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Abstract:
We propose an algorithm as a solution to the problem of trajectory planning

and posture control of multiple mobile manipulators within a fixed and bounded
but obstacle-ridden workspace. This, together with other kinematic and dynamics
constraints normally integrated to the mobile manipulators have been treated simul-
taneously, for the first time, via a Lyapunov-based control scheme. The control scheme
guarantees stability of the system, per se. We have accounted for the final orientations
of the wheeled platforms and the attached links using a new optimization technique
classified as minimum distance technique (MDT). The technique coupled with tun-
ing parameters force prescribed orientations of the mobile manipulators. Efficiency
of the new control algorithm is demonstrated via a couple of interesting computer
simulations.

Keywords:Mobile manipulators, kinematic constraints, dynamic constraints, pos-
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1 Introduction

Trajectory planning and control of holonomic and nonholonomic systems has been an
active area of research and has garnered monumental support and attention for more than
two decades now. The literature is inundated with algorithms, strategies and schemes
governing motion control of various robotic systems. The reasons for this is multifold:
strong presence of mechanical systems that have non-integrable constraints such as robot
manipulators, mobile robots, wheeled vehicles, and space and underwater robots; its wide-
ranging capabilities; considerable challenge in the synthesis of control laws for systems that
are not transferable into linear control problems in any meaningful way; and as a direct
result of Brockett’s theorem [1] the failure to procure stabilizing feedback control laws of
nonholonomic systems.
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The control algorithms and strategies have been categorized into three groups, namely
continuous time-variant, discontinuous and hybrid control strategies [9, 21]. Numerous
continuous time-invariant feedback control laws have appeared in literature [22, 23] which
have guaranteed stability of robotic systems, per se. However, to show asymptotic stability
with smooth controllers, in light of Brockett’s theorem, is still an open problem.

One of the challenging problems in the area of motion planning and control of robots
is to generate specific configurations in constraint environments. Studies [7, 11, 23, 24]
have considered the motion planning problem of robot arms anchored in constraint envi-
ronments. Meyer in [11] pioneered a findpath scheme based on velocities of the various
components of anchored robot arms. Vanualailai et. al. in [23, 24] extended Meyer’s work
by applying the Lyapunov-based control scheme to generate continuous control laws based
upon the acceleration components of anchored robots. In the prequel [18], we extended
the work further by applying the control scheme to an unanchored 2-link manipulator.

Of the many mechanical systems in literature, the mobile manipulators play a pivotal
role in the transportation industry nowadays and are capable of performing dull, dirty,
dangerous or difficult tasks in various different environments, which may be even inacces-
sible to humans [5]. The pioneer work with the mobile manipulators was carried out by
Seraji [14], which is now considered a landmark in the literature of motion control of the
mobile manipulators. Other researchers have proposed efficient algorithms for the control
of the mobile manipulators and it suffices to mention a few important ones: Perriera et
al. [13], Huang et al. [6] and Foulon et al. [2, 3] in 1998; Foulon et al. [4] in 1999;
Papadopoulos and Poulakakis [12] in 2000; Sugar and Kumar [20] in 2002; Matsikis et al.
[10] in 2003; and Xu et al. [25] in 2005. In this ever-growing repertoire, the 2-link mobile
manipulators are deemed to be more difficult to control, the arterial reason being the inti-
mate coupling of holonomic and nonholonomic constraints arising from the amalgamation
of a 2-link robotic arm and a wheeled platform. As such the task of motion planning and
control of 2-link mobile manipulators traversing the path to desired goals under a heavy
barricade of obstacles is still a complicated one.

In this paper, we will extend the results in [18] to multiple unanchored 2-link ma-
nipulators, utilizing again the the Lyapunov-based control scheme to derive the feedback
controllers. This control scheme adopted recently in [16, 19, 18, 17, 24] provides a simple
but effective means of harnessing continuous time-invariant control laws of nonlinear dy-
namical systems. The control scheme operates within the artificial potential framework,
which was pioneered by Khatib [8]. The governing principle behind the framework is to
attach attractive field to the target and a repulsive field to each of the obstacles. The
framework also offers an extended degree of flexibility by taking into account all the con-
straints pertaining the amalgamated robotic system which includes, inter alia, limitations
on velocity and steering angle, singular configurations of the arms, restrictions imposed by
boundary conditions, obstacles in workspace and point and posture stabilities. In parallel,
the scheme addresses stability issues of the systems via Lyapunov’s Second Method.
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2 System Modelling

In this section, we derive the kinodynamic model of 2-link mobile manipulators using the
Cartesian coordinates.

Let Ai, i ∈ {1, . . . , n} be the ith 2-link mobile manipulator included in the workspace
WS. Ai consists of a car-like wheeled platform with a 2-link planar arm mounted on the
mid-front axle of the wheeled platform as shown in Figure 1. For simplicity, we let each
Ai to be of the same dimension; hence, ℓ0 and b0 are, respectively, the length and the
width of the wheeled platforms while ℓ1 and ℓ2 are the length of their Link 1 and Link 2,
respectively.

Figure 1: Schematic representation of the ith
2-link mobile manipulator in the z1-z2 plane.

With reference to Figure 1, (xi1, yi1)
gives the location of the center of the
wheeled platform of the ith mobile
manipulator, θi1 gives its orientation
with respect to the z1-axis, θi2 gives
the orientation of Link 1 with respect
to its platform, θi3 gives the orientation
of Link 2 with respect to Link 1, while
φi is the steering angle with respect to
the platform’s longitudinal axis.

We note the presence of the clear-
ance parameters ǫ1, ǫ2, ǫ3 > 0 for
safety of the wheeled platform and the
gripper [18].

For the purpose of clarity, we shall now consider the governing equations of the wheeled
platform and the 2-link arm separately and then combine them to obtain the governing
ODE’s of the ith 2-link mobile manipulator.

2.1 Car-like Wheeled Platform

Motion planning has been treated mostly as a kinematic problem where the dynamics of
the system have been generally neglected. However, with nonholonomic systems, ignoring
the dynamics reduces the significance of the results to low speeds although it is well
documented that avoidance of obstacles, parking maneuverability, and mere motion control
is feasible at higher speeds as well. Adopting the nomenclature of [16] the kinodynamic
model of the ith car-like wheeled platform with respect to its center of mass (CoM) is
governed via the ODEs:

ẋi1 = vi cos θi1 −
ℓ0
2
ωi1 sin θi1,

ẏi1 = vi sin θi1 +
ℓ0
2
ωi1 cos θi1,

θ̇i1 = ωi1, v̇i = ui1, ω̇i1 = ui2,
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where vi and ωi1 are the translational and rotational velocities of the platform while ui1
and ui2 are its instantaneous translational and rotational accelerations, respectively.

2.2 2-link Manipulator

From the dossier on robot manipulators, we choose a fully actuated 2-link arm for the
purpose of this research. Assume the link at the lower end is anchored at (0, 0), the origin
of the main frame, we adopt the following kinematic model of the 2-link arm from [24]:

ẋie = −ℓ1ωi2 sin θ2 − ℓ2(ωi2 + ωi3) sin(θi2 + θi3),
ẏie = ℓ1ωi2 cos θi2 + ℓ2(ωi2 + ωi3) cos(θi2 + θi3),

θ̇i2 = ωi2, θ̇i3 = ωi3,
ω̇i2 = ui3, ω̇i3 = ui4,

where ωi2 and ωi3 are the instantaneous angular velocities, and ui3 and ui4 are the in-
stantaneous angular accelerations, respectively, of the lower and upper links of the robot
arm.

2.3 2-link Mobile Manipulator

Let us now consider the wheeled platform and the 2-link arm fixed together as one complete
robot unit, hereafter, classified as a 2-link mobile manipulator (2MM). The position (xi, yi)
of its end-effector with respect to its wheeled platform can be written as :

xi = xi1 +
ℓ0
2
cos θi1 + ℓ1 cos(θi1 + θi2) + ℓ2 cos(θi1 + θi2 + θi3),

yi = yi1 +
ℓ0
2
sin θi1 + ℓ1 sin(θi1 + θi2) + ℓ2 sin(θi1 + θi2 + θi3).

Now letting θiQ = θi1+ θi2, θiT = θi1+ θi2+ θi3, ωiQ = ωi1+ωi2 and ωiT = ωi1+ωi2+ωi3

one can comfortably show that the kinodynamic model of the ith 2MM is

ẋi = vi cos θi1 − ℓ0ωi1 sin θi1 − ℓ1ωiQ sin θiQ − ℓ2ωiT sin θiT ,
ẏi = vi sin θi1 + ℓ0ωi1 cos θi1 + ℓ1ωiQ cos θiQ + ℓ2ωiT cos θiT ,

θ̇i1 = ωi1, θ̇i2 = ωi2, θ̇i3 = ωi3,
v̇i = ui1, ω̇i1 = ui2, ω̇i2 = ui3, ω̇i3 = ui4.















(2.1)

System (2.1) is a description of the instantaneous velocities and accelerations of the vari-
ous bodies of Ai. We assume that the instantaneous accelerations ui1, ui2, ui3 and ui4 can
move the end-effector of Ai to its designated target and will ensure the final orientation
prescribed to each rigid body inside the parking bay. Hence, by the Lyapunov-based con-
trol scheme, (ui1, ui2, ui3, ui4) for i = 1, 2, . . . , n are considered as the nonlinear controllers
of the 2MMs.

We shall use the vector notation xi = (xi, yi, θi1, θi2, θi3, vi, ωi1, ωi2, ωi3) ∈ R
9 in the z1-z2

plane to refer to the position and velocity components of Ai. Without any loss of general-
ity, we can further define x = (x1,x2, . . . ,xn) ∈ R

9×n to include the position and velocity
components of all 2MMs populating the workspace.
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It is easily verifiable that the positions of the wheeled platform, Link 1 and Link 2 of
the ith 2MM can be expressed completely in terms of the state variables xi, yi, θi1, θi2,
and θi3, hence for the articulated bodies m = 1, 2, 3 of Ai we ascertain

xim = xi −
3
∑

k=m

ℓk−1

2⌊m/k⌋
cos





k
∑

p=1

θip



 ,

yim = yi −
3
∑

k=m

ℓk−1

2⌊m/k⌋
sin





k
∑

p=1

θip



 .































(2.2)

These position constraints are known as the holonomic constraints of the 2-link mobile
manipulator system.

3 Motion Planning

In this section, we will plan collision free motions of n 2MMs in a constrained and well-
defined workspace. But to ensure that each 2MM safely steers past an obstacle, it is
necessary to enclose each rigid body of the 2MM by the smallest possible circle. Given the
clearance parameters we shall enclose the wheeled platform by a protective circular region
centered at (xi1, yi1) with radius r1 = 1

2

√

(ℓ0 + 2ǫ1)2 + (b0 + 2ǫ2)2. Similarly, we shall

enclose Link 1 and Link 2 in protective circular regions of radii r2 = ℓ1
2 and r3 = ℓ2

2 + ǫ3,
respectively, and denote their centers as (xi2, yi2) and (xi3, yi3), respectively (as shown in
Figure 1). This is in line with the work carried out in [18].

Control objective: Utilize the Lyapunov-based control scheme to control the motion
of Ai, i ∈ {1, . . . , n} to the designated target while ensuring that it avoids all fixed and
moving obstacles in the constrained workspace and eventually reach its target inside the
designated parking bay with a prescribed final orientation of each solid body.

We define below the targets and all the obstacles that could be encountered by Ai. For
each different subtask, appropriate artificial potential fields would be produced separately
to help achieve the overall objective. On one hand, we design a target attractive function
for attraction to a target. This function can be treated as an attractive potential field
function. On the other hand, we have the obstacle avoidance function designed to avoid
an obstacle encountered in the workspace. Repulsive potential field functions would then
be designed from such avoidance functions. Each avoidance function would appear in the
denominator of a potential field function while the numerator would contain a unique tun-
ing parameter. These potential field functions would be summed into a Lyapunov function
from which the nonlinear controllers would be generated. The reader is referred to [15]
for further details on the Lyapunov-based control scheme.

3.1 Posture

In this section we shall consider the position and the orientation modules of posture
separately to highlight and elucidate the importance of our new technique. We also make
the following assumption:
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Assumption: The prescribed final posture (position and orientation) is required inside
a parking bay prescribed to the 2MM.

3.1.1 Position

We need to affix a target for each robot to reach after some time t > 0. Hence we designate
a target for the end-effector of Ai with center (pi1, pi2) and radius rti: Ti = {(z1, z2) ∈
R
2 : (z1 − pi1)

2 + (z2 − pi2)
2 ≤ rt2i }. For its attraction we consider the following target

attractive function

Hi(x) =
1

2



(xi − pi1)
2 + (yi + pi2)

2 +
3
∑

j=2

ρij(θij − pij+2)
2 + v2i +

3
∑

k=1

ω2
ik



 , (3.1)

which is positive for all x ∈ R
9×n. Note that ρi2, ρi3 > 0 are the newly inducted constants,

classified as the angle-gain parameters. An angle-gain parameter will have a value of one
only if a final orientation is warranted, else it observes a default value of zero [15]. In the
Lyapunov-based control scheme, once a Lyapunov function for system (2.1) is established
Hi(x) will act as attractor by having the end-effector of Ai move to its target and to
ensure that system trajectories start and remain close to a stable equilibrium point of
system (2.1).

3.1.2 Orientation

Although the final position is reachable, it is virtually impossible to harvest exact ori-
entations via continuous feedback controllers at the equilibrium point of nonholonomic
systems, a direct result of Brockett’s Theorem [1]. Notwithstanding the limitation, we
adopt the minimum distance technique (MDT) from [15] to maneuver each 2MM into a
parking bay such that the prescribed final orientation could also be accomplished, at least
numerically. In the interest of brevity, we will now consider the processes involved in MDT.

Basically, a boundary line of a parking bay is avoided by identifying and avoiding three
points on the line: (i) point closest to the center of the mobile platform, (ii) point closest
to the center of Link 1, and (iii) point closest to the center of Link 2. Avoidance of these
points on a line segment at any time t ≥ 0 essentially results in the avoidance of the en-
tire boundary line by the complete 2MM. MDT specifically requires consideration of any
kth line segment in the z1z2-plane with initial coordinates (ak1, bk1) and final coordinate
(ak2, bk2). The parametric representation of this kth line segment is

cimk = ak1 + λimk(ak2 − ak1), dimk = bk1 + λimk(bk2 − bk1) .

where m = 1, 2, 3 are the three solid bodies of Ai. Minimizing the Euclidian distance
between the point (xim, yim) and the line segment (cimk, dimk), we get

λimk = (xim − ak1)qk1 + (yim − bk1)qk2, for λimk ∈ [0, 1] ,

where

qk1 =
(ak2 − ak1)

(ak2 − ak1)2 + (bk2 − bk1)2
, qk2 =

(bk2 − bk1)

(ak2 − ak1)2 + (bk2 − bk1)2
.
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The following obstacle avoidance function will ensure that each of the m bodies of Ai will
avoid the closest point on the kth boundary line of a parking bay

LSimk(x) =
1

2

[

(xim − cimk)
2 + (yim − dimk)

2 − r2m

]

, (3.2)

for m = 1, 2, 3, k = 1, 2, . . . , 2n and i = 1, 2, . . . , n. As discussed previously, to generate
repulsive effects from this function we design a new repulsive potential field function which
is basically an inverse function that encodes the avoidance function to the denominator.
This ratio acts to prevent the articulated vehicle from colliding with the boundary lines.
The main idea here is to attach necessary and sufficient repulsive fields to the boundary
lines of the parking bay so that the prescribed final orientations could be forced to even-
tuate [15].

Henceforth, for each obstacle, we will construct an obstacle avoidance function that will
then appear in the denominator of an appropriate repulsive potential field function.

3.2 Kinematic Constraints

The kinematic constraints are the nonholonomy of the 2MMs and all the fixed and moving
obstacles in the workspace. The nonholonomy of the robot is reflected in the kinodynamic
model (2.1). The fixed obstacles are the four boundaries of the rectangular workspace,
all stationary obstacles in the workspace and the boundaries of the parking bays. The
moving obstacles in this research are the mobile manipulators themselves.

3.2.1 Workspace: Boundary Limitations

We adopt the planar workspace from [16], which is a fixed, closed, and bounded rectangular
region defined for η1 > 2 (r1 + r2 + r3) and η2 > 2 (r1 + r2 + r3), as

WS = {(z1, z2) ∈ R
2 : 0 ≤ z1 ≤ η1, 0 ≤ z2 ≤ η2}.

The boundaries of the region are defined as follows:

(a) Left Boundary: B1 = {(z1, z2) ∈ R
2 : z1 = 0};

(b) Lower Boundary: B2 = {(z1, z2) ∈ R
2 : z2 = 0};

(c) Right Boundary: B3 = {(z1, z2) ∈ R
2 : z1 = η1};

(d) Upper Boundary: B4 = {(z1, z2) ∈ R
2 : z2 = η2}.

These boundaries are considered as fixed obstacles, and they have to be avoided by the
2MMs so that they stay within the rectangular region at all time t ≥ 0. It can be seen that
since the two ends of Link 1 are protected by the protective circular regions of the wheeled
platform and of Link 2, respectively, it is sufficient to consider the avoidance functions
only for the wheeled platform and Link 2 of Ai.

As such, for the avoidance by the wheeled platform we shall adopt the following obstacle
avoidance functions [16]:

Wi1(x) := xi1 − r1 , Wi2(x) := yi1 − r1, (3.3a-b)

Wi3(x) := η1 − (r1 + xi1), Wi4(x) := η2 − (r1 + yi1), (3.3c-d)
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while for Link 2, we have:

Wi5(x) := xi3 − r3 , Wi6(x) := yi3 − r3, (3.4a-b)

Wi7(x) := η1 − (r3 + xi3), Wi8(x) := η2 − (r3 + yi3), (3.4c-d)

for the avoidance of the left, lower, right and upper boundaries, respectively. Since η1 >
2 (r1 + r2 + r3) and η2 > 2 (r1 + r2 + r3), each of the aforementioned functions is positive
in WS. That is, Wi1,Wi3 > 0 for all xi1 ∈ (r1, η1 − r1), Wi2,Wi4 > 0 for all yi1 ∈ (r1, η2 −
r1), Wi5,Wi7 > 0 for all xi3 ∈ (r3, η1 − r3), and Wi6,Wi8 > 0 for all yi3 ∈ (r3, η2 − r3), for
i = 1, 2, . . . , n, recalling that the forms of (xi1, yi1) and (xi3, yi3) are given in (2.2). Again
these obstacle avoidance functions are appropriately coupled with tuning parameters to
develop the required repulsive potential field functions.

3.2.2 Stationary Obstacles

Let us fix q stationary obstacles within the boundaries of the workspace. We assume that
the lth stationary obstacle is circular with center given as (ol1, ol2) and radius radl, and
defined as

Ol := {(z1, z2) ∈ R
2 : (z1 − ol1)

2 + (z2 − ol2)
2 ≤ rad2l },

for l = 1, 2, . . . , q. For its avoidance we will need to construct separate avoidance functions
for each m body of Ai. Thus we consider

FOiml(x) =
1

2

[

(xim − ol1)
2 + (yim − ol2)

2 − (rm + radl)
2
]

, (3.5)

for m = 1, 2, 3, l = 1, 2, . . . , q and i = 1, 2, . . . , n. The functions FOi1l(x), FOi2l(x) and
FO3li(x) are the measures of the distance between the lth stationary obstacle and the
platform, Link 1, and Link 2, respectively.

3.2.3 Antitargets: Targets as Obstacles

In the interest of autonomy, it necessitates that we treat the target of a 2MM as a fixed
obstacle for the remaining 2MMs traversing the workspace. Therefore for the mth body
of Ai to avoid the target of Aj , we utilize the obstacle avoidance function

TOimj(x) =
1

2

[

(xim − pj1)
2 + (yim − pj2)

2 − (rm + rtj)
2
]

, (3.6)

for m = 1, 2, 3 and i, j = 1, . . . , n, j 6= i. we note that function TOimj(x) is positive over

the domain
{

x ∈ R
9×n : (xim − pj1)

2 + (yim − pj2)
2 > (rm + rtj)

2
}

.

3.2.4 Moving Obstacles

Each solid body of an articulated 2MM has to be treated as a moving obstacle for all
the other 2MMs in the workspace. Therefore, for each mth body of Ai to avoid the uth
moving body of Aj , we shall use the avoidance function

MOimju(x) =
1

2

[

(xim − xju)
2 + (yim − yju)

2 − (rm + ru)
2
]

, (3.7)

for m,u = 1, 2, 3 and i, j = 1, . . . , n, j 6= i. We further note that MOimju(x) is positive

over the domain
{

x ∈ R
9×n : (xim − xju)

2 + (yim − yju)
2 > (rm + ru)

2
}

.
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3.3 Dynamic Constraints

Mechanical singularities and bounds on velocities are treated as dynamic constraints. In
practice, bending angles of the links are limited due to the mechanical singularities, while
the velocities of the links and the wheeled platform are restricted due to safety reasons.
In accordance with the Lyapunov-based control scheme, each dynamic constraint will
be treated as an artificial obstacle and appropriate obstacle avoidance function will be
designed for its avoidance.

3.3.1 Mechanical Singularities

(i) Singular configurations arise when θi3 = 0, θi3 = π or θi3 = −π. Subsequently, the
condition placed on θi3 is 0 < |θi3| < π for θi3 ∈ (−π, 0) ∪ (0, π), which implies that
Link 2 can neither be fully stretched nor be folded back [24];

(ii) The angle between Link 1 and the platform is bounded by −π/2 < θi2 < π/2. Simply
worded, Link 1 of the ith 2MM can only freely rotate within

(

−π
2 ,

π
2

)

.

Based on these constraints, the following artificial obstacles can be constructed:

AOi1 = {θi3 ∈ R : θi3 = 0, θi3 = π or θi3 = −π};

AOi2 = {θi2 ∈ R : θi2 ≤ −
π

2
or θi2 ≥

π

2
} .

For avoidance, the following obstacle avoidance functions will be included:

Si1(x) = |θi3|; Si2(x) = π − |θi3|; Si3(x) =
1

2

(π

2
− θi2

)(π

2
+ θi2

)

. (3.8a-c)

These positive functions would guarantee a strict observation of the mechanical singular-
ities when encoded appropriately into specific repulsive potential field functions, which in
turn, would be summed to the Lyapunov function.

3.3.2 Modulus Bound on Velocities

From a practical viewpoint, the translational and rotational velocities of the 2MMs are
limited, so we include constraints:

(i) |vi| < vmax, where vmax is the maximal achievable speed ;

(ii) |ωi1| <
vmax
|ρmin|

, where ρmin = ℓ0
tan(φmax)

. This condition arises due to the boundness of

the steering angle, φi. That is |φi| ≤ φmax, where φmax is maximal steering angle;

(iii) |ωi2| < ω2max and |ωi3| < ω3max, where ω2max and ω3max are the maximal rotational
velocities of Link 1 and Link 2, respectively.

To ensure that Ai operates within these constraints the following artificial obstacles can
be constructed:

AOi3 = {υi ∈ R : υi ≤ −υmax or υi ≥ υmax},

AOi4 = {ωi ∈ R : ωi ≤ −υmax/|ρmin| or ωi ≥ υmax/|ρmin|}.
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The following obstacle avoidance functions will be designed for Ai for the avoidance of
these artificial obstacles:

Ui1(x) =
1

2

(

v2max − v2i
)

, Ui2(x) =
1

2

(

v2max

ρ2min

− ω2
i1

)

, (3.9a-b)

Ui3(x) =
1

2

(

ω2
2max − ω2

i2

)

, Ui4(x) =
1

2

(

ω2
3max − ω2

i3

)

, (3.9c-d)

for i = 1, 2, . . . , n. These positive functions would guarantee the adherence to limitations
placed upon the steering angle and the velocities when encoded appropriately into the
repulsive potential field functions, which in turn, would be summed to the Lyapunov
function.

3.4 Auxiliary Function

To guarantee the convergence of a 2MM to its target and to ensure that the nonlinear con-
trollers vanish at this target, we design a new auxiliary function that would be multiplied
to each of the repulsive potential field function mentioned above. This is in line with the
work in [16, 24]. A reliable choice of the auxiliary function can be :

Fi(x) =
1

2



(xi − pi1)
2 + (yi − pi2)

2 +
3
∑

j=1

ρij(θij − pij+2)
2



 . (3.10)

3.5 Lyapunov-based Control Scheme

Utilizing the Lyapunov-based control scheme we design the nonlinear control laws for our
kinodynamic system (2.1). In parallel, the control scheme utilizes Lyapunov’s Second
Method to provide a mathematical proof of stability of (2.1). Lyapunov’s Second Method,
established in 1892, provides one of the most powerful means of analyzing nonlinear sys-
tems because of the qualitative information it is able to provide on the system.

We begin the process of stability analysis with the following theorem:

Theorem 3.1 Consider multiple 2-link mobile manipulators, the motions of which are
governed by ODEs described by system (2.1). The objective is to, amongst considering
other integrated subtasks, control the motions of these multi-robots within a constrained en-
vironment and attain prescribed final postures. The subtasks include; observing workspace
restrictions, generating practical parking maneuvers, obtaining final orientations, conver-
gence to predefined targets, and consideration of kinodynamic constraints. The Lyapunov-
based control scheme generates the following continuous time-invariant control laws for Ai

IJAMC
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as well as guarantees stability of system (2.1) per se:

ui1 =− [δi1vi + (fi1 + fi3 + fi5 + fi7) cos θi1

+ (fi2 + fi4 + fi6 + fi8) sin θi1] /hi1,

ui2 =−

[

δi2ωi1 −

(

fi1 +
1

2
fi3 + fi5 + fi7

)

ℓ0 sin θi1

+

(

fi2 +
1

2
fi4 + fi6 + fi8

)

ℓ0 cos θi1

−

(

fi1 +
1

2
fi5 + fi7

)

ℓ1 sin θiQ +

(

fi2 +
1

2
fi6 + fi8

)

ℓ1 cos θiQ

−

(

fi1 +
1

2
fi7

)

ℓ2 sin θiT +

(

fi2 +
1

2
fi8

)

ℓ2 cos θiT + gi1

]

/hi2,

ui3 =−

[

δi3ωi2 −

(

fi1 +
1

2
fi5 + fi7

)

ℓ1 sin θiQ

+

(

fi2 +
1

2
fi6 + fi8

)

ℓ1 cos θiQ −

(

fi1 +
1

2
fi7

)

ℓ2 sin θiT

+

(

fi2 +
1

2
fi8

)

ℓ2 cos θiT + gi2

]

/hi3,

ui4 =−

[

δi4ωi3 −

(

fi1 +
1

2
fi7

)

ℓ2 sin θiT

+

(

fi2 +
1

2
fi8

)

ℓ2 cos θiT + gi3

]

/hi4,


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










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
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


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
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








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


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


































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

































(3.11)

where θiQ = θi1 + θi2, θiT = θi1 + θi2 + θi3, ωiQ = ωi1 + ωi2, ωiT = ωi1 + ωi2 + ωi3 and
δiv > 0 for v = 1, . . . , 4 and i = 1, . . . , n are the convergence parameters.

Proof: Combining the new auxiliary function, the potential field functions created from
the attractive and obstacle avoidance functions from the previous sections, and introducing
tuning parameters (or control parameters), αis > 0, ξip > 0, γiml > 0, ϕimk > 0, βir > 0,
ζimj > 0 and ψimju > 0, for {i, j,m, s, p, l, k, u, r} ∈ N, we define a Lyapunov function
candidate L : Rn → R for system (2.1) as

L(x) =
n
∑

i=1

{

Vi(x) + Fi(x)

[

8
∑

s=1

αis

Wis(x)
+

3
∑

m=1

(

q
∑

l=1

γiml

FOiml(x)

+
2n
∑

k=1

ϕimk

LSimk(x)
+

n
∑

j=1
j 6=i

[

ζimj

TOimj(x)
+

3
∑

u=1

ψimju

MOimju(x)

]







+
3
∑

p=1

ξip
Sip(x)

+
4
∑

r=1

βir
Uir(x)











. (3.12)

Assumption: A fixed point x∗
i = (pi1, pi2, pi3, pi4, pi5, 0, 0, 0, 0) ∈ R

9 is an equilibrium
point for the end effector of Ai, then we have xe = (x∗

1,x
∗
2, . . . ,x

∗
n) ∈ D(L) as, at least,

an equilibrium state for the kinodynamic system (2.1).
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Remark: If we let dL
dt = f(x) then f(xe) ≡ 0 making xe a feasible equilibrium point,

at least, in a small neighborhood of the target configuration.

In addition, one can easily verify the following:

1. L is continuous and positive on the domain D given as

D(L) = {x ∈ R
9×n :Wis(x) > 0, s = 1, . . . , 8; Sip(x) > 0, p = 1, . . . , 3;

(FOiml(x) > 0, l = 1, . . . , q; LSimk(x) > 0, k = 1, . . . , 2n,m = 1, 2, 3),

Uir(x) > 0, r = 1, . . . , 4; (TOimj(x) > 0,

MOimju(x) > 0,m, u = 1, 2, 3, j 6= i, j = 1, . . . , n), for i = 1, . . . , n}.

2. L(xe) = 0, xe ∈ D .

3. L(x) > 0 ∀ x ∈ D,x 6= xe .

Now let us consider the time derivative of the Lyapunov function candidate along a par-
ticular trajectory of system (2.1):

L̇(x) =

n
∑

i=1

{[(fi1 + fi3 + fi5 + fi7) cos θi1 + (fi2 + fi4 + fi6 + fi8) sin θi1 + hi1ui1] vi

+

[

−

(

fi1 +
1

2
fi3 + fi5 + fi7

)

ℓ0 sin θi1 +

(

fi2 +
1

2
fi4 + fi6 + fi8

)

ℓ0 cos θi1

−

(

fi1 +
1

2
fi5 + fi7

)

ℓ1 sin θiQ +

(

fi2 +
1

2
fi6 + fi8

)

ℓ1 cos θiQ

−

(

fi1 +
1

2
fi7

)

ℓ2 sin θiT +

(

fi2 +
1

2
fi8

)

ℓ2 cos θiT + gi1 + hi2ui2

]

ωi1

+

[

−

(

fi1 +
1

2
fi5 + fi7

)

ℓ1 sin θiQ +

(

fi2 +
1

2
fi6 + fi8

)

ℓ1 cos θiQ

−

(

fi1 +
1

2
fi7

)

ℓ2 sin θiT +

(

fi2 +
1

2
fi8

)

ℓ2 cos θiT + gi2 + hi3ui3

]

ωi2

+

[

−

(

fi1 +
1

2
fi7

)

ℓ2 sin θiT +

(

fi2 +
1

2
fi8

)

ℓ2 cos θiT + gi3 + hi4ui4

]

ωi3

}

,

where the functions fi1 to fi8, gi1 to gi3, and hi1 to hi4, for i = 1, 2, . . . , n and v = 1, . . . , 4,
are defined as (on suppressing x):

fi1 =











1 +
8
∑

s=1

αis

Wis
+

3
∑

m=1







q
∑

l=1

γiml

FOiml
+

2n
∑

k=1

ϕimk

LSimk
+

n
∑

j=1
j 6=i

(

ζimj

TOimj
+

3
∑

u=1

ψimju

MOimju

)







+

3
∑

p=1

ξip
Sip

+

4
∑

r=1

βir
Uir







(xi − pi1),
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fi2 =











1 +

8
∑

s=1

αis

Wis
+

3
∑

m=1







q
∑

l=1

γiml

FOiml
+

2n
∑

k=1

ϕimk

LSimk
+

n
∑

j=1
j 6=i

(

ζimj

TOimj
+

3
∑

u=1

ψimju

MOimju

)







+
3
∑

p=1

ξip
Sip

+
4
∑

r=1

βir
Uir







(yi − pi2),

fi3 = −Fi

{

αi1

W 2
i1

−
αi3

W 2
i3

+

q
∑

l=1

γi1l
FO2

i1l

(xi1 − ol1)

+
2
∑

k=1

ψi1k

LS2
i1k

[(1− (ak2 − ak1)qk1) (xi1 − ci1k)− (bk2 − bk1)qk1 (yi1 − di1k)]

}

−
n
∑

j=1
j 6=i

[

ζi1j
TO2

i1j

Fi (xi1 − pj1) +
3
∑

u=1

(

ψi1ju

MO2
i1ju

Fi +
ψjui1

MO2
jui1

Fj

)

(xi1 − xju)

]

,

fi4 = −Fi

{

αi2

W 2
i2

−
αi4

W 2
i4

+

q
∑

l=1

γi1l
FO2

i1l

(yi1 − ol2)

+
2n
∑

k=1

ψi1k

LS2
i1k

[(1− (bk2 − bk1)qk2) (yi1 − di1k)− (ak2 − ak1)qk2 (xi1 − ci1k)]

}

−
n
∑

j=1
j 6=i

[

ζi1j
TO2

i1j

Fi (yi1 − pj2) +
3
∑

u=1

(

ψi1ju

MO2
i1ju

Fi +
ψjui1

MO2
jui1

Fj

)

(yi1 − yju)

]

,

fi5 = −Fi

{

q
∑

l=1

γi2l
FO2

i2l

(xi2 − ol1)

+
2n
∑

k=1

ψi2k

LS2
i2k

[(1− (ak2 − ak1)qk1) (xi2 − ci2k)− (bk2 − bk1)qk1 (yi2 − di2k)]

}

−
n
∑

j=1
j 6=i

[

ζi2j
TO2

i2j

Fi (xi2 − pj1) +
3
∑

u=1

(

ψi2ju

MO2
i2ju

Fi +
ψjui2

MO2
jui2

Fj

)

(xi2 − xju)

]

,

fi6 = −Fi

{

q
∑

l=1

γi2l
FO2

i2l

(yi2 − ol2)

+
2n
∑

k=1

ψi2k

LS2
i2k

[(1− (bk2 − bk1)qk2) (yi2 − di2k)− (ak2 − ak1)qk2 (xi2 − ci2k)]

}

−
n
∑

j=1
j 6=i

[

ζi2j
TO2

i2j

Fi (yi2 − pj2) +
3
∑

u=1

(

ψi2ju

MO2
i2ju

Fi +
ψjui2

MO2
jui2

Fj

)

(yi2 − yju)

]

,
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fi7 = −Fi

{

αi5

W 2
i5

−
αi7

W 2
i7

+

q
∑

l=1

γi3l
FO2

i3l

(xi3 − ol1)

+
2n
∑

k=1

ψi3k

LS2
i3k

[(1− (ak2 − ak1)qk1) (xi3 − ci3k)− (bk2 − bk1)qk1 (yi3 − di3k)]

}

−
n
∑

j=1
j 6=i

[

ζi3j
TO2

i3j

Fi (xi3 − pj1) +
3
∑

u=1

(

ψi3ju

MO2
i3ju

Fi +
ψjui3

MO2
jui3

Fj

)

(xi3 − xju)

]

,

fi8 = −Fi

{

αi6

W 2
i6

−
αi8

W 2
i8

+

q
∑

l=1

γi3l
FO2

i3l

(yi3 − ol2)

+
2n
∑

k=1

ψi3k

LS2
i3k

[(1− (bk2 − bk1)qk2) (yi3 − di3k)− (ak2 − ak1)qk2 (xi3 − ci3k)]

}

−

n
∑

j=1
j 6=i

[

ζi3j
TO2

i3j

Fi (yi3 − pj2) +

3
∑

u=1

(

ψi3ju

MO2
i3ju

Fi +
ψjui3

MO2
jui3

Fj

)

(yi3 − yju)

]

,

gi1 =











8
∑

s=1

αis

Wis
+

3
∑

m=1







q
∑

l=1

γiml

FOiml
+

2n
∑

k=1

ϕimk

LSimk
+

n
∑

j=1
j 6=i

(

ζimj

TOimj
+

3
∑

u=1

ψimju

MOimju

)







+
3
∑

p=1

ξip
Sip

+
4
∑

r=1

βir
Uir







ρi1(θi1 − pi3) ,

gi2 =











8
∑

s=1

αis

Wis
+

3
∑

m=1







q
∑

l=1

γiml

FOiml
+

2n
∑

k=1

ϕimk

LSimk
+

n
∑

j=1
j 6=i

(

ζimj

TOimj
+

3
∑

u=1

ψimju

MOimju

)







+

3
∑

p=1

ξip
Sip

+

4
∑

r=1

βir
Uir







ρi2(θi2 − pi4) + Fi
ξi3
S2
i3

θi2,

gi3 =











8
∑

s=1

αis

Wis
+

3
∑

m=1







q
∑

l=1

γiml

FOiml
+

2n
∑

k=1

ϕimk

LSimk
+

n
∑

j=1
j 6=i

(

ζimj

TOimj
+

3
∑

u=1

ψimju

MOimju

)







+

3
∑

p=1

ξip
Sip

+

4
∑

r=1

βir
Uir







ρi3(θi3 − pi5)− Fi

(

ξi1
S2
i1

−
ξi2
S2
i2

)

|θi3|

θi3
,

hiv = 1 +
βiv
U2
iv

Fi.

Substituting the controllers given in (3.11) and the governing ODEs for system (2.1) we
obtain a semi-negative definite function

L̇(x) = −
n
∑

i=1

(

δi1v
2
i + δi2ω

2
i1 + δi3ω

2
i2 + δi4ω

2
i3

)

≤ 0 .
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We have thus provided a working proof of the fact that d
dt [L(x)] ≤ 0 ∀ x ∈ D. Finally,

the first partials of L(x) is C1 which makes up the fifth and final prerequisite required of
a Lyapunov function.

When L(x) successfully meets the five prerequisites discussed above, it is classified as a
Lyapunov function for system (2.1) and xe is at least a stable equilibrium point in the sense
of Lyapunov. In our case, this practical limitation is well within the Lyapunov framework
and there is no contradiction with Brockett’s result because we have proven only stability,
and not asymptotic stability. Stability means that any solution of (2.1) starting close to
xe remains near it at all times.

3.6 Scenario 1

The first scenario captures a possible traffic situation to illustrate the effectiveness of the
control laws proposed in the paper. We have fabricated a situation wherein two 2MMs
have to maneuver from an initial to a final state and park correctly inside the prescribed
diagonal-structured parking bay, whilst avoiding obstacles in their path. The correspond-
ing states, workspace and parking bay restrictions, singularities and other essentials of the
simulation are tabulated below (see Tables 1 and 2).

Table 1: Initial and Final States

2MM 1 2MM 2

Rect. Position : (xi1, yi1) (5, 3) m (5, 25) m

Angular Position : (θi1, θi2, θi3) (0, π/3,−2π/3) rad (0, π/3,−2π/3) rad

Translational Velocity : (vi) 5 m/s 5 m/s

Rotational Vel. : (ωi1, ωi2, ωi3) (0.3, 0.05, 0.05) rad/s (0.3, 0.05, 0.05) rad/s

Final Position: (pi1, pi2) ((26.4, 26.4) m (26.3, 2) m

Final Orientation : (pi3, pi4, pi5) (π/4, π/4,−π/2) rad (−π/3, π/4,−π/2) rad

Table 2: Values of Constraints and Parameters

Constraints and Parameters

Clearance Parameters ǫ1 = 0.2 m, ǫ2 = 0.1 m, ǫ3 = 0.3 m
Robot Dimensions ℓ0 = 2 m, b0 = 1 m, ℓ1 = ℓ2 = 1.2 m
Obstacle Center, Radius (o11, o12) = (12 m, 15 m), rad1 = 2 m
Max. Steering Angle φmax = 7π/18 rad
Max. Velocities vmax = 10 m/s, ω2max = ω3max = 1 rad/s
Top, Right Boundaries η1 = η2 = 28 m
Control Parameters α1s = 0.01, s = 1, . . . , 8, γm1i = 0.5, m = 1, 2, 3;

ζm1i = 0.1, ζm2i = 1, ξip = 0.5, p = 1, 2, 3;
βir = 0.1, r = 1, . . . , 4;
ψimj = 1, ϕimju = 0.5, m,u = 1, 2, 3, i, j = 1, 2, j 6= i

Angle-gain parameter ρij = 1, i = 1, 2 j = 1, 2, 3
Convergence Parameters δi1 = δi2 = δi3 = δi4 = 15
Parking Bays can be obtained from Fig. 2
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Figure 2 shows feasible trajectories from initial to the final states. In the final phase,
the wheeled platforms and the links of each 2MM achieved the prescribed final orienta-
tions.

Figure 2: The resulting trajectories
of the 2MMs in a traffic scenario.

Figure 3: Lyapunov function L(x)
and its derivative L̇(x).

Figure 3 shows the evolution of the Lyapunov function and its time derivative along the
system trajectory. One can clearly see the decreasing nature of the scalar function. To
further illustrate the convergent property of the control laws, we have generated the graphs
of the acceleration components of 2MM 1 (shown in Figures 4, and 5).

Figure 4: The translational u11
(solid line) and rotational u12 accel-
erations of the platform.

Figure 5: The rotational accelerations
u13 of Link 1 (solid line) and u14 of
Link 2.

IJAMC
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3.7 Scenario 2

In this scenario, we have considered four 2MMs in a variant traffic ”roundabout” situation
each travelling around a circular island and peeling off at the relevant street in order to
reach the prescribed final posture inside of the designated parking bay. The 2MMs will
have to avoid all fixed and moving obstacles intercepting their paths. Tables 3 and 4 show
the essentials for the simulation. However, we have omitted those details (including the
units) that have not changed from scenario 1.

Table 3: Initial and Final States

2MM 1 2MM 2 2MM 3 2MM 4

Rectangular (5, 14) (14, 23) (23, 14) (14, 5)
Position (xi, yi)

Angular Positions (0, π3 ,−
2π
3 ) (−π

2 ,
π
3 ,−

2π
3 ) (π, π3 ,−

2π
3 ) (π2 ,

π
3 ,−

2π
3 )

(θi1, θi2, θi3)

Translational Vel. v1 = 3 v2 = 3 v3 = 3 v4 = 3

Rotational Vel. (0.3, 0.05, 0.05) (0.3, 0.05, 0.05) (0.3, 0.05, 0.05) (0.3, 0.05, 0.05)
(ωi1, ωi2, ωi3)

Final Position (27, 14) (14, 1) (1, 14) (14, 27)
(pi1, pi2)

Final Orientations (0, π4 ,−
π
2 ) (−π

2 ,
π
4 ,−

π
2 ) (π, π4 ,−

π
2 ) (π2 ,

π
4 ,−

π
2 )

(pi3, pi4, pi5)

Table 4: Values of Constraints and Parameters

Constraints and Parameters

Obstacle Center, Radius (o11, o12) = (14 m, 14 m), rad1 = 2 m
Control Parameters α1s = 0.01, s = 1, . . . , 8, γm1i = 0.5, m = 1, 2, 3;

ζm1i = 0.2, ζm2i = 1.2, ξip = 0.5, p = 1, 2, 3;
βir = 0.1, r = 1, . . . , 4;
ψimj = 1, ϕimju = 0.5, m,u = 1, 2, 3,i, j = 1, . . . , 4, j 6= i

Convergence Parameters δi1 = δi2 = δi3 = δi4 = 15
Parking Bays can be obtained from Fig. 6

Figure 6 shows the paths taken by the four 2MMs. Evolution of the Lyapunov function and
its time derivative along the system trajectory follow a trend similar to that of scenario 1.

The efficiency of the control laws were put to test with various other initial configu-
rations. Convergence was observed for all cases, provided the initial configurations did
not intersect with the avoidance regions of the obstacles. Otherwise, in each case, there
was a clear convergence to the target with θi1, θi2 and θi3 in a small neighborhood of
the prescribed final orientation (see figure 7). Nonetheless, one must admit that better
trajectories are achievable via fine tunings of the control and convergence parameters. To
illustrate the convergent property of the control laws, we again generate the graphs of the
acceleration components of 2MM 1 (see Figures 8 to 9). The corresponding graphs for the
other 2MMs show similar convergent properties.
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Figure 6: Trajectories of four 2MMs
in a constrained environment.
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Figure 7: Orientations of platform
(bold line), Link 1 and Link 2 (solid
line).

4 Conclusion

The authors have presented a set of continuous time-invariant acceleration control laws
that successfully tackle the multi-tasking problem of multiple 2-link mobile manipulators
posed in this paper. Synthesis of these controllers, for the kinodynamic system, was via
the recently developed Lyapunov-based control scheme. The generalized controllers ex-
tracted from the control scheme enabled us to obtain collision-free trajectories from initial
to desired states within a constrained environment under heavy traffic, whilst satisfying
the intimately coupled holonomic and nonholonomic constraints associated with the sys-
tem. The Lyapunov-based control scheme utilized MDT which further helped guarantee
desired parking maneuverabilities and establish feasible prescribed posture of each solid
body of the articulated robot in the designated parking bay, a feat accomplished for the
first time via continuous controllers. The inclusion of limitations on the translational and
rotational velocities of the wheeled platform helped the system mimic the real life mobile
manipulators better.

The effectiveness of the proposed control algorithm was demonstrated via a couple of
interesting traffic simulations. Although convergence to the prescribed final posture is
possible for many initial configurations, further work will be needed to quantify global
stability and the region of attraction of the target.

Future work also includes modifying the proposed control algorithm for motion planning
in partially known or fully unknown environments, which can include dynamic objects
other than the mobile manipulators themselves.
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Figure 8: The translational u11
(solid line) and rotational u12 accel-
erations of the platform.

Figure 9: The rotational accelerations
u13 of Link 1 (solid line) and u14 of
Link 2.
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