

= V (p, Jxn)− 2λn〈vn − p,Axn〉

= φ(p, xn)− 2λn〈xn − p,Axn〉+ 2〈vn − xn,−λnAxn〉. (3.4)

Since p ∈ V I(A,C) and A is α-inverse-strongly monotone, we have

−2λn〈xn − p,Axn〉 = −2λn〈xn − p,Axn −Ap〉 − 2λn〈xn − p,Ap〉

≤ −2αλn‖Axn −Ap‖2, (3.5)
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and we obtain

2〈vn − xn,−λnAxn〉 = 2〈J−1(Jxn − λnAxn)− xn,−λnAxn〉

≤ 2‖J−1(Jxn − λnAxn)− xn‖‖λnAxn‖

=
4

c2
‖Jxn − λnAxn − Jxn‖‖λnAxn‖

=
4

c2
λ2
n‖Axn‖

2

≤
4

c2
λ2
n‖Axn −Ap‖2. (3.6)

Replacing (3.5) and (3.6) into (3.4), we get

φ(p, wn) ≤ φ(p, xn)− 2λn(α−
2

c2
λn)‖Axn −Ap‖2

≤ φ(p, xn). (3.7)

From (3.2), (3.3) and (3.7), we have

φ(p, un) ≤ φ(p, xn). (3.8)

Hence, we have p ∈ Cn. This implies that

F ⊂ Cn, ∀n ∈ N ∪ {0}. (3.9)

Next, we show by induction that F ⊂ Cn ∩ Qn for all n ∈ N ∪ {0}. From Q0 = C, we
have F ⊂ C0 ∩ Q0. Suppose that F ⊂ Ck ∩ Qk for some k ∈ N ∪ {0}. Then there exists
xk+1 ∈ Ck ∩Qk such that xk+1 = ΠCk∩Qk

x. From the definition of xk+1, we have, for all
z ∈ Ck ∩Qk,

〈xk+1 − z, Jx− Jxk+1〉 ≥ 0. (3.10)

Since F ⊂ Ck ∩Qk, we have

〈xk+1 − p, Jx0 − Jxk+1〉 ≥ 0, ∀p ∈ F, (3.11)

and hence p ∈ Qk+1. So, we have

F ⊂ Qk+1. (3.12)

Hence by (3.9) and (3.12) we obtain

F ⊂ Ck+1 ∩Qk+1.

So, we have that F ⊂ Ck ∩Qk for all n ∈ N ∪ {0}. This means that {xn} is well defined.
Using xn = ΠQn

x, from Lemma 2.5, one has

φ(xn, x) = φ(ΠQn
x, x) ≤ φ(p, x)− φ(p, xn) ≤ φ(p, x),

for each p ∈ F ⊂ Qn and xn = ΠQn
x. Thus φ(xn, x) is bounded. Then {xn}, {Swn} and

{Txn} are bounded.

IJAMC
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Since xn+1 = ΠCn∩Qn
x ∈ Cn ∩Qn and xn = ΠQn

x, we have

φ(xn, x) ≤ φ(xn+1, x), ∀n ∈ N ∪ {0}.

Therefore, {φ(xn, x)} is nondecreasing. It follows that the limit of {φ(xn, x)} exists. By
the construction of Qn, we have Qm ⊂ Qn and xm = ΠQm

x ∈ Qn for any positive integer
m ≥ n. It follows that

φ(xm, xn) = φ(xm,ΠQn
x)

≤ φ(xm, x)− φ(ΠQn
x, x)

= φ(xm, x)− φ(xn, x).
(3.13)

Letting m,n −→ ∞ in (3.13), we have φ(xm, xn) −→ 0 as n −→ ∞. It follows from
Lemma 2.3, that ‖xm − xn‖ −→ 0 as m,n −→ ∞. Hence, {xn} is a Cauchy sequence.
Since E is a Banach space and C is closed and convex, one can assume that xn −→ x̂ ∈ C

as n −→ ∞. Since

φ(xn+1, xn) = φ(xn+1,ΠQn
x) ≤ φ(xn+1, x)− φ(ΠQn

x, x) = φ(xn+1, x)− φ(xn, x),

for all n ∈ N ∪ {0}, we have limn−→∞φ(xn+1, xn) = 0. From xn+1 = ΠCn∩Qn
x ∈ Cn, we

have

φ(xn+1, un) ≤ φ(xn+1, xn), ∀n ∈ N ∪ {0}.

Therefore, we also have

lim
n−→∞

φ(xn+1, un) = 0.

Since E is uniformly convex and smooth, we have from Lemma 2.3 that

lim
n−→∞

‖xn+1 − xn‖ = lim
n−→∞

‖xn+1 − un‖ = 0.

So, we have

lim
n−→∞

‖xn − un‖ = 0.

Since J is uniformly norm-to-norm continuous on bounded sets, we obtain

lim
n−→∞

‖Jxn − Jun‖ = 0.

Since E is uniformly smooth Banach spaces, one knows that E∗ is a uniformly convex
Banach apace. Let r = supn∈N∪{0}{‖xn‖, ‖Txn‖, ‖Swn‖}. From Lemma 2.7 and (3.7), we
have

φ(p, zn) = φ(p, J−1(βnJxn + γnJTxn + δnJSwn))
= ‖p‖2 − 2βn 〈p, Jxn〉 − 2γn 〈p, JTxn〉 − 2δn 〈p, JSwn〉

+‖βnJxn + γnJTxn + δnJSwn‖
2

≤ ‖p‖2 − 2β 〈p, Jxn〉 − 2γn 〈p, JTxn〉 − 2δn 〈p, JSwn〉
+βn‖xn‖

2 + γn‖Txn‖
2 + δn‖Swn‖

2 − βnγng(‖JTxn − Jxn‖)
= βnφ(p, xn) + γnφ(p, Txn) + δnφ(p, Swn)− βnγng(‖JTxn − Jxn‖)

≤ φ(p, xn)− βnγng(‖JTxn − Jxn‖)− 2λn(α−
2

c2
λn)δn‖Axn −Ap‖2.

(3.14)
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Substituting (3.14) into (3.2), we have

φ(p, un) ≤ αnφ(p, xn) + (1− αn)[φ(p, xn)− βnγng(‖JTxn − Jxn‖)

−2λn(α−
2

c2
λn)δn‖Axn −Ap‖2]

≤ αnφ(p, xn) + (1− αn)φ(p, xn)− (1− αn)βnγng(‖JTxn − Jxn‖)

−2λn(1− αn)(α−
2

c2
λn)δn‖Axn −Ap‖2.

(3.15)

Therefore, we have

(1− αn)βnγng(‖JTxn − Jxn‖) ≤ φ(p, xn)− φ(p, un).

On the other hand, we have

φ(p, xn)− φ(p, un) = ‖xn‖
2 − ‖un‖

2 − 2 〈p, Jxn − Jun〉
≤ ‖xn − un‖(‖xn‖+ ‖un‖) + 2‖p‖‖Jxn − Jun‖.

It follow from ‖xn − un‖ −→ 0 and ‖Jxn − Jun‖ −→ 0 that

lim
n−→∞

(φ(p, xn)− φ(p, un)) = 0. (3.16)

Observing that assumption lim infn−→∞βnγn > 0 and by Lemma 2.8, we also

lim
n−→∞

g‖Jxn − JTxn‖ = 0.

It follows from the property of g that

lim
n−→∞

‖Jxn − JTxn‖ = 0.

Since J−1 is also uniformly norm-to-norm continuous on bounded sets, we see that

lim
n−→∞

‖xn − Txn‖ = 0. (3.17)

Similarly, one can obtain

lim
n−→∞

‖xn − Swn‖ = 0. (3.18)

By (3.15), we have

2λn(α−
2

c2
λn)δn‖Axn −Ap‖2 ≤ φ(p, xn)− φ(p, un),

which yield that

lim
n−→∞

‖Axn −Ap‖ = 0. (3.19)

From Lemma 2.5, Lemma 2.9, and (3.6), we have

φ(xn, wn) = φ(xn,ΠCvn) ≤ φ(xn, vn)
= φ(xn, J

−1(Jxn − λnAxn))
= V (xn, Jxn − λnAxn)
≤ V (xn, (Jxn − λnAxn) + λnAxn)− 2〈J−1(Jxn − λnAxn)− xn, λnAxn〉
= φ(xn, xn) + 2〈vn − xn, λnAxn〉
= 2〈vn − xn, λnAxn〉
≤ 2λ2

n‖Axn −Ap‖2.

IJAMC
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From Lemma 2.3 and (3.19), we have

lim
n−→∞

‖xn − wn‖ = 0. (3.20)

Since J is also uniformly norm-to-norm continuous on bounded sets, we see that

lim
n−→∞

‖Jxn − Jwn‖ = 0. (3.21)

By (3.18) and (3.20), we obtain

lim
n−→∞

‖Swn − wn‖ = 0. (3.22)

From (3.20), we have
lim

n−→∞
‖Sxn − xn‖ = 0.

Since S and T are closed operators and xn −→ x̂, hence x̂ is a common fixed point of S
and T , i.e., x̂ ∈ F (T ) ∩ F (S).

Next, we show that x̂ ∈ MEP (Θ, ϕ). Since un = Krnyn. From Lemma 2.13, we have

φ(un, yn) = φ(Krnyn, yn)

≤ φ(x̂, yn)− φ(x̂,Krnyn)

≤ φ(x̂, xn)− φ(x̂,Krnyn)

= φ(x̂, xn)− φ(x̂, un)

= ‖xn‖
2 − ‖un‖

2 − 2〈x̂, Jxn − Jun〉

≤ ‖xn − un‖(‖xn‖+ ‖un‖) + 2‖x̂‖‖Jxn − Jun‖.

It follows from ‖xn − un‖ −→ 0 and ‖Jxn − Jun‖ −→ 0 that

φ(un, yn) → 0, as n → ∞.

and so

lim
n−→∞

‖un − yn‖ = 0. (3.23)

Since J is uniformly norm-to-norm continuous on bounded sets, we obtain

lim
n−→∞

‖Jun − Jyn‖ = 0. (3.24)

From (3.1) and (A2), we also have

ϕ(y)− ϕ(un) +
1

rn
〈y − un, Jun − Jyn〉 ≥ Θ(y, un), ∀y ∈ C.

Hence,

ϕ(y)− ϕ(uni
) + 〈y − uni

,
Juni

− Jyni

rni

〉 ≥ Θ(y, uni
), ∀y ∈ C.

From ‖xn − un‖ −→ 0, we get uni
−→ x̂. Since

Juni
− Jyni

rni

−→ 0, it follows by (A4) and

the weakly lower semicontinuous of ϕ that

Θ(y, x̂) + ϕ(x̂)− ϕ(y) ≤ 0, ∀y ∈ C.
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For t with 0 < t ≤ 1 and y ∈ C, let yt = ty + (1 − t)u. Since y ∈ C and x̂ ∈ C, we have
yt ∈ C and hence Θ(yt, x̂) + ϕ(x̂) − ϕ(yt) ≤ 0. So, from (A1), (A4) and the convexity of
ϕ, we have

0 = Θ(yt, yt) + ϕ(yt)− ϕ(yt)
≤ tΘ(yt, y) + (1− t)Θ(yt, u) + tϕ(y) + (1− t)ϕ(y)− ϕ(yt)
≤ t(Θ(yt, y) + ϕ(y)− ϕ(yt)).

Dividing by t, we get Θ(yt, y) + ϕ(y)− ϕ(yt) ≥ 0. From (A3) and the weakly lower semi-
continuity of ϕ, we have Θ(x̂, y) + ϕ(y)− ϕ(x̂) ≥ 0 for all y ∈ C implies x̂ ∈ MEP (Θ, ϕ).

Next, we show that x̂ ∈ V I(A,C). Define T ⊂ E × E∗ be as in (2.6). By Theorem
2.10, T is maximal monotone and T−10 = V I(A,C). Let (v, w) ∈ G(T ). Since w ∈ Tv =
Av +NC(v), we get w −Av ∈ NC(v). From wn ∈ C, we have

〈v − wn, w −Av〉 ≥ 0. (3.25)

On the other hand, since wn = ΠCJ
−1(Jxn − λnAxn). Then by Lemma 2.4, we have

〈v − wn, Jwn − (Jxn − λnAxn)〉 ≥ 0,

thus

〈v − wn,
Jxn − Jwn

λn

−Axn〉 ≤ 0. (3.26)

It follows from (3.25) and (3.26) that

〈v − wn, w〉 ≥ 〈v − wn, Av〉

≥ 〈v − wn, Av〉+ 〈v − wn,
Jxn − Jwn

λn

−Axn〉

= 〈v − wn, Av −Axn〉+ 〈v − wn,
Jxn − Jwn

λn

〉

= 〈v − wn, Av −Awn〉+ 〈v − wn, Awn −Axn〉+ 〈v − wn,
Jxn − Jwn

λn

〉

≥ −‖v − wn‖
‖wn−xn‖

α
− ‖v − wn‖

‖Jxn − Jwn‖

b

≥ −M(
‖wn − xn‖

α
+

‖Jxn − Jwn‖

b
),

where M = supn≥1{‖v − wn‖}. From (3.20) and (3.21), we obtain 〈v − x̂, w〉 ≥ 0. By
the maximality of T , we have x̂ ∈ T−10 and hence x̂ ∈ V I(A,C). Hence x̂ ∈ F :=
V I(C,A) ∩ T−1(0) ∩MEP (Θ, ϕ).

Finally, we prove that x̂ = ΠFx0. From xn = ΠCn∩Qn
x, we have

〈Jx− Jxn, xn − z〉 ≥ 0, ∀z ∈ Cn ∩Qn.

Since F ⊂ Cn ∩Qn, we also have

〈Jx− Jxn, xn − p〉 ≥ 0, ∀p ∈ F. (3.27)

IJAMC
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By taking limit in (3.27), one has

〈Jx− Jx̂, x̂− p〉 ≥ 0, ∀p ∈ F.

At this point, in view of Lemma 2.4, one sees that x̂ = ΠFx0. This completes the proof.
2

Corollary 3.2 Let C be a nonempty closed convex subset of a smooth and 2-uniformly
convex Banach space E. Let Θ be a bifunction from C ×C to R satisfying (A1)-(A4) and
let ϕ : C −→ R be a proper lower semicontinuous and convex function, let T, S : C → C

be closed quasi-φ-nonexpansive mappings such that F := F (T ) ∩ F (S) ∩MEP (Θ, ϕ) 6= ∅.
Let {xn} be a sequence generated by the following manner:







































x0 = x ∈ C,

zn = J−1(βnJxn + γnJTxn + δnJSxn),
yn = J−1(αnJxn + (1− αn)Jzn),
un ∈ C such that Θ(un, y) + ϕ(y)− ϕ(un) +

1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn = {z ∈ C : φ(z, un) ≤ φ(z, xn)},
Qn = {z ∈ C : 〈xn − z, Jx− Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qn

x,

(3.28)

for every n ∈ N ∪ {0}, where J is the duality mapping on E. Assume that {αn}, {βn},
{γn} and {δn} are sequences in [0, 1] satisfying the restrictions:

(i) lim supn−→∞ αn < 1;

(ii) βn + γn + δn = 1;

(iii) lim infn→∞ βnγn > 0, lim infn→∞ βnδn > 0;

(iv) {rn} ⊂ [a,∞) for some a > 0.

Then {xn} converges strongly to p ∈ F , where p = ΠFx.

Proof . In Theorem 3.1 if A ≡ 0, then (3.1) reduced to (3.28). 2

Since every relatively nonexpansive mapping is a quasi-φ-nonexpansive mapping, we
obtain the following result.

Corollary 3.3 Let C be a nonempty closed convex subset of a smooth and 2-uniformly
convex Banach space E. Let Θ be a bifunction from C × C to R satisfying (A1)-(A4)
and let ϕ : C −→ R be a proper lower semicontinuous and convex function, let A be an
α-inverse-strongly monotone operator of C into E∗ and let T : C → C be closed relatively
nonexpansive mappings such that F := F (T ) ∩ F (S) ∩ V I(A,C) ∩ MEP (Θ) 6= ∅ and
‖Ay‖ ≤ ‖Ay − Au‖ for all y ∈ C and u ∈ F . Let {xn} be a sequence generated by the
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following manner:















































x0 = x ∈ C,

wn = ΠCJ
−1(Jxn − λnAxn),

zn = J−1(βnJxn + γnJTxn + δnJSwn),
yn = J−1(αnJxn + (1− αn)Jzn),
un ∈ C such that Θ(un, y) + ϕ(y)− ϕ(un) +

1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn = {z ∈ C : φ(z, un) ≤ φ(z, xn)},
Qn = {z ∈ C : 〈xn − z, Jx− Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qn

x,

(3.29)

for every n ∈ N ∪ {0}, where J is the duality mapping on E. Assume that {αn}, {βn},
{γn} and {δn} are sequences in [0, 1] satisfying the restrictions:

(i) lim supn−→∞ αn < 1;

(ii) βn + γn + δn = 1;

(iii) lim infn→∞ βnγn > 0, lim infn→∞ βnδn > 0;

(iv) {rn} ⊂ [a,∞) for some a > 0;

(v) {λn} ⊂ [d, e] for some d, e with 0 < d < e <
c2α

2
, where

1

c
is the 2-uniformly convex

constant of E

Then {xn} converges strongly to p ∈ F , where p = ΠFx.

4 Applications

4.1 A zero point of monotone operator

Next, we consider the problem of finding a zero point of an inverse-strongly monotone
operator of E into E∗.

Theorem 4.1 Let E be a smooth and 2-uniformly convex Banach space. Let Θ be a
bifunction from E × E to R satisfying (A1)-(A4) and let ϕ : E −→ R be a proper lower
semicontinuous and convex function, let A be an α-inverse-strongly monotone operator of
E into E∗ and A−10 = {u ∈ E : Au = 0} 6= ∅ and let T, S : E → E be closed quasi-φ-
nonexpansive mappings such that F := F (T ) ∩ F (S) ∩A−10 ∩MEP (Θ, ϕ) 6= ∅. Let {xn}
be a sequence generated by the following manner:















































x0 = x ∈ E,

wn = J−1(Jxn − λnAxn),
zn = J−1(βnJxn + γnJTxn + δnJSwn),
yn = J−1(αnJxn + (1− αn)Jzn),
un ∈ E such that Θ(un, y) + ϕ(y)− ϕ(un) +

1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ E,

Cn = {z ∈ E : φ(z, un) ≤ φ(z, xn)},
Qn = {z ∈ E : 〈xn − z, Jx− Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qn

x,
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(4.1)

for every n ∈ N ∪ {0}, where J is the duality mapping on E. Assume that {αn}, {βn},
{γn} and {δn} are sequences in [0, 1] satisfying the conditions (i)-(v) in Theorem 3.1.
Then {xn} converges strongly to p ∈ F , where p = ΠFx.

Proof . Setting C = E in Theorem 3.1, we have ΠE = I. We also have V I(A,E) = A−10
then the condition ‖Ay‖ ≤ ‖Ay − Au‖ holds for all y ∈ E and u ∈ A−10. So, we obtain
the result. 2

4.2 A zero of maximal monotone operator

Let B be a multivalued operator from E to E∗ with domain D(B) = {z ∈ E : Az 6=
∅} and range R(B) = ∪{Bz : z ∈ D(B)}. An operator B is said to be monotone if
〈x1 − x2, y1 − y2〉 ≥ 0 for each xi ∈ D(B) and yi ∈ Axi, i = 1, 2. A monotone operator B
is said to be maximal if its graph G(B) = {(x, y) : y ∈ Ax} is not property contained in
the graph of any other monotone operator. We know that if B is a maximal monotone
operator, then B−1(0) = {z ∈ D(B) : 0 ∈ Bz} is closed and convex. Let E be a reflexive,
strictly convex and smooth Banach space, and let B be a monotone operator from E to E∗,
we know that B is maximal if and only if R(J+rB) = E∗ for all r > 0. Let Jr : E → D(B)
defined by Jr = (J + rB)−1J and such a Jr is called the resolvent of B. We know that Jr
is a relatively nonexpansive (closed relatively quasi-nonexpansive for example; see [24]);
and B−1(0) = F (Jr) for all r > 0 ( see [16, 21, 22, 32] for more details).

Theorem 4.2 Let E be a smooth and 2-uniformly convex Banach space. Let Θ be a
bifunction from E × E to R satisfying (A1)-(A4) and let ϕ : E −→ R be a proper lower
semicontinuous and convex function, let A be an α-inverse strongly monotone of E into
E∗. Let B be a maximal monotone operator of E into E∗, let Jr be a resolvent of B and
a closed mapping and let T, S : E → E be two closed quasi-φ-nonexpansive mappings such
that F := B−1(0)∩V I(A,C)∩MEP (Θ, ϕ) 6= ∅ and ‖Ay‖ ≤ ‖Ay−Au‖ for all y ∈ E and
u ∈ V I(A,E). Let {xn} be a sequence generated by the following manner:















































x0 = x ∈ E,

wn = ΠCJ
−1(Jxn − λnAxn),

zn = J−1(βnJxn + γnJJrxn + δnJJrwn),
yn = J−1(αnJxn + (1− αn)Jzn),
un ∈ E such that Θ(un, y) + ϕ(y)− ϕ(un) +

1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ E,

Cn = {z ∈ E : φ(z, un) ≤ φ(z, xn)},
Qn = {z ∈ E : 〈xn − z, Jx− Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qn

x,

(4.2)

for every n ∈ N ∪ {0}, where J is the duality mapping on E. Assume that {αn}, {βn},
{γn} and {δn} are sequences in [0, 1] satisfying the conditions (i)-(v) in Theorem 3.1.
Then {xn} converges strongly to p ∈ F , where p = ΠFx.

Proof . Since Jr is a closed relatively nonexpansive mapping and B−10 = F (Jr). So, we
obtain the result. 2



30

4.3 Complementarity problems

Let C be a nonempty, closed convex cone in E, A an operator of C into E∗. We define its
polar in E∗ to be the set

K∗ = {y∗ ∈ E∗ : 〈x, y∗〉 ≥ 0, ∀x ∈ C}. (4.3)

Then the element u ∈ C is called a solution of the complementarity problem if

Au ∈ K∗, 〈u,Au〉 = 0. (4.4)

The set of solutions of the complementarity problem is denoted by CP (A,K).

Theorem 4.3 Let K be a closed convex subset of a smooth and 2-uniformly convex Ba-
nach space E. Let Θ be a bifunction from K × K to R satisfying (A1)-(A4) and let ϕ :
K −→ R be a proper lower semicontinuous and convex function and let A be an α-inverse
strongly monotone of E into E∗. Let S and T be two closed quasi-φ-nonexpansive map-
pings of K into itself such that satisfies F := F (S)∩F (T )∩MEP (Θ, ϕ)∩CP (A,K) 6= ∅
and ‖Ay‖ ≤ ‖Ay − Au‖ for all y ∈ K and u ∈ CP (A,K). For an initial point x0 ∈ E,
define a sequence {xn} as follows:















































x0 = x ∈ E,

wn = ΠKJ−1(Jxn − λnAxn),
zn = J−1(βnJxn + γnJTxn + δnJSwn),
yn = J−1(αnJxn + (1− αn)Jzn),
un ∈ K such that Θ(un, y) + ϕ(y)− ϕ(un) +

1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ K,

Cn = {z ∈ K : φ(z, un) ≤ φ(z, xn)},
Qn = {z ∈ K : 〈xn − z, Jx− Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qn

x,

(4.5)

for every n ∈ N ∪ {0}, where J is the duality mapping on E. Assume that {αn}, {βn},
{γn} and {δn} are sequences in [0, 1] satisfying the the conditions (i)-(v) in Theorem 3.1.
Then {xn} converges strongly to p ∈ F , where p = ΠFx.

As in the proof Lemma 7.1.1 of Takahashi in [33], we have V I(A,K) = CP (A,K). So,
we obtain the desired result.
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