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Abstract:

Reaction-diffusion equations are fundamental in modeling several natural phenom-
ena. In this paper, we develop an accurate and efficient Haar wavelet scheme for solving
well-known one-dimensional reaction-diffusion equation. The power of this manage-
able method is confirmed. An attempt is made to combine the advantages of the
ADM and Haar wavelets. The obtained numerical results have been validated against
a closed form analytical solution as well as ADM results. Good agreement with the
exact solution has been observed. Moreover the use of Haar wavelets is found to be ac-
curate, simple, fast, flexible, convenient, small computation costs and computationally
attractive.

Keywords: Haar wavelets, one-dimensional reaction-diffusion equation, Adomain
decomposition method, computationally attractive.

1 Introduction

Many reaction—diffusion problems in biology and chemistry are modeled by partial differ-
ential equations (PDEs). These problems have been extensively studied in the literature
and their numerical solution can be accurately computed provided the diffusion coeffi-
cients, reaction excitations, initial and boundary data are given in a deterministic way.
However, modeling real-life reaction—diffusion systems is complicated by the high het-
erogeneity of the diffusion process combined with insufficient information characterizing
the kinetic reactions. An example concerns the spatio-temporal pattern formation in cell
metabolism where the intact living cell is based on a highly complex spatial organization
of its constituents. The reactants mediating, and processed by the chemical pathways
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of cell are heterogeneously distributed through the cytoplasm and cell membranes. The
diffusion of reactant species among localized reaction regions within the cell is therefore
a central feature of biochemistry. For more details, we refer to [21] and further references
are cited therein.

Reaction-diffusion equations are used to simulate a variety of different phenomena, from
physics and engineering [3] to mathematical biology [18]. In the last decades, there have
been great advances in the development of finite difference, finite element, spectral tech-
niques, adaptive and non-adaptive algorithms and finite volume methods for the partial dif-
ferential equations, especially for those of the advection-diffusion-reaction type. Reaction-
diffusion equations also lead to many other interesting phenomena, such as, pulse splitting
and shedding, reactions and competitions in excitable systems, and stability issues. Sta-
ble schemes for one-dimensional reaction-diffusion equation have demonstrated by Joao
Teixeira [22]. Examples of this type of applications include numerical weather prediction
and climate models [4, 26] where the time step and grid sizes are imposed from large-scale
flow considerations, atmosperic chemistry models [13] or reactive flows in engineering [19].
J.I. Ramos [20] used a finite volume method for one-dimensional reaction—diffusion prob-
lems. Krishnan et. al [14] established Bifurcation analysis of nonlinear reaction—diffusion
problems using wavelet-based reduction techniques.

This paper is devoted to study the linear single one-dimensional kinetic reaction-diffusion

U 8 [ 0U
5 = 5 <ka$) — U, (1.1)

where t and x denote the time and spatial coordinate, respectively, Uis the dependent
variable and k is a constant diffusion coefficient.

The Adomain decomposition method (ADM) is a creative and effective method for
exactly solving functional equations of various kinds. It is important to note that a
large amount of research work has been devoted to the application of the ADM to a
wide class of linear and nonlinear, ordinary or partial differential equations [1,2,25]. The
decomposition method provides the solution as an infinite series in which each term can
be easily determined. The rapid convergence of the series obtained by this method is
thoroughly discussed by Cherruault et al. in [7] and the references therein. Wazwaz
[24] used the Adomain decomposition method for a reliable treatment of the Bratu- type
equations.

It is somewhat surprising that among different solution techniques the wavelet method
has not attained much attention. We found only one paper [23] in which the wavelet
method is applied for solving singularly perturbed reaction-diffusion problems; for this
purpose the cubic spline adaptive wavelet functions are used. Lepik [15,16,17] had solved
higher order as well as nonlinear ODEs and some nonlinear evolution equations by Haar
wavelet method. There are two possibilities for getting out of this situation. One way is
to regularize the Haar wavelets with interpolating splines (e.g. B-splines or Deslaurier-
Dabuc interpolating wavelets). This approach has been applied by Cattani [5], but the
regularization process considerably complicates the solution and the main advantage of
the Haar wavelets-the simplicity gets to some extent lost. Hariharan et al.[10,11] had
solved linear and nonlinear PDEs.

Among the different wavelet families mathematically most simple are the Haar wavelets [9].
Due to the simplicity the Haar wavelets are very effective for solving ordinary differential
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and partial differential equations. Therefore the idea, to apply Haar wavelet technique
also for solving one-dimensional linear reaction-diffusion problem, arises. This is the main
aim of the present paper. The method with far less degrees of freedom and with smaller
CPU time provides better solutions than classical ones. The accuracy and effectiveness
of the method are analyzed; the results obtained are compared with the results of other
authors (using classical numerical techniques) and with the exact solution, evaluating the
€ITor.

We introduce a Haar wavelet method for solving one-dimensional linear reaction-diffusion
equations, which will exhibit several advantageous features:

1. Very high accuracy fast transformation and possibility of implementation of fast
algorithms compared with other known methods.

2. The simplicity and small computation costs, resulting from the sparsity of the trans-
form matrices and the small number of significant wavelet coeflicients.

3. The method is also very convenient for solving the boundary value problems, since
the boundary conditions are taken care of automatically.

The paper is organized as follows. For completeness sake the Haar wavelet method is
presented in Section 2. Function approximation is presented in Section 3. Adomain de-
composition method (ADM) for one-dimensional linear kinetic reaction-diffusion equation
in Section 4. The method of solution the PDE is proposed in Section 5. Some numerical
examples are presented in Section 6.Concluding remarks are given in Section 7.

2 Haar wavelets

The set of Haar functions is defined as a group of square waves with magnitude 41 some
intervals and zero elsewhere

1, forte [%,H%)
hi(t)=1< —1, forte [kJ;gﬁ, %) (2.1)

0, elsewhere

Integer m =2/ (j = 0,1,2...J) indicates the level of the wavelet; k = 0,1,2,....m — 1

is the translation parameter. Maximal level of resolution is J. The index 4 is calculated
according the formulai = m + k + 1; in the case of minimal values. m = 1,k = Owe
have 7 = 2, the maximal value of i is i = 2M = 27+l Tt is assumed that the value i = 1
corresponds to the scaling function for whichh; =1 in [0, 1]. Let us define the collocation
points t; = (I — 0.5)/2M, (I =1,2....2M) and discretise the Haar function h;(t); in this
way we get the coefficient matrixH (i,1) = (hi(t;)), which has the dimension2M x 2M.
The operational matrix of integration P, which is a 2M square matrix, is defined by the

equation
(PH)y = [T h(t) dt
(@) = i dt [ ha(e) de } 22
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The elements of the matrices H, P and Q can be evaluated according to (2.1) and (2.2).

11 1/2 -1
H2_<1—1)’ P2_4<1 0>

1 1 1 1 8 —4 -2 -2
1 1 -1 -1 114 0 —2 2
Hi=\1 4 o o P=%11 1 o0 o
00 1 -1 1 =1 0 0
1 1 2 0
111 1 =2 o0
-1 _ +
H, 401 -1 0 2
1 -1 0 =2
32 —16 —8 —8 —4 —4 —4 —47
6 0 -8 8 —4 —4 4 4
4 4 0 0 —4 4 0 0
114 4 0 0 -4 4 0 0
Py = —
64l 1 1 2 0 0 0 0 0
1 1 -2 0 0 0 0 0
1 -1 0 2 0 0 0 0
1 -1 0 -2 0 0 0 0 |

Chen and Hsiao [6] showed that the following matrix equation for calculating the matrix
Pof order m holds

_ 1 [ 2mPy2) —Hmy2)
P(m) - m ( H(*ml/Q) 0

where O is a null matrix of order X

m . m
2 27

Hy Xom A [ (t0) B (1) - (1)) (2.3)

and £ <t <i+ L and H,l, = LHI . diag(r)
It should be noted that calculations for F,,) and H,,ymust be carried out only once; after
that they will be applicable for solving whatever differential equations.

The higher order operational matrices @), R and Scan be introduced as

/tPH(t)dt%QH(t), /tQH(t)dt%RH(t), /tRH(t)dt%SH(t). (2.4)
0 0 0

It can be verified that the higher order operational matrices @, R and S as satisfy the
boundary conditions.

QH|,_, = [0,0,..,0]", RH|,_,=1[0,0,..,0]", SH|,_,=1[0,0,...,0]",

T
072 (/AP S W W N O BN S 1 (2.5)
t=1 2’4’16’16716’16’256""722m"”’ 22m
-—

m/2
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where m denotes the dimension of the square matrices P,@Q, R and S. Since H and
H~'contain many zeros, this phenomenon makes the Haar transform must faster than
the Fourier transform, and it is even faster than the Walsh transform. This is one of the
reason for rapid convergence of the Haar wavelet series [6, 10,12,27].

3 Function approximation

Any function y(x) € L?[0,1) can be decomposed as

o0

y(x) = cnhn() (3.1)

n=0

where the coefficients c¢,are determined by
ool
Cp = 2”/ y(x)hy(z)dzx (3.2)
0

Where n =2/ +k, >0, 0<k < 2. Specially ¢y = fol y(z)dz.

The series expansion of y(z)contains an infinite terms. If y(x)is piecewise constant by
itself, or may be approximated as piecewise constant during each subinterval, then y(x)
will be terminated at finite terms, that is

m—1
y(z) = Z cnlin(2) = C(Tm)h(m)(x) (3.3)
n=0

Where the coefficients cr{m)and the Haar function vector h,,)(r)are defined as

c(Tm) = [co,C1,e ey C—1]
and h() (z) = [ho(x), h1(2), ..., hn—1(x)]T where ‘T’ means transpose and m = 27.

4 The adomain decomposition method (ADM) for solving
one-dimensional reaction-diffusion equation

We consider the linear kinetic one-dimensional reaction-diffusion equation

ou 0 ou

with the initial and boundary conditions, where the notations L, = % and L, = 88—;2

symbolize the linear differential operators. We assume the integration inverse operators
L7t and L' exist, and they are defined as L; ' = fg (.)dt and Lyt = [ [ () dxdz,
respectively. Therefore, we can write the solutions in ¢ and x directions as [1].

w (e t) = u(2,0) + Lt kL (u (2,)) + ¢ (u)] (4.2)
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u(z,t) =u(0,t) + zu, (0,¢) + L;l [kLi (u(z,t)) — ¢ (u)] (4.3)

respectively, where ¢ (u) = —Au. By ADM [1] one can write the solution in series form as

u(z,t) = Z U (z,1). (4.4)
n=0

To find the solutions in ¢ and x directions, one solves the recursive relations

uo = u (2,0),  upr1 = Ly [kLy (un) + Bn], n>0, (4.5)

up = (0,t) + zug (0,t),  unp1 = L' [kL (un) — Bn], n>0. (4.6)

respectively, where the Adomain polynomials are | ]

1 dr .
By = o [¢ <§A un>]/\0, n>0 (4.7)

We obtain the first few Adomain polynomials for as, ¢ (u) = —Au as
By = —Aug
Bl = —)\ul
BQ = —)\’u,g

and so on. The convergence of the decomposition series (4.4) is studied in [8]. Then u (x,t)
is the particular exact solution and ¢, (z,t) is the partial sum

on (z,t) = Zuk (x,t), n>0 (4.8)
k=0
As it is clear from (4.4) and (4.8)
u(z,t) = ILm on (x,t). (4.9)

5 Method of solution

Consider the linear kinetic one-dimensional reaction-diffusion equation

ou 0 ou
u_2 <k> o, (5.1)
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with the initial condition u (z,0) = f (z), 0<az <1.

u(0,t) =go(t), uw(l,t)=g1(t), 0<t<T

Let us divide the interval (0,1] into N equal parts of length At = (0,1]/N and denote
ts =(s—1)At, s=1,2,.....N. We assume that 4" (x,t)can be expanded interms of Haar
wavelets as formula

m—1
W(2,8) = Y co(n)hn(x) = ¢y hm)(2) (5.2)
n=0

where . and ' means differentiation with respect to ¢ and x respectively, the row vector
c{m) is constant in the subinterval ¢ € (ts, ts+1]
Integrating formula (5.2) with respect to ¢ from ¢, to t and twice with respect to = from

0 to x, we obtain

u’(z,t) = (t — ts)c(Tm)h(m) () +u”"(z, ts) (5.3)
U(LU, t) (t —t ) (m)Q(m)h(m) (x) + U(I, ts) - U(O, ts) (54)

+z[u(0,t) — v/ (0,ts)] + u(0,t)

ﬂ(l‘, t) = C{m)Q(m)h(m) (:U) + :‘U’d/(oa t) + ’LL(O, t) (55)

By the boundary conditions, we obtain

u(0,ts) = go(ts), u(1,ts) = 91(ts)
W(0,8) = got), (1, 1) = gy (t)

Putting « = lin formulae (5.4) and (5.5), we have

9o(
t

W' (0,t) —u'(0,ts) = —(t — ts)c(Tm)Q(m)h(m) () + g1(t) — go(t) — g1(ts) + go(ts) (5.6)

W'(0,8) = g1 (t) = ¢y Qam)hm) () — go(2) (5.7)
Substituting formulae (5.6) and (5.7) into formulae (5.3)-(5.5), and discretizising the re-
sults by assuming x — z;, t — t541 we obtain

u(z,tsr1) = (tsr1 — ts)c(Tm)h(m) (z) + " (21, ts) (5.8)

w(@y, ts1) = (tsr1 — ts)Chy Qeumyhm) (21) + ulzr,ts) — golts) + goltsr)
o[~ (ts41 — ts)C{m)P(m)f + gi(ts+1) — go(ts+1) — g1(ts) + go(ts)]
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(5.9)

Wty tsi1) = oy Qm)hm) () + G (ts1) + 21—y Pamy f + 91 (Es41) = go (ts41)] (5.10)
Where the vector f is defined as

(m—1) elements

In the following the scheme

Wz, ter1) = u” (2, tsy1) — Mu(xy, tsrt) (5.11)

which leads us from the time layer ts to t511 is used.
Substituting equations (5.8)-(5.10) into the equation (5.11), we gain

Clomy Qumyhm) (@0) + 2i[= () Pamy [ + 91 (ts1) = g0 (ts1)] + g5 (Es41)

5.12
= U”(xlv terl) - )‘u($lv 75s+1) ( )

From formula (5.12) the wavelet coefficients ¢! can be successively calculated.
In the following section we provide couple of examples and calculate the absolute errors
by using the formula Ew = |tuegact — UHaar| and 0ex = || (z,t) — ey (z,t)|| /2M.

6 Applications and results

Example 6.1. If we take k =1 and A = —1 in the equation (5.1), we obtain the linear
heat equation, namely

Up = Upg + U (6.1)

We impose the initial condition

u (z,0) = cos (mx) (6.2)

and boundary conditions

w(0,¢) = (™), (0,8) = 0. (6.3)
To obtain the solution in ¢ direction, we use the recursive relation (4.5) by simply taking

ug = cos (mx) . In this case the Adomain polynomials are By = ug, B1 = u1, Bz = ug, and
so on. Therefore, we have
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up = (1 - 7T2) tcos(mx), wug = % (1- 7r2)2t2 cos (mx) ,

1

30 (1- 7r2)3 t3 cos (mz)

uz =
and so on, in this manner the rest of the components of the series (4.4) have been calculated
using Mathcad7. Putting these individual terms in (4.4) one gets the exact solution

u(x,t) = cos () + (1 — ) tcos (m —1—12% (1- ) cos (mx)

+4 (1= 72)% B cos (rz) + ... = el (6.4)

°)t cos (mx) ,

which can be verified through substitution.
Similarly, to obtain the solution in z direction, we use the recursive relation (4.6) by

taking ug = e(l_ﬂz)t, where the B, ’s are the same as above. We therefore have

7x)? (12 )t (2 mx) (1-=2)e
(2!)6(1 ), u22(4!)6(1 )y = )

Uy = —

and so on, in this manner the rest of the components of the series (4.4) have been calcu-
lated. From the decomposition series (4.4), we gain obtain the exact solution

u(z,t) = (1=t cos (mz) . (6.5)

In the following the scheme

w(zy, ter) = (@, tog1) + u(ar, toy1)

which leads us from the time layer ¢, to 541 is used.

Cloy Q)P (1) + Ti[= () Pamy 08 (1) + g1 (ts1) — go(tsr1)] + go(tsr1)

6.6
=u"(zy, tsq1) + u(zy, tsyr) (6.6)

From formula (6.6) the wavelet coefficients c{m)can be successively calculated.
This process is started with

u(xy,ts) = —msin (mz)

u (z,ts) = —72 cos (mx)

u” (x1,ts) = w3 sin (7x)
Using Adomain decomposition method, the exact solution in a closed form is given by
u(x,t) = (1=t cos (rz) can be compared with the Haar solution. The accuracy of the
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results is estimated by the error function. In the case of error estimates, if the exact
solution of the problem u = u (x,t) is known we shall calculate the differences A., (1) =
u(zy,tsy1) — Uer (T tsy1), I = 1,2,...,2M and we define the error estimates as Je, =
max |Acz (1)| (local estimate) or ep = 57 ||u(z,t) — ey (z,t)| (global estimate). The
convergence of Haar method is fast and it’s accuracy is height, as numerical examples
show error [15].

Computer simulation was carried out in the cases m = 32 and m = 64, the computed
results were compared with the exact solution, more accurate results can be obtained by
using a larger m (See Fig.1). The method with far less degrees of freedom and with a
smaller CPU time provides better solutions than classical ones.

e 100

1 - zxzct zolution
2-mazr szldion

/
III ;
/

b
T

g2 03 04 O£ 0g D07 C3 D9 i

t nosmalized 1o 1

Figure 1: Comparison between exact and Haar solutions x=5 and k=12.5

Example 6.2 Consider the equation

0 0?
u——u+(1—u), -l<z<l1, t>0
x
with the data u(—1,t) = u(1,t) =0
and the initial condition u(z,0) =0
The exact solution of the model problem is given by

o0

_,_coshe 1695 (=1)"cos|(2n — 1) (r2/2)] _f I
w@t) =1 cosh 1 WZ(2n—1)[(2n—1)27r2+4] p{ [1+(2 ) 4}25}

n=1

All the numerical experiments presented in this section were computed in double precision
with some MATLAB codes on a personal computer System Vostro 1400 Processor x86
Family 6 Model 15 Stepping 13 Genuine Intel 1596 Mhz.
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7 Conclusion and future work

The goal to obtain exact and Haar solutions for one-dimensional reaction-diffusion prob-
lems has been achieved. The theoretical elegance of the Haar wavelet approach can be
appreciated from the simple mathematical relations and their compact derivations and
proofs. It has been well demonstrated that while applying the nice properties of Haar
wavelets, the partial differential equations can be solved conveniently and accurately by
using Haar wavelet method systematically.

In the present paper only linear equations are considered, but the method are applicable
also for nonlinear systems. The main advantages of the presented method are its simplicity
and small computation costs: it is due to the sparcity of the transform matrices and to
the small number of significant wavelet coefficients. An authentic conclusion can be drawn
from the numerical results that the Haar wavelet method provides more accurate numerical
solutions than Adomian’s decomposition method. In our opinion the Haar wavelet method
is wholly competitive in comparison with the classical methods.

Future work will involve the extension of the scheme to two and three dimensions and
to the advection-diffusion equation. Extending the scheme to higher dimensions and to
the advection-reaction-diffusion equations.
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