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Abstract:
In this paper, Sinc-collocation method is developed to approximate of the second

order linear Volterra integro-differential equations with boundary conditions. Prop-
erties of the Sinc-collocation method required for our subsequent development are
given and utilized to reduce the computation of linear second order boundary value
problems to some algebraic equations. The method is computationally attractive, and
applications are demonstrated through illustrative examples.
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1 Introduction

We consider the second order linear Volterra integro-differential equations of the form:

y′′(x) + p(x)y′(x) + q(x)y(x) = f(x) + λ

∫ x

a
K(x, t)y(t)dt, x ∈ [a, b], (1.1)

with boundary conditions

y(a) = ya, y(b) = yb, (1.2)

where K(x, t), f(x), y(x), and p(x), q(x), are analytic funvtions and λ is a parameter
and ya and yb are real constants. y(x) is the solution to be determined. Numerical
methods for solution of linear Volterra integro-differential equations have been studied by
the authors[1 − 5]. There have been considerable interest in solving integro-differential
(1). Theorems which list the conditions for the existence and uniqueness of solutions
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of such problems are contained in a book by Agarwal [1]. Two point boundary value
problem for integro-differential equation of second order is discussed by J. Morchalo in [2].
Also, J. Morchalo [3] studied two point boundary value problem for integro-differential
equation of higher order. A reliable algorithm for solving boundary value problems for
higher-order integro-differential equation has been proposed by A. M-Wazwaz [4]. The
aim of mentioned paper is to present an efficient analytical and numerical procedure for
solving boundary value problems for integro-differential equations. E. Babolian et al [5],
applied operational matrices of piecewise constant orthogonal functions for solving Volterra
integral and integro-differential equations. They first obtained Laplace transform of the
problem and then found numerical inversion of Laplace transform by operational matrices.
Sinc methods have increasing been recognized as powerful tools for attacking problems in
applied physics and engineering. The books [6, 7] provide excellent overviews of methods
based on Sinc functions for solving ordinary and partial differential equations and integro-
differential equations. In [8, 9], the Sinc collocation procedures for the eigenvalue problems
are presented. M. Ng in [10], employed the preconditioned conjugate gradient method
with boundary value problem using Sinc-Galerkin method. A block matrix formulation
is presented for the Sinc-Galerkin technique applied to the Wind-driven current problem
form oceanography [11]. In [12, 13], we used Sinc methods for numerical solutions of
integral equations. Approximation by Sinc functions are typified by errors of the form
O(exp(−k/h)), where k > 0 is a constant and h is a step size.
In this paper, a collocation procedure for the solution of the equation 1.1 with boundary
conditions 1.2 using the Sinc functions is developed. Our method consists of reducing the
solving of 1.1 to a set of algebraic equations. The properties of the Sinc functions are then
utilized to evaluate the unknown coefficients.
The article is organized as follows. In section 2, we will give some preliminary definitions
and theorems in [6, 7] that are employed to derive the formulations in section 3. Finally
numerical examples are given in section 4 presents a method to treat nonhomogeneous
boundary conditions. Finaly numerical examples are given in section 5 to illustrate the
efficiency of the presented method.

2 A survey of some properties of the Sinc function

The sinc function is defined on the whole real line by

Sinc(z) =

{

sin(πz)
πz , x 6= 0,

1, x = 0.
(2.1)

For any h > 0, the translated Sinc functions with evenly space nodes are given as follows:

S(j, h)(x) = Sinc(
x− jh

h
), j = 0,±1,±2, · · · , (2.2)

which are called jth Sinc function. The Sinc function form for the interpolating point
xk = kh is given by

S(j, h)(kh) = δ
(0)
jk =

{

1, k = j,
0, k 6= j.

(2.3)
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Let

σkj =

∫ k−j

0

sin(πt)

πt
dt, (2.4)

δ
(−1)
kj =

1

2
+ σkj , (2.5)

then define a matrix whose (k, j)th entry is given by δ
(−1)
kj as I(−1) = [δ

(−1)
kj ]. If f is defined

on the real line, then for h > 0 the series

C(f, h)(x) =
∞
∑

j=−∞

f(hk)Sinc(
x− kh

h
), (2.6)

is called the Whittaker cardinal expansion of f , whenever this series converges. But in
practical, we need to use some specific numbers of terms in the above series such as
j = −N, ..., N , where N is the number of Sinc grid points. They are based in the infinite
strip Dd in the complex plane

Dd = {w = u+ iv : |v| < d ≤ π

2
}. (2.7)

To construct approximation on the interval Γ = [a, b], we consider the conformal map

φ(z) = ln

(

z − a

b− z

)

. (2.8)

The map φ carries the eye-shaped region

D =

{

z = x+ iy : |arg(z − a

b− z
)| < d ≤ π

2

}

. (2.9)

For the Sinc method, the basis functions on the interval Γ = [a, b] for z ∈ D are derived
from the composite translated sinc functions,

Sj(z) = S(j, h) ◦ φ(z) = Sinc

(

φ(z)− jh

h

)

. (2.10)

The function

z = φ−1(w) =
a+ bew

1 + ew
, (2.11)

is an inverse mapping of w = φ(z). We define the range of φ−1 on the real line as

Γ = {ψ(y) = φ−1(y) ∈ D : −∞ < y <∞} = [a, b]. (2.12)

The Sinc grid points zk ∈ Γ in D will be denoted by xk because they are real. For the
evenly spaced nodes {kh}∞k=−∞ on the real line, the image which corresponds to these
nodes is denoted by

xk = φ−1(kh) =
a+ bekh

1 + ekh
, k = ±1,±2, . . . . (2.13)

For further explanation of the procedure, the important class of functions is denoted by
Lα(D). The properties of functions in Lα(D) and detailed discussions are given in [6, 7].
We recall the following definition and theorems for our purpose.



4

Definition 2.1 Let Lα(D) be the set of all analytic functions y in D, for which there

exists a constant C such that

|y(z)| ≤ C
|ρ(z)|α

[1 + |ρ(z)|]2α , z ∈ D, 0 < α ≤ 1, (2.14)

where ρ(z) = eφ(z).

Theorem 2.1 Let y ∈ Lα(D), let N be positive integer, and let h be selected by the formula

h =
(

πd
αN

)
1
2
, then there exists positive constant, C1, independent of N, such that

sup
x∈ Γ

∣

∣

∣

∣

∣

∣

y(x)−
N
∑

j=−N

y(xj)S(j, h) ◦ φ(x)

∣

∣

∣

∣

∣

∣

≤ C1e
−(πdαN)

1
2 . (2.15)

Theorem 2.2 Let y
φ′ ∈ Lα(D), with 0 < α ≤ 1, and let δ

(−1)
kj be defined as in 2.5, let N

be a positive integer, and let h be selected by the formula

h =
( πd

αN

)
1
2
, (2.16)

then there exists constant C2, which is independent of N , such that

∣

∣

∣

∣

∣

∫ xk

a
y(t)dt− h

N
∑

k=−N

δ−1
kj

y(tk)

φ′(tk)

∣

∣

∣

∣

∣

≤ C2e
−(πdαN)

1
2 . (2.17)

The nth derivative y(x) at some points xk can be approximated using finite number of
terms as

y(n)(xk) ≈ h−n
N
∑

j=−N

δ
(n)
jk yk, (2.18)

where

δ
(n)
jk = hn

dn

dφn
S(j, h) ◦ φ(x)|x=xk

. (2.19)

In particular

δ
(0)
jk = S(j, h) ◦ φ(x)|x=xk

=

{

1, k = j,
0, k 6= j,

(2.20)

δ
(1)
jk = h

d

dφ
S(j, h) ◦ φ(x)|x=xk

=

{

0, k = j,
(−1)(k−j)

(k−j) , k 6= j,
(2.21)

δ
(2)
jk = h2S(k, h) ◦ φ(x)|x=xk

=

{

−π2

3 , k = j,
−2(−1)(k−j)

(k−j)2
, k 6= j.

(2.22)
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3 The Sinc-collocation method

By considering theorem 2 the solution of second order Volterra integro-differential
equations

y′′(x) + p(x)y′(x) + q(x)y(x) = f(x) + λ

∫ x

a
K(x, t)y(t)dt, x ∈ [a, b], (3.1)

is approximated by the following linear combination of the sinc functions:

y(x) ≈ yn(x) =
N
∑

j=−N

yjS(j, h) ◦ φ(x), n = 2N + 1. (3.2)

For the second term on the right-hand side of 3.1, we assume that K(x,.)
φ′ ∈ Lα(D), then

by setting x = xk and using theorem 2, we obtain:

∫ xk

a
K(x, t)y(t)dt ≈ h

N
∑

j=−N

δ
(−1)
kj

K(xk, tj)

φ′(tj)
yj , (3.3)

where yj denotes an approximate value of y(xj).
Having replaced the second term on the right-hand side of 3.1 with the right hand side of
3.3 and having substituted x = xk for k = −N, ..., N , that xk are Sinc grid points, also by
replacing y(x) by yn(x) as in 3.2 we get the collocation result:

y′′n(xk) + p(xk)y
′
n(xk) + q(xk)yn(xk) = f(xk) + λ

N
∑

j=−N

δ
(−1)
kj

K(xk, tj)

φ′(tj)
yj . (3.4)

Where

yn(x) =
N
∑

j=−N

yj [S(j, h) ◦ φ(x)], (3.5)

y′n(x) =

N
∑

j=−N

yj [S(j, h) ◦ φ(x)]′, (3.6)

y′′n(x) =

N
∑

j=−N

yj [S(j, h) ◦ φ(x)]′′. (3.7)

Now, by using relations 2.18-refeq24, we have:

[S(j, h) ◦ φ(x)]′|x=xk
= φ′

d

dφ
[S(j, h) ◦ φ(x)]|x=xk

= φ′(xk)h
−1δ

(1)
jk , (3.8)

[S(j, h) ◦ φ(x)]′′|x=xk
= [φ′ d

dφ
[S(j, h) ◦ φ(x)]′|x=xk

= φ′′
d

dφ
[S(j, h) ◦ φ]

+φ′ d
2

dφ2
[S(j, h) ◦ φ]|x=xk

= φ′′(xk)h−1δ
(1)
jk + [φ′(xk)]2h−2δ

(2)
jk . (3.9)
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By using the properties of the Sinc function and replacing 3.5-3.9 in the equation 3.4, we
rewrite 3.4 as:

N
∑

j=−N

[φ′(xk)2
δ
(2)
jk

h2
+ [φ′′(xk) + p(xk)φ

′(xk)]
δ
(1)
jk

h
,+q(xk)δ

(0)
jk − λhδ

(−1)
kj

K(xk, tj)

φ′(tj)
]yj

= f(xk) (3.10)

Having multiplied the resulting equations by h2/[φ′(xk)]2, we have

N
∑

j=−N

[δ
(2)
jk + h(

φ′′xk
φ′(xk)

+
p(xk)

φ′(xk)
)δ

(1)
jk + h2

q(xk)

[φ′(xk)]2
δ
(0)
jk − λh3

K(xk, tj)

[φ′(xk)]2φ′(tj)
δ
(−1)
kj ]yj

= h2
f(xk)

[φ′(xk)]2
. (3.11)

Now, since δ
(0)
jk = δ

(0)
kj , δ

(1)
jk = −δ(1)kj , δ

(2)
jk = δ

(2)
kj , and since φ′′(xk)

[φ′(xk)]2
= −( 1

φ′(xk)
)′, we get the

collocation result as:

N
∑

j=−N

{δ(2)kj + h[(
1

φ′(xk)
)′ − p(xk)

φ′(xk)
]δ

(1)
kj + h2

q(xk)

[φ′(xk)]2
δ
(0)
kj − λh3

K(xk, tj)

[φ′(xk)]2φ′(tj)
δ
(−1)
kj }yj

= h2
f(xk)

[φ′(xk)]2
. (3.12)

We set I(m) = [δ
(m)
kj ], m = −1, 0, 1, 2, where δ

(m)
kj denote the (k, j) element of the matrix

I(m). Also, we denote K = [
K(xk,tj)

[φ′(xk)]2φ′(tj)
], and D(1/φ′) = diag(1/φ′(x−N ), . . . , 1/φ′(xN )).

K and I(m), m = −1, 0, 1, 2 are square matrices of order (2N + 1) × (2N + 1), then the
system of 3.12 can be given in the matrix form as:

AY = P, (3.13)

where

A = I(2) + hD[(
1

φ′
)′ − p

φ′ ]I
(1) + h2D(

q

φ′2
)I(0) − λh3(K ◦ I(−1)), (3.14)

P = h2[f(x−N )/[φ′(x−N )]2, . . . , f(xN )/[φ′(xN )]2]T , (3.15)

Y = [y−N , . . . , yN ]T . (3.16)

The notation ” ◦ ” denotes the Hadamard matrix multiplication. The above linear sys-
tem containing (2N + 1) equation with (2N + 1) unknown coefficient {yj}Nj=−N . Solving
this linear system, we can obtain the approximate solution of Volterra integro-differential
equation 1.1 as follows:

yn(x) =
N
∑

j=−N

yj [S(j, h) ◦ φ(x)]. (3.17)
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4 boundary conditions

In the previous section, we developed the Sin-collocation method for Volterra integro-
differential equation with homogeneous boundary conditions, but in case if boundary con-
ditions are non-homogeneous that is:

y(a) = ya, (b) = yb, (4.1)

where ya and yb are not equal to zero, that we use the change of variable as

u(x) = y(x)− (b− x)

(b− a)
ya −

(x− a)

(b− a)
yb. (4.2)

So that by using the above change of variable yields the Volterra integro-differential equa-
tion

u′′(x) + p(x)u′(x) + q(x)u(x) = R(x) + λ

∫ x

a
K(x, t)u(t)d, x ∈ Γ = [a, b],

u(a) = 0, u(b) = 0, (4.3)

R(x) = f(x)− (yb − ya)

(b− a)
p(x)− (yb − ya)x− ayb + bya

(b− a)
q(x)+

λ

∫ x

a
K(x, t)

(yb − ya)t+ yab− ayb
2(b− a)

dt. (4.4)

Then by using 3.13 in 4.3, we obtain the approximate solution as:

un(x) =
N
∑

j=−N

ujS(j, h) ◦ φ(x). (4.5)

5 Numerical examples

In order to illustrate the performance of the Sinc-collocation method for the Volterra
integro-differential equations and justify the accuracy and efficiency of the method, we
consider the following examples. The examples have been solved by presented method
with different values of N and α, 0 < α ≤ 1. In all examples we take α = 1 and d = π

2 ,

which yields h = π( 1
2N )

1
2 . The errors are reported on the set of Sinc grid points

S = {x−N , . . . , x0, . . . , xN},

xk =
ekh

1 + ekh
, k = −N, . . . , N. (5.1)

The maximum error on the Sinc grid points is

‖ES(h)‖∞ = max
−N≤j≤N

|y(xj)− yn(xj)| . (5.2)
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The numerical results are tabulated in Tables 1 and 2.

Example 5.1. We consider the Volterra integro-differential equation

y
′′ − 1

x
y
′

+ y = f(x) +

∫ x

0
K(x, t)y(t)dt, y(0) = 0, y(1) = 0, (5.3)

with exact solution y(x) = x(1− x2).
Where

K(x, t) =
etsint

xt
, f(x) = −x3 − x(2 + ex

1√
2
sin(x− π

4
))− 1

x
(xcosx− sinx).

The example has been solved for differential values of N and h = π( 1
2N )1/2. The max-

imum of absolute errors on the Sinc grid S are tabulated in Table 1. For example 5.1,
the graph of the exact and approximate solutions are shown in Figure 1, including the
approximations for N = 2 and N = 7. For large number of N the approximate is indis-
tinguishable from the exact solution.

Table 1: Results for example 5.1.

N h ‖Es‖
5 0.993458 5.92003 ×10−3

10 0.702481 9.65024×10−4

15 0.573573 2.23322×10−4

20 0.496729 6.30761×10−5

25 0.444288 2.04361×10−5

30 0.405577 7.32063×10−6

35 0.375492 2.83447×10−6

40 0.354240 1.166816×10−7

Example 5.2. Consider the following Volterra integro-differential equation with the exact
solution y(x) = ex.

y′′ − 1

1− x
y = f(x) +

∫ x

0
K(x, t)y(t)dt, y(0) = 1, y(1) = e, (5.4)

where

f(x) = ex(1− 1

(1− x)
)− 7(−2 + 2ex + x2)cosx

16(e+ x)
,

K(x, t) =
7

8

(et + t)

x+ e
cosx.

We solved example 5.2 for differential values of N and h = π( 1
2N )1/2. The maximum

of absolute errors on the Sinc grid S are tabulated in Table 2. This Table indicates that
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N= 7 •••
Exact ———

Figure 1: Exact and approximate solution for Example 5.1,(N = 2, 7)

as N increases the error is decreased more rapidly. The exact and approximate solutions
for example 5.2 are shown in Figure 2, including the approximations for N=2, and 7.
For N ≥ 7, the approximate solutions are indistinguishable(on this scale) from the exact
solution.

Table 2: Results for example 5.2.

N h ‖Es‖
5 0.993458 2.91837×10−3

10 0.702481 4.81675×10−4

15 0.573573 1.11592×10−4

20 0.496729 3.15332×10−5

25 0.444288 1.02171×10−5

30 0.405577 3.66018×10−6

35 0.375492 1.41721×10−6

40 0.354240 5.84069×10−7

6 Conclusion

The Sinc-collocation method is used to solve the second order linear Volterra integro-
differential equations with boundary conditions. The numerical examples show that the
accuracy improve with increasing the number of Sinc grid points N .
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