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Abstract:
The flow of a dusty gas past an impulsively started semi-infinite vertical plate is

studied. The non-dimensional governing equations are solved by an implicit finite
difference scheme of Crank-Nicolson method, which is fast convergent and uncondi-
tionally stable. Gas velocity, dust particle velocity, temperature, skin-friction and
Nusselt numbers are calculated numerically for various parameters and are shown
graphically. It is observed that an increase in mass concentration of dust leads to a
decrease in the dusty gas velocity but an increase in skin-friction.
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Nomenclature

Cp specific heat of the fluid at constant pressure
CpL specific heat of the particle at constant pressure
d radius of the spherical particle
f mass concentration of dust
g acceleration due to gravity
Gr Grashof number
h non dimensional dust parameter
κ thermal conductivity
k1 Stokes resistance coefficient
k nondimensional dust parameter
m mass of a dust particle
N0 number density of small dust particle
Nu

X
dimensionless local Nusselt number

Nu dimensionless average Nusselt number
Pr Prandtl number
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T ′ temperature
t dimensionless time
u, v velocity components of fluid in x, y-directions respectively
up, vp velocity components of dust particles in x, y-directions respectively
U, V dimensionless velocity components of fluid in X,Y - directions respectively
Up, Vp dimensionless velocity components of dust particles in X,Y -directions respectively
x spatial coordinate along the plate
X dimensionless spatial coordinate along the plate
y spatial coordinate normal to the plate
Y dimensionless spatial coordinate normal to the plate
Greek symbols

α thermal diffusivity
β coefficient of volume expansion
λ nondimensional parameter[λ=Pr(1+h)]
µ coefficient of viscosity
ν kinematic viscosity
ρ density
τ average skin-friction
τ
X

dimensionless local skin-friction
τ dimensionless average skin-friction
Subscripts

w conditions at the wall
∞ conditions in the free stream

1 Introduction

Problem of two-dimensional free convection flow past a semi-infinite plate with different
boundary conditions has attracted the attention of many researchers. However, in nature,
the fluid in pure form is rarely available. Air and water contains impurities like dust
particles and foreign bodies. This is connected with a wide range of natural occurring
phenomena and practical applications. The study of the flow of dusty fluids is of practical
importance, particularly through packed beds, sedimentation, environmental pollution,
chemical reactors, combustion systems, pneumatic transport, and centifugal separation of
particles.

Saffman[1] has formulated the basic equations for the flow of dusty fluid. Since then
many researchers have discussed the problem of dusty fluid. Michael and Miller[2] studied
the flow of a dusty gas past an impulsively started horizontal plate using the momentum
equations given by saffman[3] and solved by Laplace transform technique. Micheal[3]
considered the effect on the steady flow past a sphere of uniform upstream distribution
of dust particles having a small relaxation time. Soundalgekar and Gokhale[4] studied
the flow of a dusty gas past an impulsively started infinite vertical plate by employing an
implicit finite difference technique.

An explicit finite difference solution of flow of a dusty gas past a uniformly accelerated
horizontal plate in a viscous incompressible gas was presented by Das et al. [5]. Ganesan

IJAMC



27

and Palani[6] studied numerical solution of Heat transfer effects on dusty gas flow past a
semi-infinite inclined plate using an implicit finite difference method. Due to the impor-
tance of dusty viscous flows in other technological fields various studies have appeared in
the literature. The effects of heat transfer on the flow of dusty gas past a semi-infinite
isothermal vertical plate have not yet received the attention in the literature.

2 Mathematical Analysis

A transient, laminar, two-dimensional flow of a dusty gas past a semi-infinite isothermal
vertical plate is considered. The X-axis is taken along the plate in the vertically upward
direction and the Y -axis is taken normal to the plate. Initially, the plate and the dusty gas
are assumed to be at the same temperature. The plate starts moving impulsively in the
vertical direction with constant velocity u0 against gravitational field and the temperature
of the plate is also raised to T ′

w. They are maintained at the same level for all time t′ > 0.

In the present analysis, the following important assumptions are also made:

1. The dust particles are spherical in shape and are uniformly distributed.

2. Chemical reaction, mass transfer and radiation between the particles and fluid are
not considered.

3. Interaction between particles themselves is not considered.

4. The buoyancy force is neglected.

5. The number density of dust particles is constant throughout the motion.

6. Viscous dissipation is negligible.

Under these assumptions, the governing equations of the flow based on Saffman model of
dusty viscous incompressible fluid with usual Boussinesq’s approximation are as follows:

∂u

∂x
+

∂v

∂y
= 0 (2.1)
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∂up

∂x
+ vp

∂up

∂y

)

= k1(u− up) (2.3)
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If the dust particles are spheres of radius d, then Stokes resistance coefficient k1 = 6πµd,
µ being the viscosity of the fluid.
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The initial and boundary conditions are

t′ ≤ 0 : u = 0, v = 0, up = 0, T ′ = T ′

∞

t′ > 0 : u = u0, v = 0, up = 0, T ′ = T ′

w, at y = 0
u = 0, up = 0, T ′ = T ′

∞
, at x = 0

u → 0, up → 0, T ′ → T ′

∞
, as y → ∞

(2.5)

On introducing the following non-dimensional quantities: ,

X =
xu0

ν
, Y =

yu0

ν
, U =

u

u0
, V =

v

u0
, Up =

up

u0
, Vp =

up

u0
,

t =
t′u20
ν

, T =
T ′ − T ′

∞

T ′

w − T ′

∞

, Gr =
νgβ(T ′

w − T ′

∞
)

u30
, f =

mn0

ρ
(2.6)

Pr =
ν

α
, h =

fCp

CpL

, λ = Pr(1 + h), k =
νk1

mu20

Equations (1) to (4) are reduced to the following non-dimensional form

∂U

∂X
+

∂V

∂Y
= 0 (2.7)

∂U

∂t
+ U

∂U

∂X
+ V

∂U

∂Y
= Gr T +

∂2U

∂Y 2
+ fk(Up − U) (2.8)

∂Up

∂t
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∂X
+ Vp

∂Up

∂Y
= k(U − Up) (2.9)

∂T

∂t
+ U

∂T

∂X
+ V

∂T

∂Y
=

1

λ

∂2T

∂Y 2
(2.10)

The corresponding initial and boundary conditions in non-dimensional quantities are

t ≤ 0 : U = 0, V = 0, Up = 0, T = 0
t > 0 : U = 1, V = 0, Up = 0, T = 1 at Y = 0

U = 0, Up = 0, T = 0, at X = 0
U → 0, Up → 0, T → 0 as Y → ∞

(2.11)

3 Numerical Technique

An implicit finite difference scheme of Crank-Nicolson type has been used to solve the
governing non-dimensional equations (7) to (10) under the conditions (11). The finite
difference equations corresponding to equations (7) to (10) are as follows:

[

Un+1
i,j − Un+1

i−1,j + Un
i,j − Un

i−1,j + Un+1
i,j−1 − Un+1

i−1,j−1 + Un
i,j−1 − Un

i−1,j−1

]

44X

+

[

V n+1
i,j − V n+1

i,j−1 + V n
i,j − V n

i,j−1

]

24Y
= 0 (3.1)
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Here the region of integration is considered as a rectangle with sides Xmax(= 1) and
Ymax(= 14), where Ymax corresponds to Y = ∞ which lies very well outside both the
momentum and thermal boundary layers. The maximum of Y was chosen as 14 after
some preliminary investigations so that the last two of the boundary conditions (11) are
satisfied with in the tolerance limit 10−5. After experimenting with a few set of mesh
sizes, the appropriate mesh sizes 4X = 0.05, 4Y = 0.25 with time step 4t = 0.01 are
considered for calculation.

The coefficients Un
i,j , U

n
p(i,j), V

n
i,j and V n

p(i,j) appearing in the finite-difference equations
are treated as constants in any one time step. Here i-designates the grid point along the
X-direction, j along the Y -direction and k to the t-time. The values of U ,V ,Up,Vp and T
are known at all grid points at t = 0 from the initial conditions.

The computations of U, V, Up and T at time level (n+ 1) using the values at previous
time level (n) are carried out as follows: The finite difference Equation (15) at every
internal nodal point on a particular i-level constitute a tridiagonal system of equations.
Such a system of equations are solved by using Thomas algorithm as discussed in Carnahan
et al.[7]. Thus, the values of T are found at every nodal point for a particular i at (n+1)th

time level. Similarly, the values of Up are calculated from Equation (14). Using the values
of T and Up at (n+ 1)th time level in the equation (13), the values of U at (n+ 1)th time
level are found in a similar manner. Thus, the values of Up, T and U are known on a
particular i-level. Finally, the values of V is calculated explicitly using the Equation (12)
at every nodal point on a particular i-level at (n+1)th time level. This process is repeated
for various i-levels. Thus the values of T, Up, U and V are known, at all grid points in the
rectangular region at (n+ 1)th time level.

In a similar manner computations are repeated until the steady-state is reached. The
steady-state solution is assumed to have been reached, when the absolute difference be-
tween the values of U , as well as temperature T and concentration Up at two consecutive
time steps are less than 10−5 at all grid points.
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4 Results and Discussion

The velocity profiles for the dusty gas are shown in Fig.1. The velocity of the dusty gas
increases with time. When t is small, the effects of dust particles are not significant. It
is observed that due to the presence of dust particles in the fluid, time taken to reach
the temporal maximum and steady state increases. However due to the presence of dust
particles, the velocity of the gas decreases since these dust particles oppose the motion of
the gas.

The temperature profiles for the fluid with dust particles are shown in Fig.2. It is
observed that the temperature increases with time. Here time taken to reach the steady
state increases since these dust particles carry away heat and the fluid gets cooled. The
effects of the mass concentration of the dust f on the dusty gas velocity are shown in
Fig.3. An increase of f leads to a fall in the gas velocity because these dust particles
oppose the motion of the gas. It is observed that time taken to reach the steady state
increases with f. Temporal maximum and steady state values for dusty particles velocity
are shown in Fig.4. This figure shows the effect of f, K and Gr in dust particle velocity
Up. According to the numerical results, the velocity of the dust particles increases with an
increasing value of K and Gr. The velocity of the dust particles decreases with increasing
mass concentration of the dust. This is quite nature.
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Knowing the velocity and temperature field, it is customary to study the skin-friction
and the Nusselt number. The local as well as average values of skin-friction and Nusselt
number in dimensionless form are as follows:

τ
X

= −

(

∂U

∂Y

)

Y=0

(4.1)

τ = −

∫ 1

0

(

∂U

∂Y

)

Y=0

dX (4.2)

Nu
X

= − X

[

(

∂T
∂Y

)

Y=0

TY=0

]

(4.3)

Nu = −

∫ 1

0

[

(

∂T
∂Y

)

Y=0

TY=0

]

dX (4.4)

The derivatives involved in equations (16) to (19) are evaluated by using a five-point
approximation formula and then the integrals are evaluated by Newton-Cotes closed inte-
gration formula.

The effects of f, K and Gr on local skin-friction are shown in Fig.5. The local wall
shear stress increases as f increases. It is observed that local skin friction decreases as K
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increases. Local Nusselt number for different values of f, K and Gr are shown in Fig.6. It
increases as X increases. It is observed that local Nusselt number increases by decreasing
value of f and increasing value of Gr. The average values of skin-friction and Nusselt
number are shown in figures 7 and 8 respectively. The average skin-friction decreases with
increasing value of K and its increases by increasing value of f and h. The average Nusselt
number increases with increasing value of K and h.

5 Conclusions

Finite difference study has been carried out for the dusty gas flow past a semi-infinite
isothermal vertical plate. The dimensionless governing equations are solved by an implicit
finite difference scheme of Crank-Nicolson method. Conclusions of the study are as follows:

1. Due to the presence of dust particles in the fluid, time taken to reach the temporal
maximum and steady state increases.i.e.,the velocity of the gas decreases since these
dust particles oppose the motion of the gas.

2. The temperature increases with time. The time taken to reach the steady state
increases since these dust particles carry away heat and the fluid gets cooled.

3. The velocity of the dusty gas decreases with increasing mass concentration of the
dust because these dust particles oppose the motion of the gas.

4. The velocity of the dust particles decreases with increasing mass concentration of
the dust.

5. It is observed that local skin friction decreases as K increases and local Nusselt
number increases by decreasing value of f and increasing value of Gr.

6. The average skin-friction decreases with increasing value of K and its increases by
increasing value of f and h. The average Nusselt number increases with increasing
value of K and h.

References

[1] P.G. Saffman, On the stability of laminar flow of a dusty gas, Journal of Fluid Mechanics 13 (1962)
120-128.

[2] D.H. Michael, D.A. Miller, Plane parallel flow of a dusty gas, Mathematica 13 (1966) 97-109.

[3] D.H. Michael, The steady motion of a sphere in a dusty gas, Journal of Fluid Mechanics 31 (1968)
175-192.

[4] V.M. Soundalgekar, M.Y. Gokhale, Flow of a dusty-gas past an impulsively started infinite vertical
plate, Reg J Heat Energy Mass Tranfer 6 No.4 (1984) 289-295.

[5] U.N. Das, S.N. Deka, V.M. Soundalgekar, Flow of a dusty-gas past an accelerated infinite horizontal
plate-finite-diffence solution, Indian Journal of Technology 30 (1992) 327-329.

[6] P. Ganesan, G. Palani, Heat transfer effects on dusty gas flow past a semi-infinite inclined plate, Forch
Ingenieurwes 71 (2007) 223-230.

[7] B. Carnahan, H.A. Luther and J.O. Wilkes, Applied Numerical Methods, John Wiley and Sons, New
York, 1969.

IJAMC


