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ABSTRACT
Recent studies examining racial and ethnic inequities in exposure to urban air pollution have led to advances in
understanding the nature and extent of overall concentration exposures by pollutant, demarcated by disadvantaged
groups. However, the stability of inequities at various spatial units and the exposure by air pollution sources are often
neglected. In this case study from the Dallas–Fort Worth (Texas, USA) area, we used Geographic Information Systems
(GIS) and an air dispersion model to estimate environmental justice impacts at different spatial scales (i.e., zip code,
census tract, block group) and by source (i.e., industrial pollution sources, vehicle pollution sources, industry and
vehicle pollution sources combined). Using whites as a reference, blacks and other races were more likely to be
exposed to higher sulfur dioxide (SO2) concentrations although the Odds Ratio (OR) varied substantially by pollution
source type [e.g., industrial pollution source based: (OR=1.80; 95% CI (Confidence Interval): 1.79–1.80) vs. vehicle
pollution source based: (OR=2.70; 95% CI: 2.68–2.71)] and varied less between spatial scales [for vehicle pollution
sources, (OR=2.70; 95% CI: 2.68–2.71) at the census tract level but was (OR=2.54; 95% CI: 2.53–2.55) at the block
group scale]. Similar to the pattern of racial inequities, people with less education (i.e., less than 12 years of education)
and low income (i.e., per capital income below $20 000) were more likely to be exposed to higher SO2 concentrations,
and those ORs also varied greatly with the pollution sources and slightly with spatial scales. It is concluded that the
type of pollution source plays an important role in SO2 pollution exposure inequity assessment, while spatial scale
variations have limited influence. Future studies should incorporate source–specific exposure assessments when
conducting studies on environmental justice.
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1. Introduction

Air pollution is recognized as a priority global health issue,
affecting millions in both the developed and developing world
(Brauer et al., 2012). Early studies have found that socioeconomic
disparities in air pollution exposure and related health effects are
prevalent (Zanobetti and Schwartz, 2000; O’Neill et al., 2003).
Identification of susceptible and disadvantaged socioeconomic
status (SES) groups at the greatest risk of air pollution exposure is
critical for accurately estimating the adverse outcomes of air
pollution and may provide additional explanations for inconsis
tency in results between studies.

For the purpose of fair treatment and meaningful involvement
of all people regardless of age, race, color, national origin, or
income with respect to the development, implementation, and
enforcement of environmental laws, regulations, and policies, the
field of environmental justice has been increasingly regarded as a
critical component in environmental policy debates (O’Neill et al.,
2003; U.S. EPA, 2009).

In the field of air pollution exposure justice, since Asch and
Seneca (1978) first found that exposure to air pollution in the
United States (based on micro data) was related to socioeconomic
characteristics, increasing interest has been paid to the assessment
of air pollution exposure inequities. The past 34 years have seen
the study areas of environmental justice expand from the United

States to other developed countries (e.g., Canada, New Zealand,
Britain, France) and as well as developing countries (e.g., China,
India). Methods used to measure the level of exposure to air
pollution mainly include proximity models (Stretesky and Lynch,
1999), air dispersion models (Fisher et al., 2006); Geographic
Information Systems (GIS) spatial interpolation models (Su et al.,
2011), and land use regression models (Crouse et al., 2009). The
final results of environmental justice assessment are generally
presented using statistical indicators, such as OR (odds ratio), ER
(excess ratio), RD (risk difference), and RR (relative risk) with the
baseline reference group being whites in racial comparisons.

To date, studies on air pollution exposure justice have consis
tently shown that certain subgroups of the general population are
likely to suffer higher levels of air pollution exposure, depending on
socio–demographic characteristics such as race/ethnicity, educa
tional attainment, age, and SES (Foos et al., 2008). For example,
Marshall (2008) found that mean exposure to benzene, butadiene,
chromium particles, and diesel particles was higher than average
for people who are nonwhite in California’s South Coast Air Basin.
Kingham et al. (2007) found that the vehicle pollution (i.e., PM10)
inversely related to the percentage of Europeans in a census area
unit in Christchurch, New Zealand. Llop et al. (2011) found that
younger women, immigrants from Latin American counties, and
those belonging to the lower social strata were exposed to higher
NO2 levels in Spain. Ma (2010) highlighted the fact that an increase
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in income level was positively associated with the higher levels of
industrial pollution exposure in Henan province, China.

In summary, there have been a large number of quantitative
studies examining social inequities based upon a calculated or
measured geographic distribution of air pollution, usually across an
urban area. Although researchers have made strides towards
understanding the nature and extent of air pollution exposure
inequities, at least three aspects have often been overlooked. First,
most studies have shown air pollution exposure inequities at the
census tract scale due to the lack of individual level data (Kingham
et al., 2007). These studies generally neglected to account for
potential variations in air pollution and SES across different classes
of spatial units (e.g., U.S. “zip code” vs. “census tract” vs. “block
group”). Results of air pollution exposure equity assessment may
be sensitive to analysis at these various levels. Second, most
previous studies only considered a single type of pollution source
(e.g., industrial pollution sources or vehicle pollution sources) or an
aggregated exposure measurement (e.g., PM10 from all sources)
instead of multiple types of pollution sources which represent a
closer approximation to actual air pollution exposure. Under
standing the source components of exposure would allow for a
more accurate assessment of health effects from dose–response
relationships and would also allow for more targeted policy
measures limiting exposure. Last, when researchers focused on
differences or similarities of air pollution exposure inequity in
different areas (e.g., between developed countries and developing
countries), they usually ignored the exposure level difference that
might exist inside the study area due to the variation of dividing
lines (Zou et al., 2013).

As a toxic gas and a precursor to particulates in the atmo
sphere, sulfur oxide (SO2) is mainly released during various
industrial processes (e.g., smelters, coal–fired power plants) and
contributed by trucks and cars with low–grade diesel fuel (Zhang
and Iwasaka, 2001). Since SO2 emissions have consistently
decreased in most countries over the past decades (Smith et al.,
2001), it is generally recognized as a low–risk pollutant by environ
mental scientists and epidemiologists. However, recent studies
found that low concentrations of SO2 are still possibly associated
with adverse health effects (Bell et al., 2007). Furthermore, GIS
have empowered researchers with a tool for conducting spatial

analysis by coupling air pollution and socioeconomic data at a
variety of spatial scales (Viel et al., 2011). Methods of air dispersion
modeling also provide a novel way to estimate source–specific air
pollution concentrations (Zou et al., 2010) which could help detect
and understand source–specific exposure inequities.

Therefore, this study aims to use GIS and air dispersion
modeling methods to examine whether disadvantaged groups (e.g.,
blacks, individuals with low income or less education) are more
likely to be exposed to higher levels of SO2. This study differs from
previous studies in that we: (1) ascertained the impact and
sensitivity of the adjustment of spatial scale on the results of SO2
pollution exposure inequity; and (2) differentiated the results of
exposure inequity by the type of SO2 pollution source. Our results
show utility on several fronts. First, results of this study can aid in
determining an appropriate spatial scale and geographical extent
for accurately ascertaining exposure inequity while estimating the
size of the effects of arbitrary selection of scale in a particular case
study. Second, our results can help decision–makers to understand
the SO2 pollution sources that are most responsible for exposure
inequity.

2. Materials and Methods

2.1. Study area

The Dallas–Fort Worth (DFW) metropolitan statistical area
(MSA) in Texas, United States was selected as the study site
(Figure 1). The DFW MSA includes six counties (Dallas, Tarrant,
Johnson, Ellis, Denton, Collin), and covers an area of 13 728 km2,
contains 983 census tracts, and had a total population of 4 827 940
in 2000, making it the 4th largest MSA in the United States (U.S.
Census Bureau, 2008). As shown in Figure 1, while vehicle–based
SO2 pollution sources (i.e., roads) are distributed relatively evenly
over the entire DFW MSA (which is especially obvious in Dallas
County), the industrial based SO2 pollution sources exhibit a more
clustered pattern across the entire DFW area. For this reason, we
hypothesize that the intensity of SO2 pollution exposure across the
study area differs between vehicle pollution sources and industrial
pollution sources. This variability makes DFW an ideal study area to
ascertain the influence of source contribution on SO2 pollution
exposure inequities.

Figure 1. Study area: DFW area in Texas, USA.
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2.2. Study design

In order to reach the study objectives outlined above, we
broke down the entire study into three sub–processes: (1) scale–
based (i.e., scales of zip code, census tract, block group) concen
tration computation; (2) socio–demographic (e.g., age, race, educa
tional attainment, income) data categorization; and (3) logistic
regression modeling which was used to calculate OR values that
reveal inequities by socio–demographic characteristics. Details of
these procedures are demonstrated below.

Scale–based concentration computation. As illustrated in the
Introduction section, one of the objectives of this study is to
examine whether spatial scale exerts influence on SO2 pollution
exposure inequity analysis. We therefore selected scales of zip
code, census tract, and block group, with the intent that our results
would provide solutions for inequity reductions. Census tracts are
small, relatively permanent geographic subdivisions of a county or
equivalent entity, block groups are geographic subdivisions of
census tracts (U.S. Census Bureau, 2000a), and zip code boundaries
are established for mailing distributions. In most cases, zip code
areas are larger than census tracts and block groups (U.S. Census
Bureau, 2000b).

In order to investigate the second study objective (i.e.,
differentiating the results of exposure inequity by the type of SO2
pollution source), we employed source–specific annual SO2 concen
trations in the DFW area for the year 2000 using the AERMOD
(American Meteorological Society / Environmental Protection
Agency Regulatory Model) for which the details can be found in our
previous work (Zou et al., 2010; Zou et al., 2011). Briefly, SO2
pollution sources were categorized into industrial emissions and
road emissions, both of which were retrieved from “1999 and 2002
National Emissions Inventory Data and Documentation” released
by the U.S. EPA (2012). Industrial emissions were limited to
industries (e.g., smelters, coal–fired power plants) with real SO2
emissions, while road emissions were mainly contributed by trucks
and cars with low–grade diesel fuel. Although the simulated traffic–
based concentration would be much more accurate using traffic
information about those trucks and cars, such data are often not
available, especially for the time period (i.e., 2000) of this study. In
addition, the reliability of these emission data for source–specific
SO2 pollution modeling in the same study area was validated in
previous studies (Zou et al., 2009; Zou et al., 2010), confirming that
local SO2 emissions were the most likely contributor to the
increased SO2 concentration in the study area in 2000. Accordingly
this study does not consider the influence of long–range
transportation on SO2.

After the preprocessing of data mentioned above, we
calculated scale concentrations by two procedures. First, based on
simulated SO2 concentrations at locations of discrete receptors
(i.e., including regular grid receptors at interval of 1 km and those
manually created at locations of emission sources and traffic
intersections), we tested the performance of ordinary Kriging (OK),
inverse distance weighted (IDW), and Spline interpolation available
in the Spatial Analyst module in ArcGIS 9.3, in order to create a
spatially continuous surface of simulated annual SO2 concentra
tions across the study area with a grid resolution of 500 m x 500 m
of acceptable accuracy and eliminate the potential negative
impacts that might be caused by “the black box interpolation
method” employed by AERMOD plot module. In this process, an F–
test was used to compare the simulated annual SO2 concentrations
from AERMOD with those predicted by each spatial interpolation
method. Figure 2 shows the details of the interpolation process
and its validation. In the end, the IDW spatial interpolation method
was utilized due to its superior performance over other methods
tested (Zou et al., 2013). Next, we computed the predicted annual
SO2 concentrations of each spatial unit at three different spatial
scales by pollution source classification using a block Kriging
method (Keshavarzi et al., 2011) (Figure 3). We used block Kriging
because it can compute “geographic boundary” based concen
tration of a spatial unit from a continuous concentration surface,
which greatly reduces the uncertainty caused by directly using
point–interpolated data (Webster and Oliver, 2007).

Categorization of SO2 concentration and socio–demographic data.
Recent studies have suggested that low, chronic concentrations of
SO2 are not necessarily unrelated to adverse health effects. For
example, associations between low birth weight and low exposure
[i.e., below the National Air Quality Standard (NAQS) released by
U.S. EPA] to SO2 have been demonstrated (Bell et al., 2007).
Therefore, instead of using standard health guidelines of air quality
(e.g., the WHO guidelines) (WHO, 2005), this study reclassified
source–specific SO2 concentrations for each spatial unit as either
relative low concentration or high concentration (of “air pollution”)
depending on whether its value was above or equal to/below the
mean value (shown in Table 1) over the entire study area at each
spatial scale. This classification scheme has actually been imple
mented by Kingham et al. (2007) in a environmental justice study
to distinguish air pollution sources (i.e., domestic, vehicle, and
industrial sources), in which air pollution exposure was explored by
calculating the mean levels of predicted annual exposure among
different age groups and ethnic groups.

Table 1. Statistic characteristics of annual SO2 concentration for a specific spatial unit by pollution source classification (unit: μg/m3)

Spatial Scale Pollution Source Median Concentration Mean Concentration Population (%) a

Zip code Industrial pollution source 0.04 0.11 15.6%

Vehicle pollution source 0.26 0.30 55.1%

Combined b 0.36 0.41 50.7%

Census tract Industrial pollution source 0.04 0.10 15.3%

Vehicle pollution source 0.35 0.38 38.2%

Combined 0.45 0.48 37.5%

Block group Industrial pollution source 0.04 0.10 16.0%

Vehicle pollution source 0.36 0.38 39.5%

Combined 0.45 0.48 40.1%
a Population (%) denotes the percent of population categorized as “with relative high SO2 concentrations”
b Combined industrial and vehicle pollution sources
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Figure 2. Flowchart of spatial interpolation.

Figure 3. Illustration of scale assimilation for SO2 concentrations (unit: μg/m3) in a specific spatial unit over scales (i, ii, iii denotes
industrial, vehicle, combined industrial and vehicle pollution sources based SO2 concentrations, respectively; a, b, c denotes county,

census, and block group scale, respectively).

Population data at the zip code, census tract and block group
levels were retrieved from the Census 2000 Summary File 1 (U.S.
Census Bureau, 2000c), while the geographic boundaries of spatial
scale were obtained from the Census 2000 Topologically Integrated
Geographic Encoding and Referencing (TIGER)/Line dataset (U.S.
Census Bureau, 2000d). The average population at the zip code,
census tract and block group levels are denoted by 21 686, 4 911

and 1 440 respectively. Proper categorization of socio–demo
graphic characteristics is a key step in the assessment of exposure
justice to air pollutants. In line with previous studies (Zanobetti and
Schwartz, 2000; Gwynn and Thurston, 2001; Pope et al., 2002; Ou
et al., 2008), we selected age, race, educational attainment, and
income as the socio–demographic characteristics of focus in this
study. These characteristics were categorized into different levels
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for each of the three spatial scales based on the reference category
for comparison based on previous studies in the environmental
justice literature. Age was classified into three levels of less than
14 years old, more than 60 years old, and 15 to 60 years old was
selected as the reference category. Race was classified into five
groups: blacks, American Indians, Asians, other races, and whites
(reference category). Educational attainment was classified into
four levels of less than 4 years, 5 to 8 years, 9 to 12 years, and
more than 12 years (reference category). Per capital income was
classified into two levels of below $20 000, and above $20 000
(reference category).

Logistic regression modeling. Once the sources of environmental
pollution and the method for approximating exposure to the risk
are determined in a quantitative environmental justice study, a
statistical method can then be used to analyze the collected data
and to draw conclusions about the inequities by social–demo
graphic factors. We selected logistic regression modeling as our
analyses technique due to the study objectives. Logistic regression
is commonly utilized to model the probability of a binary outcome
such as a logistic function of independent variables. Detailed
principles of logistic regression modeling are as follows.

(1)

(2)

(3)

(4)

(5)

(6)

where, “odds” is the probability of the outcome event to occur
(i.e., “P”) divided by the probability of the event not to occur (i.e.,
“P/1–P”). OR indicates the relative value by which the “odds” of the
outcome increase (i.e., OR greater than 1.0) or decrease (i.e., OR
less than 1.0) (Hilbe, 2009). “e” is the exponential constant, equal
to 2.71828. “P1” denotes the probability of the case group being
exposed to air pollution. “P2” denotes the probability of the control
group being exposed to air pollution. “X” represents the explana
tory variables which are either interval–level or “dummy”, a, b
represent partial regression coefficients of independent variable
“X”.

The logistic regression analyses in this study were carried out
in SPSS version 17. In this process, the “spatial units” with relative
high SO2 concentrations were coded as “1”, while the ones with
low SO2 concentrations were coded as “0”. Consequently, these
coded high/low SO2 concentrations were used as the dependent
variable. Similarly, the categorization results of social demo
graphical factors were coded (e.g., the reference category was
coded as 0) and used as independent variables. The indicator was
set first as reference category. Meanwhile, the population amount
of relative high/low SO2 concentrations in each category by
different social demographical characteristics were input corre
spondingly as weight cases.

3. Results and Discussion

3.1. Inequity in exposure to SO2 concentrations by age

Table 2 shows the ORs of exposure to source–specific SO2 by
age at different spatial scales. We used the age range of 15–60 as
the reference category as it has been used in previous studies
(Bates et al., 1990; WHO, 2010). At most spatial scales, results
show that persons over the age of 60 had greater risk of being
exposed to SO2 concentrations from vehicle pollution sources and
combined industrial and vehicle pollution sources. For example, the
OR of being exposed to SO2 concentrations from vehicle pollution
sources for people over the age of 60 is 1.15 (95% CI: 1.14–1.16) at
the census block group scale. Persons over 60 had a lower
exposure OR based on industrial pollution sources (OR: 0.97; 95%
CI: 0.96–0.97) at the census tract scale.

From the spatial scale perspective, Table 2 shows that people
under 14 and people over 60 had similar ORs of being exposed to
SO2 levels from industrial pollution sources and combined
industrial–vehicle pollution sources at the block group and census
tract scales. This may be explained by the fact that SO2 pollution
caused by industry activities in a block group or census tract are
less variable while it might not be the case for larger zip code
areas. However, when taking vehicle pollution sources into
account, these two groups (i.e., those younger than 14 and those
older than 60) had similar ORs at scales of zip code and block
group.

3.2. Inequity in exposure to SO2 concentrations by race

Table 3 shows the ORs of exposure to source–specific SO2
concentrations by race at different spatial scales. From Table 3, it is
clear that blacks and other races were more likely to be exposed to
elevated SO2 concentrations caused from all three categories of
pollution sources. For example, the ORs of being exposed to SO2
concentrations from industrial–, vehicle–, and combined industrial
and vehicle based pollution sources for blacks at the census tract
scale were 1.80 (95% CI: 1.79–1.80), 2.70 (95% CI: 2.68–2.71), and
2.56 (95% CI: 2.55–2.57), respectively.

Table 2. Odds Ratios (ORs) and 95% Confidence Intervals (CI) of source–specific SO2 exposure by age

Spatial Scale Age Industrial Pollution Sources Vehicle Pollution Sources Combined Industrial and
Vehicle Pollution Sources

Zip code 15–60 Ref a Ref a Ref a

0–14 1.00 (1.00, 1.01) b 0.96 (0.95, 0.96) 0.99 (0.98, 0.99)
>60 1.01 (1.00, 1.01) b 1.08 (1.07, 1.08) 1.09 (1.08, 1.10)

Census tract 15–60 Ref a Ref a Ref a

0–14 1.03 (1.02, 1.03) 1.06 (1.05, 1.06) 1.01 (1.01, 1.02)
>60 0.97 (0.96, 0.97) 0.85 (0.84, 0.85) 1.07 (1.06, 1.08)

Block group 15–60 Ref a Ref a Ref a

0–14 1.01 (1.01, 1.02) 0.96 (0.95, 0.96) 1.01 (1.00, 1.01)
>60 0.98 (0.98, 0.99) 1.15(1.14, 1.16) 1.07 (1.06, 1.08)

a Reference category
b p>0.05, others: p 0.05
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Table 3. Odds Ratios (ORs) and 95% Confidence Intervals (CI) of source–specific SO2 exposure by race

Spatial Scale Race Industrial Pollution Sources Vehicle Pollution Sources Combined Industrial and
Vehicle Pollution Sources

Zip code White Ref a Ref a Ref a

Black 1.84 (1.83, 1.85) 2.58 (2.56, 2.59) 2.58 (2.56, 2.59)

American Indian 1.05 (1.03, 1.06) 1.19 (1.17, 1.21) 1.11 (1.09, 1.12)

Asian 1.19 (1.18, 1.20) 1.39 (1.37, 1.40) 1.22 (1.21, 1.23)

Other race 1.51 (1.50, 1.51) 2.67 (2.65, 2.68) 2.50 (2.49, 2.52)

Census tract White Ref a Ref a Ref a

Black 1.80 (1.79, 1.80) 2.70 (2.68, 2.71) 2.56 (2.55, 2.57)

American Indian 1.05 (1.03, 1.06) 1.15 (1.13, 1.17) 1.13 (1.11, 1.15)

Asian 1.10 (1.09, 1.11) 0.94 (0.93, 0.95) 1.01 (1.00, 1.02) b

Other race 1.58 (1.57, 1.59) 2.14 (2.12, 2.15) 2.22 (2.21, 2.23)

Block group White Ref a Ref a Ref a

Black 1.80 (1.79, 1.81) 2.54 (2.53, 2.55) 2.49 (2.48, 2.50)

American Indian 1.04 (1.03, 1.06) 1.14 (1.12, 1.16) 1.11 (1.09, 1.13)

Asian 1.12 (1.11, 1.13) 0.93 (0.92, 0.94) 1.02 (1.01, 1.02)

Other race 1.58 (1.57, 1.59) 2.07 (2.06, 2.08) 2.10 (2.09, 2.12)
a Reference category
b p>0.05, others: p 0.05

Meanwhile, Table 3 also demonstrates that the inequities by
race are largely consistent at different spatial scales, especially for
those between scales of census tract and block group. For example,
ORs of being exposed to SO2 concentrations from industrial– based
pollution sources for Blacks at the census tract and block group
scales are almost the same, with the OR being 1.80 (95% CI: 1.79–
1.80) and 1.80 (95% CI: 1.79,1.81), respectively. The only exception
is that ORs (both less than 1.0) of being exposed to SO2 concen
trations from vehicle–based pollution sources for Asians at scales
of census tract and block group vary more widely (1.39, 95%
CI: 1.37–1.40) at the zip code scale.

3.3. Inequity in exposure to SO2 concentrations by educational
attainment

Table 4 shows the ORs of being exposed to source–specific SO2
concentrations by educational attainment at the different spatial
scales. Table 4 indicates that people with less educational attain
ment are exposed to higher levels of SO2 concentrations caused by
all categories of pollution sources. For example, while individuals
with less than four years of education have the highest OR (1.66,
95% CI: 1.64–1.68) of being exposed to industrial pollution SO2
concentrations at the block group scale, the corresponding ORs for
people with 5–8 years of education and those with 9–12 years of
education were 1.57 (95% CI: 1.55–1.58) and 1.26 (95% CI: 1.25–
1.27), respectively.

Table 4 also shows that inequities in exposure to SO2 concen
tration by educational attainment were fairly consistent across
spatial scales and pollution source types. However, although the
ORs by educational attainment level are consistent at the census
tract and block group levels, those at the zip code scale still
exhibited relatively greater differences.

3.4. Inequity in exposure to SO2 concentrations by income

Table 5 shows the ORs of being exposed to source–specific SO2
concentrations by income at the different spatial scales. Table 5
indicates that people with per capital income below $20 000 are
exposed to higher levels of SO2 concentrations caused by all
categories of pollution sources. For example, this population group
have the highest OR (2.73, 95% CI: 2.72–2.75) of being exposed to

combined industrial vehicle pollution SO2 concentrations at the zip
code scale.

Table 5 also shows that inequities in exposure to SO2 concen
tration by income were fairly consistent across spatial scales and
pollution source types. However, although the ORs by income
levels are consistent at the census tract and block group levels,
those at the zip code scale still exhibited relatively greater
differences.

3.5. Contributions

This study examined racial and socio–demographic inequities
in exposure to source–specific SO2 pollution at three spatial scales
(zip code, census tract, block group) in the DFW metropolitan area.
While the results echoed previous findings about the association
between air pollution exposure and education (e.g., Jerrett et al.,
2004; Miller et al., 2007), they also provided some new insights
widely applicable to environmental exposure inequity research.

The study results disclose that while discrepancy of inequality
in exposure to SO2 concentration by educational attainment and
race are largely not significant with the change of spatial scale and
pollution source type, it is occasionally the case for inequality in
exposure to SO2 concentration by age. This might be attributed to
the absolute values of ORs, as the air pollution exposure inequity
results with ORs around 1.0 generally were relatively unstable and
thus leading to unrecognized, slight scaling effects. From the
discussion above, we conclude that the influence of spatial scale is
not significant in analyzing SO2 pollution exposure inequity when
absolute ORs are much higher than 1.0.

Recently, the literature is stressing the necessity of
differentiating air concentrations by pollution source type (Spira–
Cohen, 2011), as it aids policy makers in taking accurate and
effective action. However, in the case of air pollution exposure
inequity, current studies primarily focus on exploring exposure
inequity by regulating air pollution monitoring data without
distinguishing pollution sources (Kingham et al., 2007). Although
such studies are theoretically helpful for measuring each
individual’s air pollution exposure, they are limited by the inability
to ascertain the potential pollution source type of exposure. Using
air dispersion modeling results, this study for the first time
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explored inequities in source–specific SO2 pollution exposure at
different scales. The results revealed a discrepancy of inequity in
exposure to SO2 pollution from different pollution sources by age,
race, educational attainment and income in the DFW area. These
phenomena may be explained by the following facts. Elderly and
retired persons are less likely to live in industrial areas than the
reference group (i.e., those aged between 15 and 60) as they are
not typically employed in those areas (Martins et al., 2004). Blacks
are more likely to live in low–rent areas close to factories and roads
with heavy traffic due to their disadvantaged economic situation.
Inequity in exposure to SO2 concentrations for American Indians
and Asians were not as prominent as that for blacks, as the ORs
were largely around or under 1.2. People with less than 12 years of
education and low income are more apt to be living in proximity to
industrial sites with relatively heavy traffic (Marshall, 2008; Ou et
al., 2008). The results not only clearly provide information about
pollution sources that caused the differences in exposure to SO2 for
specific socio–demographic groups, but also can help us to design
reasonable interventions to reduce their vulnerability to air
pollution due to the geographic variation of traffic and industry
pollution.

3.6. Limitations

As a first step towards analyzing air pollution exposure
inequity in terms of multi–scale and sources–specific perspective,
limitations are inevitable.

First of all, it is necessary to compute exposure intensity at the
individual level if we want to obtain highly accurate information
about people’s air pollution exposure inequity and by pollution
source contribution in an area (Gilbert, 2009). However, it is too
difficult to achieve this goal at this current stage due to cost,

individual mobility, monitoring density, and the unavailability of air
pollution concentration data provided by discrete monitoring sites.
Although this study is among the first that use currently preferable
air dispersion models (AERMOD) to estimate source–specific SO2
concentration surfaces over the entire study area, we still have to
rely on ecological estimates of SO2 concentration by pollution
sources due to the lack of individual scale demographic data. In
light of this, the results generated from this study need to be
further validated with those from individual–scale analyses.

Secondly, SO2 is not a good marker for traffic and hence
conclusions regarding traffic sources could be different. In future
studies, other traffic–related air pollutants could be introduced to
further explore the conclusion discrepancy. Meanwhile, our
adoption of mean SO2 concentration as the dividing line to
ascertain areas of “relatively high” and “relatively low” was based
on excluding outlier that could affect mean and make it unreliable
in this study. Therefore, it should be mentioned that the
distribution pattern of data set has to be confirmed before
determining the dividing line between high exposure and low
exposure.

Last, other factors such as neighborhood characteristics and
statistical methods could also cause OR variations in this study.
Although previous studies did not highlight these problems as
substantial, they will indeed occur in some scenarios. For example,
some recent studies indicate residents in some lower income
neighborhoods in urban areas in North American and Europe face a
“double burden” of exposure to air pollution for those (Jerrett et
al., 2001; Naess et al., 2007; Premji et al., 2007). As a result, further
studies on the importance of study site type and extent (i.e., urban
vs. rural areas) in assessing air pollution exposure inequity are
needed.

Table 4. Odds Ratios (ORs) and 95% Confidence Intervals (CI) of source–specific SO2 exposure by educational attainment

Spatial Scale Educational
Attainment Industrial Pollution Sources Vehicle Pollution Sources Combined Industrial and

Vehicle Pollution Sources
Zip code >12 Ref a Ref a Ref a

0–4 1.52 (1.50, 1.54) 2.96 (2.92, 3.01) 2.93 (2.88, 2.97)

5–8 1.48 (1.47, 1.50) 2.29 (2.26, 2.32) 2.39 (2.37, 2.42)

9–12 1.22 (1.21, 1.22) 1.53 (1.52, 1.55) 1.57 (1.55, 1.58)

Census tract >12 Ref a Ref a Ref a

0–4 1.64 (1.62, 1.67) 2.60 (2.56, 2.63) 2.65 (2.61, 2.68)

5–8 1.57 (1.56, 1.59) 2.17 (2.15, 2.19) 2.36 (2.33, 2.38)

9–12 1.28 (1.27, 1.29) 1.63 (1.62, 1.64) 1.67 (1.66, 1.68)

Block group >12 Ref a Ref a Ref a

0–4 1.66 (1.64, 1.68) 2.371 (2.339, 2.403) 2.48 (2.44, 2.51)

5–8 1.57 (1.55, 1.58) 2.075 (2.054, 2.096) 2.23 (2.21, 2.26)

9–12 1.26 (1.25, 1.27) 1.564 (1.553, 1.576) 1.62 (1.60, 1.63)
a Reference category

Table 5. Odds Ratios (ORs) and 95% Confidence Intervals (CI) of source–specific SO2 exposure by income

Spatial Scale Income Industrial Pollution Sources Vehicle Pollution Sources Combined Industrial and
Vehicle Pollution Sources

Zip code >20 000 Ref a Ref a Ref a

20 000 1.11 (1.10, 1.11) 2.48 (2.47, 2.49) 2.73 (2.72, 2.75)

Census tract >20 000 Ref a Ref a Ref a

20 000 1.02 (1.01, 1.02) 2.61(2.60, 2.62) 2.53 (2.52, 2.54)

Block group >20 000 Ref a Ref a Ref a

20 000 0.94 (0.94, 0.95) 2.54 (2.53, 2.55) 2.53 (2.52, 2.53)
a Reference category
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4. Conclusions

This work explored SO2 pollution exposure inequities by age,
race, educational attainment and income by different air pollution
sources (i.e., industry–, vehicle–, and combined industrial and
vehicle pollution sources) at spatial scales of zip code, census tract
and block group across the DFW metropolitan area in Texas, USA.
The results confirm that exposure to SO2 is the highest among the
most disadvantaged groups (e.g., less educational attainment,
blacks, low income). Each type of pollution source was shown to
contribute significantly to SO2 pollution exposure inequities.
Moreover, this study is among the first to systematically
demonstrate that spatial scale variations only exert limited
influence on the results of inequity in exposure to SO2 pollution,
and that the influence is minimal between the scales of census
tract and block group.

In view of the limitations mentioned above, future work
should focus on refining the ORs by adjusting for a variety of
potential confounding factors in the process of estimating SO2
pollution exposure inequity. For example, principal component
analysis and factor analysis could be employed to generate several
socio–demographic indices. In addition, the work presented in this
study could be extended, were the data available, by combining
other air pollutants exposure data with demographic data at the
individual scale (Marshall, 2008). In this way, it is believed that a
better understanding of air pollution exposure inequities could be
attained, which would be helpful for shaping the inequity
distribution of exposure to air pollution.
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