
c© Copyright, Darbose

International Journal of Applied Mathematics and Computation
Volume 1(4),pp 194–204, 2009
http://ijamc.psit.in

Self Similar Solution of Strong Cylindrical Shock Wave in

Magnetogasdynamics: Lagrangian Description

Mithilesh Singh, L. P. Singh and Akmal Husain

Department of Applied Mathematics, Institute of Technology, Banaras

Hindu University, Varanasi-221005 India

Email: msingh.rs.apm@itbhu.ac.in

Abstract:
In the present paper the self similar solution of strong cylindrical shock wave in magne-

togasdynamics using Langrangian mass co-ordinate has been studied. Analytic solutions of
governing equations in closed form are obtained. The strong cylindrical shock wave generated
by sudden line source explosion in an inhomogeneous medium of infinite electrical conduc-
tivity has been studied. The influence of specific heat ratio and magnetic field strength on
flow variables for various cases is assessed. The general behaviour of velocity distribution
remains unaffected. However, the density and pressure profiles are significantly affected in
presence of magnetic field interaction.
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1 Introduction

In the present paper we analyze the self similar motion of strong cylindrical shock waves in
magnetogasdynamics in Langrangian mass co-ordinate system. The well known Taylor-Sedov
method of similarity solutions, which is based on dimensional considerations, have been used by
many authors e.g., Sedov [1], Taylor [2], Roger [3], Sakurai [4] , Sharma et al. [5], to study the
problem of strong explosion in different medium. Chisnell [12] provided an analytical description
of converging shock waves by replacing the previous approach of numerical solutions of the
ordinary differential equations by a theoretical study of the singular points of the differential
equations. Different aspects of strong explosion theory were studied by many authors available
in an excellent review [16]. The analytical solution of the corresponding self similar equations
was also studied by Sedov [1] and Korobeinikov [6]. It is well known that one dimensional non
stationary flows of the explosion type may be conveniently analyzed numerically in Langrangian
variables in different medium. Misyuchenko et al. [13],Stepanov et.al. [14], [15], Zenkevich and
Stepanov [16] presented the solution of the problem of a strong explosion in a perfect gas in
Langrangian mass co-ordinates.

The present paper deals with the problem of strong cylindrical shock wave in presence of
axial magnetic field in an inhomogeneous medium. Self similar solutions have been obtained
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in Lagrangian mass co-ordinate system. A new term total pressure in the paper refers to the
sum of the gas dynamics pressure and magnetic pressure in the medium under consideration. A
closed form solution of the governing system is obtained in terms of flow variables such as mass
velocity, density, pressure, magnetic pressure and total pressure.

The effect of increasing values of specific heat ratio γ is to increase the values of flow variables.
The effect of Alfvén Mach number on the density and pressure profiles show unique behaviour.
For low Alfvén Mach number (<

√
60) the density and pressure profiles are reversed but for

higher Alfvén Mach number (≥
√
60) the profiles show similar behaviour as in non- magnetic

case.

2 Governing equations

The basic equations describing the unsteady, one dimensional motion in magnetogasdynamics,
where the applied magnetic field is orthogonal to the trajectories of the gas particle can be
written in following form [6]

ρt + (uρ)x + ρux−1 = 0 (2.1)

ut + uux + ρ−1(px + hx) = 0 (2.2)

(pρ−γ)t + u(pργ)x = 0, (2.3)

ht + uhx + 2h(ux + ux−1) = 0, (2.4)

where x is the cylindrical radial co-ordinate; t is the time; ρ(x, t) is the density; u(x, t) is the
velocity; p(x, t) is the pressure and h(x, t) is the magnetic pressure and γ is the specific heat
ratio. Subscripts denote partial differentiation unless stated otherwise.

The above basic equations are supplemented with an equation of state p = ρRT , where R is
the gas constant and T is the temperature.

In order to obtain the closed form solution in terms of flow variables behind the shock wave, the
pressure is taken in the form [18]

p = βp∗ and 0 < β < 1 (2.5)

where p∗ = p+ h, is the sum of gasdynamic pressure and magnetic pressure.

Combining (2.1)-(2.4) and using equation (2.5), the law of conservation of energy may be ex-
pressed as

∂

∂t

[

ρ

(

ε∗ +
u2

2

)]

+
1

x

∂

∂x

[

xρu

(

ε∗ +
p∗

ρ
+

u2

2

)]

= 0, (2.6)

where ε∗ is specific internal energy written as

ε∗ =
p∗

ρ(γ∗ − 1)
(2.7)

with

γ∗ = βγ + 2(1− β) (2.8)
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Also, the combination of the (2.3) and (2.4) and using (2.5) and (2.8) yields

∂

∂t
(p∗ρ−γ∗

) + u
∂

∂x
(p∗ρ−γ∗

) = 0 (2.9)

expressing the constancy of the entropy of a gas particle which holds true behind the shock
front.
Introducing the non-dimensional variable η defined as

η =
x

xf
where xf = α

(

E

ρ0

)
1
4

t
1
2 (2.10)

where E is the explosion energy per unit length and ρ0 is the density of the gas in an unperturbed
region. The proportionality factor α is determined from the law of conservation of energy.
To describe the flow field behind the shock, the boundary conditions for the strong discontinuity
at the shock may be written as [6]

x = xf , uf =
2

γ + 1
C, ρf =

(

γ + 1

γ − 1

)

ρ0, pf =
2

γ + 1
ρ0C

2, hf =
1

2

(

γ + 1

γ − 1

)2 1

M2
A

ρ0C
2, (2.11)

where MA = C/c is the Alfvén Mach number with Alfvén speed c =
√
a2 + b2, sound speed

a = (γp/ρ)1/2, magneto sonic speed b = (2h/ρ)1/2 and C is the wave velocity expressed in
terms of the co-ordinates at the wave front as

C =
dxf
dt

=
xf
2t

(2.12)

3 Lagrangian Equation of Strong Explosion

To determine the solution of the problem in Lagrangian variables we introduce the mass coor-
dinate according to the relation

dm = σ ρx dx, (3.13)

where σ = 2π.
If m is reckoned off from the axis of symmetry, the mass coordinate of point with an Eulerian
coordinate x is the mass of the gas in the domain [0, x]. In terms of mass coordinate, basic
equations (2.1)-(2.4) reduces to the following form

du

dt
+ σ x

dp∗

dm
= 0, u =

dx

dt
, (3.14)

d

dt

(

ε∗ +
u2

2

)

+ σ
d

dm
(xup∗) = 0, (3.15)

IJAMC



197

d

dt

(

p∗ρ−γ∗
)

= 0, (3.16)

where d
dt =

∂
∂t + u ∂

∂x .
We introduce the mass coordinate of shock wave front. Since the wave moves in the medium
with a constant density, using the transformation (3.13), (2.10) reduces to

mf =
σρ0x

2

2
= α2σ

2
(ρ0E)

1/2 t. (3.17)

Since the pressure of the gas a head of the shock wave can be neglected in strong shock limit,
the law of conservation of total energy in the region of motion reduces to

E =

∫ mf

0

(

ε∗ +
u2

2

)

dm. (3.18)

Let us introduce a self similar mass coordinate

ξ =
m

mf
. (3.19)

The field variables describing the flow field can then be written in terms of the dimensionless
functions of ξ as

x = xf , u =
2

γ + 1
CU (ξ) , ρ =

γ + 1

γ − 1
ρ0G (ξ) , p =

2

γ + 1
,

h =
1

2

(

γ + 1

γ − 1

)2 1

M2
A

ρ0C
2H (ξ) , p∗ =

2

γ + 1
ρ0C

2P ∗ (ξ) (3.20)

Introducing the specific volume ρ−1 = ρ−1
0 (γ − 1)V (ξ) / (γ + 1)and using this value and equa-

tion (3.20) in (3.14)-(3.16) yields

γ − 1

γ + 1
V = 2η

dη

dξ
, (3.21)

U + 2ξ
dU

dξ
= 2η

dP ∗

dξ
(3.22)

2

γ + 1
U = η − 2ξ

dη

dξ
(3.23)

d

dξ

[

ξ
(

ΓP ∗V + U2
)]

=
d

dξ
(2ηP ∗U) (3.24)

d

dξ

(

ξP ∗V γ∗
)

= 0, (3.25)
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where

Γ =
γ − 1

γ∗ − 1
.

The Boundary conditions for solutions of equation (3.21) - (3.24) may be written as

ξ = 0, U = 0, ξ = 1, η = 1, U = 1, V = 1, P = 1, H =
1

β
− 1, (3.26)

where

β =

2
γ+1

2
γ+1 + 1

2

(

γ+1
γ−1

)2
1

M2
A

. (3.27)

4 Analysis and Solution

Integration (3.24) and (3.25) and using boundary conditions (3.26) yield two algebraic equations
expressing the law of conservation of energy and constancy of the entropy of a gas particle behind
the shock front:

ξ
(

ΓP ∗V + U2
)

= 2ηP ∗U, ξP ∗V γ∗

= 1 (4.28)

To analyze the given system introduce dimensionless temperatureW

W = ΓP ∗V. (4.29)

Using (4.29) in (3.24) and (3.25), we get the expressions for non-dimensional flow variablesP ∗,
V and η as

P ∗ =
W

Γ

(

ξβW

Γ

)
1

γ∗−1

, V =

(

ξβW

Γ

)
−1

γ∗−1

, η =
W + U2

2W 2Uβ
Γ

γ∗

(γ∗−2) (ξβW )
γ∗−2
γ∗−1 . (4.30)

Substituting the values evaluated in (4.30) into equations (3.21)-(3.23) we get a system of two
ordinary differential equations given as

ξ
dU

dξ
=

a3b2 − b3a2
a1b2 − b1a2

, (4.31)

ξ
dW

dξ
=

a1b3 − b1a3
a1b2 − b1a2

, (4.32)
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where

a1 = 2
[

Γ(W + U2)2 + (γ − 1)W (W − U2)
]

, a2 = 2(γ − 1)ΓU3,

a3 = (γ − 1)WU(W + U2), b1 = 2(γ∗ − 1)WU, b2 = −γ∗(W + U2),

b3 = W 2 + (2− γ∗)WU2.

Combining equations (4.31) and (4.32) we get the following relation

dW

dU
=

A−B

− (γ − 1) γ∗ ΓβWU
(

Γ
βW + U2

)2
− 2 (γ − 1)U3

[

(

ΓW
β

)2
+ (2− γ∗) Γ

βWU2

] (4.33)

where

A = 2

[

Γ

(

Γ

β
W + U2

)2

+ (γ − 1)
Γ

β
W

(

Γ

β
W − U2

)

][

(

ΓW

β

)2

+ (2− γ∗)
Γ

β
WU2

]

and

B = 2 (γ∗ − 1) (γ − 1)

(

ΓW

β

)2

U2

(

Γ

β
W + U2

)

To simplify further the above equation, let us introduce a new variable z defined as

W =
Γ

β
U2z (4.34)

Substituting the transformation defined by (4.34) in (4.33) we obtain

1

U

dU

dz
=

− (γ − 1) Γ
β

[

γ∗
(

Γ
β z + 1

)2
+ 2

(

Γ
β z + 2− γ∗

)

]

(

Γ
β z + 1

)(

γ∗ Γβ z + 1
) [

2γ∗ Γβ z + 2 (2− γ∗)
] , (4.35)

which may further be reduced to

1

U

dU

dz
=

N1

Γ
β z + 1

−
N2

γ∗ Γβ z + 1
−

N3

2γ∗ Γβ z + 2 (2− γ∗)
, (4.36)

where

N1 =
Γ2

2β
,
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N2 =
(γ − 1) Γ

2β
,

N3 =
γ∗ (γ − 1) Γ

(γ∗ − 1)β
.

Integration of eqn. (4.36) with boundary condition U = 1 andz = 1 we get the following
expression for velocity distribution

U = (R)
N1β
Γ (S)

N2β
γ∗Γ (T )

N3β
2γ∗ Γ (4.37)

where

R =

Γ
β z + 1

Γ
β + 1

, S =
γ∗ Γβ + 1

γ∗ Γβ z + 1
, T =

2γ∗ Γβ + 2 (2− γ∗)

2γ∗ Γβ z + 2 (2− γ∗)

and the transformation relation (4.34) reduces to

W =
Γ

β
z (R)

2N1β
Γ (S)

2N2β
γ∗Γ (T )

N3β
γ∗Γ (4.38)

Equation (4.37) and (4.38) represent the parametric solutions of Lagrangian strong shock equa-
tions in magnetogasdynamics for mass velocity and temperature. For further analysis we con-
centrate ourselves to the solution of eqn (4.31). Using the eqns (4.34) and (4.35) in (4.31)-(4.32)
and simplifying we get the following differential equation relating z and ξ as

1

ξ

dξ

dz
=

−2

[{

(

Γ
β z + 1

)2
+ (γ − 1)

(

Γ
β z

)2
}

+ (γ − 1)

]

z
(

Γ
β z + 1

)(

2γ∗ Γβ z + 2 (2− γ∗)
) , (4.39)

which on further simplification we get

1

ξ

dξ

dz
=

L1

z
−

L2

Γ
β z + 1

−
L3

2γ∗Γz + 2 (2− γ∗)
, (4.40)

where

L1 =
γ + Γ− 1

γ∗ − 2
,

L2 =
Γ2

β
,

L3 =
2Γ

β

(

Γ + γ − 1−
γ∗Γ

2
−

γ∗Γ (2 + γ∗)

2 (2− γ∗)

)

.
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Integration of equation (4.40) with boundary conditions ξ = 1 at z = 1 yields

ξ = zL1

(

1

R

)

βL2
Γ

(T )
βL3
2γ∗Γ . (4.41)

G = z
L1+1
(γ∗−1)

(

1

R

)

β(−2N1+L2)
Γ(γ∗−1)

(S)
2βN2

γ∗Γ(γ∗−1) (T )
β(2N3+L3)
2γ∗Γ(γ∗−1) , (4.42)

P ∗ =
1

β
z

L1+γ∗

(γ∗−1)

(

1

R

)

β(−2γ∗N1+L2)
Γ(γ∗−1)

(S)
2γ∗βN2

γ∗Γ(γ∗−1) (T )
β(2γ∗N3+L3)
2γ∗Γ(γ∗−1) (4.43)

Also the non-dimensional pressure, magnetic pressure and non-dimensional variable η may be
written as

P = z
L1+γ∗

(γ∗−1)

(

1

R

)

β(−2γ∗N1+L2)
Γ(γ∗−1)

(S)
2γ∗βN2

γ∗Γ(γ∗−1) (T )
β(2γ∗N3+L3)
2γ∗Γ(γ∗−1) , (4.44)

H =

(

1

β
− 1

)

z
(L1+γ∗)
(γ∗−1)

(

1

R

)

β(−2γ∗N1+L2)
Γ(γ∗−1)

(S)
2γ∗βN2

γ∗Γ(γ∗−1) (T )
β(2γ∗N3+L3)
2γ∗Γ(γ∗−1) (4.45)

η =
β
(

Γ
β z + 1

)

2z2Γ
γ∗

(2−γ∗)(γ∗−1)



z
L1+1
(γ∗−1)

(

1

R

)

(

β(−2N1+L2)
Γ(γ∗−1)

)

(S)
2βN2

γ∗Γ(γ∗−1) (T )
β(2N3+L3)
2γ∗Γ(γ∗−1)





(2−γ∗)

(4.46)

Eqn. (4.37)-(4.38) and (4.41)-(4.46) completely determine the parametric solution of self similar
strong shock equations in magnetogasdynamics. Also the parameter α appearing in (2.10) may
be determined from the conservation of energy eqn. (3.18)

α =

[

π

2 (γ + 1)2

∫ 1

0

(

ΓP ∗V + U2
)

dξ

]− 1
4

. (4.47)

5 Results and Discussions

Numerical computations have been performed to determine the values of dimensionless parame-
ter α as a function of γ for different values of Alfvén Mach numberMA. The results of calculation
have been plotted in fig.11. This quantity can be evaluated by making an assumption that entire
mass of the gas involved in motion has the parameters corresponding to the shock front.
Also, we have V = 1, U = 1, P = 1, P ∗ = 1

β .
In light of the above assumptions and the boundary conditions, eqn. (4.47) reduces to

α =

[

π (2Γ + β)

4β (γ + 1)2

]− 1
4

. (5.48)
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For the case γ = 2, eqn. (2.8) yields γ∗ = 2 and Γ = 1 for all values of β. Also for very
large Alfvén Mach number i.e. MA → ∞, eqn. (3.27) yields β = 1 andΓ = 1. In both cases
whole analysis reduces as in the non-magnetic case [15]. Numerical values of non-dimensional
flow variables U(ξ), G(ξ), P (ξ), H(ξ) , P ∗(ξ) and η(ξ) have been computed using the relations
(4.37) and (4.42)-(4.46) and corresponding profiles are presented in figs. 1 - 10 for various
values of specific heat ratio, γ and Alfvén Mach number MA. Fig.1 and fig.5 shows that the
general behavior of velocity profiles are not greatly affected by the magnetic field strength for
γ = 1.4 and 1.67. However, there is an increase in magnitude of mass velocity with an increase
in magnetic field strength.

Further, fig.2 and fig.3 show that the general behaviour of density and pressure profiles for the
value of γ = 1.4 are similar as in non-magnetic case for the Alfvén Mach numbers greater than
the critical value where as for the Alfvén Mach numbers less than the critical value, the effect
of magnetic field strength serves to completely reverse the trend of the profiles relative to what
it would be in the absence of the magnetic field.

It may be noted that the higher values of Alfvén Mach number MA corresponds to very weak
ambient magnetic field and the corresponding flow is very close to that of the non-magnetic case
Rosenau and Frankenthal[20]. Further, the lower values of Alfvén Mach number MAcorresponds
to increasing magnetic field. For the values of MA less than the critical value, there is magnet-
ically dominated layer in the flow field behind the shock wave which causes very high increase
in the gas pressure and the magnetic pressure and shows unique behaviour.

In case of γ = 1.67 the general behavior of density and pressure profiles remain same as in case
of non-magnetic case for all values ofMA. However, there is an increase in magnitude of density
and pressure distribution with increasing magnetic field strength which can be seen from fig. 7
and fig.8. The profile for non-dimensional variable η is presented in fig. 9 and fig.10 for γ = 1.4
and 1.67 for various values of MA and show an increasing trend with an increase in magnetic
field strength and specific heat ratio γ.

6 Conclusions

In this paper the classical similarity solution for a strong cylindrical shock wave is extended in
magnetogasdynamic regime. Analytic solution of governing equations in closed form in Lan-
grangian mass coordinate system is obtained. The case when specific heat ratio γ = 2, which
is of special interest in magnetogasdynamics, has been analyzed. The effect of magnetic field
strength, which enters into the solution through Alfvén Mach number, on flow variables in dis-
turbed medium is assessed. It was observed that when the Alfvén Mach number is less than a
critical value, the distribution of flow variables show a unique behaviour which is demonstrated
through fig.2 and fig.3.
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Figure 6: Self-similar profiles of dimensionless
density G1(ξ) − MA =

√
50 solid line; G2(ξ) −

MA = 10 dotted line; G3(ξ)−MA = 10
√
10 dash
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10dash
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10,dotted line; η3(ξ) − MA = 10
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10 and dash

line, for γ = 1.67.

Figure 11: Dimensionless parameter α1(γ) −
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√
10 solid line; α2(γ) − MA = 10, dotted
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√
10 and dash line.
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