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ABSTRACT

Elimination of persistent organic pollutants (POPs) under national and international controls reduces “primary”
emissions, but “secondary” emissions continue from residues deposited in soil, water, ice and vegetation during
former years of high usage. Secondary sources are expected to dominate in the future, when POPs transport
and accumulation will be controlled by air–surface exchange and the biogeochemical cycle of organic carbon.
Climate change is likely to affect mobilization of POPs through, e.g., increased temperature, loss of ice cover in
polar regions, melting glaciers and changes in soil and water microbiology which affect degradation and
transformation. Chiral compounds offer advantages for following transport and fate pathways because of their
ability to distinguish racemic (newly released or protected from microbial attack) and nonracemic (microbially
altered) sources. Here we explain the rationale for this approach and suggest applications where chiral POPs
could aid investigation of climate–mediated exchange and degradation processes. Examples include
distinguishing agricultural vs. non–agricultural and recently used vs. residual pesticides, degradation and
sequestration processes in soil, historical vs. recent atmospheric deposition, sources in arctic air and influence
of ice cover on volatilization.
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1. Introduction

Production and use of persistent organic pollutants (POPs)
have been reduced or eliminated under the Stockholm Convention
and other regional/national initiatives. In response to curbing
“primary” emissions, concentrations of organochlorine pesticides
(OCPs) and polychlorinated biphenyls (PCBs) in arctic air have
dropped over two decades with times for 50% reduction of 3–20
years (Hung et al., 2010). Residues of legacy POPs in arctic biota
are also declining at 0.8–8% per year (Riget et al., 2010). Although
encouraging, these downward trends are buffered by continuing
release of POPs deposited in soil, water, ice and vegetation during
former years of high usage (Ruzickova et al., 2008; Stemmler and
Lammel, 2009; Li et al., 2010; Nizzetto et al., 2010a; Nizzetto et al.,
2010b; Schuster et al., 2011). Such “secondary” emissions are
expected to dominate in the future when POPs transport and
accumulation will be controlled by air–surface exchange and the
biogeochemical cycle of organic carbon (Nizzetto et al., 2010b;
UNEP, 2011). Climate change may increase both primary and
secondary emissions and thereby confound interpretation of
temporal trend records (Macdonald et al., 2005; UNEP, 2011). Air
concentrations of some POPs at arctic stations have recently
stabilized or even increased. Statistically removing the earlier
declining trends reveals rising residual concentrations which are

significantly associated with increased surface air temperature and
loss of ice cover, suggesting revolatilization from secondary
sources brought about by climate change (Ma et al., 2011). A
comprehensive review of climate change influences on the global
distribution and fate of POPs has recently been published
(Kallenborn et al., 2012).

Chiral compounds offer special advantage for following
transport and fate pathways. Enantiomers (see Section 2) have
identical vapor pressures, water solubilities and partition
coefficients among air, water and octanol. Transport (advection,
deposition, and volatilization) and abiotic reactions (photolysis,
hydrolysis, OH radical attack) will not change enantiomer
proportions for the compounds discussed in this article, provided
they take place in achiral environments. However, enzymes are
chiral and enantioselective metabolism is the "rule rather than the
exception" (Hegeman and Laane, 2002). Many commercial chiral
chemicals are racemates (equal proportion of enantiomers). For
these, nonracemic residues in the environment indicate microbial
degradation in soil and water or enantioselective processes in
higher organisms (e.g., absorption, translocation, excretion,
preferential membrane transport). Determination of individual
enantiomers by chromatography on chiral stationary phases
provides the ability to distinguish racemic (newly released or
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protected from microbial attack) and nonracemic (microbially
weathered) sources.

Here we review enantioselective degradation of chiral OCPs
and PCBs in soil and water, and use of enantiomer proportions to
infer source contributions and follow environmental fate; e.g.,
distinguishing agricultural vs. non–agricultural and recently used
vs. residual pesticides, degradation and sequestration processes in
soil, historical vs. recent atmospheric deposition, sources in arctic
air and influence of ice cover on volatilization. We suggest
applications of chiral compounds to investigate of processes that
are apt to be influenced by climate change.

2. Chiral Chemicals

Many classes of environmental contaminants include chiral
compounds: pesticides, PCBs, brominated flame retardants (BFRs),
pharmaceuticals and personal care products. Chiral compounds are
mirror–image molecules having: (a) an asymmetric atom with four
different substituents, e.g., o,p’–DDT; (b) steric hindrance which
prevents rotation about a bond, leading to an asymmetric
structure; e.g., “atropisomeric” PCBs; (c) cyclic POPs which have
asymmetric carbons and/or lack a plane of symmetry, e.g., trans–
and cis–chlordane (TC, CC), –hexachlorocyclohexane ( –HCH).
Metabolites are often chiral: o,p’–DDD, oxychlordane (OXY),
heptachlor exo–epoxide (HEPX), atropisomeric PCB methyl
sulfones and OH PCBs. Some “prochiral” compounds are converted
to chiral metabolites, e.g. the achiral pesticide lindane ( –HCH) is
metabolized to chiral –pentachlorocyclohexene ( –PCCH
(Huhnerfuss et al., 1992). Some compounds have more than one
stereogenic feature, leading to multiple pairs of enantiomers.
Principles of chirality, analytical methods and environmental
applications for chiral POPs and other compounds have been
reviewed (Kallenborn and Huhnerfuss, 2001; Berthod, 2006; Vetter
and Bester, 2006; Wong, 2006; Garrison, 2006; Eljarrat et al., 2008;
Huhnerfuss and Shah, 2009; Lehmler et al., 2010; Perez–Fernandez
et al., 2010; Ulrich and Falconer, 2011).

Data from enantioselective analysis are expressed as
enantiomer fraction, EF = (+)/[(+) + (–)] or E1/(E1 + E2), where (+)
and (–) refer to optical signs (direction of polarized light rotation),
and E1 and E2 to the order of chromatographic peak elutions (De

Geus et al., 2000; Harner et al., 2000b; Ulrich et al., 2003).
Enantiomers are also designated by R– and S– configurations
according to the Cahn–Ingold–Prelog (CIP) rules (Huhnerfuss and
Shah, 2009), but there is no relationship between R, S and optical
signs. Sometimes the enantiomer ratio, ER = (+)/(–) or E1/E2, is
used, EF = ER/(ER + 1). A racemic compound has EF = 0.5 and
ER = 1. Degradation can be ambivalent; i.e., depletion of either
enantiomer, and averaging EFs can misrepresent the true extent of
enantioselectivity. Deviation from racemic (DFR), the absolute
value of (0.5–EF) has been suggested to express enantioselectivity
regardless of the degradation preference (Harrad et al., 2003;
Kurt–Karakus et al., 2005; Jamshidi et al., 2007).

3. Enantioselective Degradation in Soil and Water

3.1. Soil

Chiral POPs undergo enantioselective degradation in soil,
resulting in accumulation of nonracemic residues. A survey of
chiral PCBs in background soils along a transect from the U.K. to
northern Norway found nonracemic residues in 50–88% of the
samples (Schuster et al., 2011), and nonracemic TC and CC were
reported in >80% of soils globally (Ulrich and Falconer, 2011).
Reported EFs of OCPs and PCBs are listed in Supporting Material
(SM), Tables S1 and S2. Frequencies of enantiomer depletions for
OCPs in agricultural and background soils worldwide are
summarized in Figure 1 from reports where such information is
given or can be deduced. Dominant depletions are (–) –HCH,
(–)CC, (+)TC, although opposite preferences and racemic residues
are also common. Residues of o,p’–DDT are almost equally divided
among (+) or ( ) deple on or racemic. Regional di erences are
evident; e.g. preferential depletion of (+)TC and ( )CC in soils of the
midwestern (Aigner et al., 1998) and southern (Wiberg et al.,
2001a) U.S.A. and in Mexico (Wong et al., 2010), but depletion of
both ( )TC and ( )CC in soils of the Pearl River Delta, China (Li et
al., 2006). In the case of metabolites, depletions of (–)HEPX and
(–)OXY may reflect preferential formation of (+) rather than
degradation of (–), although the relative importance of the two
processes in soils has not been established. Weighted average EFs
and pooled standard deviations from merging the individual data
sets in Table S1 (see the SM) are: –HCH 0.528 ± 0.095, CC 0.531 ±
0.073, TC 0.480 ± 0.067 and o,p’–DDT 0.511 ± 0.064.

Figure 1. Percent of soils showing depletion of the (+) enantiomer (blue, EF <0.5), depletion of the ( ) enantiomer (red, EF >0.5) and containing racemic
residues (green, EF = 0.5) for HCH, cis chlordane (CC), trans chlordane (TC), heptachlor exo epoxide (HEPX), oxychlordane (OXY) and o,p’ DDT (number of

soils in parentheses), based on reports from the 1990s to the present where such information is given or can be deduced. Data are from: Falconer et al., 1997;
Aigner et al., 1998; Finizio et al., 1998; Meijer et al., 2001; Wiberg et al., 2001a; Meijer et al., 2003; Bidleman et al., 2003; Eitzer et al., 2003; Bidleman and

Leone, 2004; Kurt Karakus et al., 2005; Bidleman et al., 2006; Ngabe and Bidleman, 2006; Li et al., 2006; Daly et al., 2007; Kurt Karakus et al., 2008; Genualdi
et al., 2009; Shen et al., 2009; Wong et al., 2009b; Wong et al., 2010; Covaci et al., 2010; Zhang et al., 2011; Ulrich and Falconer, 2011; Zhang et al., 2012b.
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Factors influencing enantioselective degradation in soils are
not well understood. Several studies have found that EFs or DFRs
(see Section 2) were correlated only weakly or not at all with soil
organic carbon or organic matter (Kurt–Karakus et al., 2005; Li et
al., 2006; Koblizkova et al., 2008; Zhang et al., 2011). DFRs of chiral
PCBs in soils have been associated with higher humus and organic
nitrogen, soil texture (increased clay vs. sand content), and
microbial biomass and its activity (Koblizkova et al., 2008). Zhang et
al. (2011) found a weak negative correlation (r2 = 0.12, p = 0.03)
between the EF of –HCH and microbial biomass in 38 soils and no
correlation with soil texture. Enantioselectivity has been related to
soil pH in some studies, but not in others. Soil pH affects carbon
and nutrient availability, solubility of metals, and microbial and
fungal communities (Rousk et al., 2009). Enantioselective
degradation and/or racemization of some chiral fungicides and
herbicides is influenced by soil pH (Buser and Muller, 1997; Muller
and Buser, 1997; Buser and Muller, 1998; Buerge et al., 2003;
Buerge et al., 2006; Li et al., 2011). HEPX, OXY and –HCH in alpine
soils were increasingly nonracemic at higher humus pH, which the
authors attributed to more active biodegradation (Shen et al.,
2009). However, pH was not a significant factor in explaining EFs of
chlordanes, o,p’–DDT and –HCH in Chinese soils (Li et al., 2006;
Zhang et al., 2011). The EFs of chiral PCBs 95, 132 and 149 were
correlated with pH at a high level of significance (p = 6 x 10–7 to
0.0035) for 101 Swiss soil samples, but r2 values were low (0.08–
0.22) (Bucheli and Brandli, 2006). A strong correlation was found
between the EF of PCB 149 and pH in 12 Czech soils (r2 = 0.67, p =
0.0013) (Bucheli and Brandli, 2006). Little work has been done to
investigate abiotic interactions between soil components and
chiral chemicals, but there is evidence for enantioselective
sorption of chiral PCBs and the chiral herbicide methyl dichlorprop
by humic acid and ash (Oravec et al., 2010).

The average relative standard deviation (RSD) in EFs of TC and
CC was 8% in replicate plots spaced one meter apart in grassland
and woodland areas (Kurt–Karakus et al., 2007; Kurt–Karakus et al.,
2008). EFs of PCBs 95, 136 and 149 varied by 2–4% RSD when
sampled repeatedly over several months at urban and suburban
sites in Birmingham, U.K. ( Jamshidi et al., 2007). The EF of PCB 95
varied by 1.5% RSD over several months at a background site near
Birmingham (Desborough and Harrad, 2011). Much greater
variability is seen when comparing soils regionally and globally
(Kurt–Karakus et al., 2005; Li et al., 2006; Ulrich and Falconer,
2011) (Figure 1) and across land use categories. EF patterns of PCBs
95, 132, 149 and 174 in Swiss soils suggested differences between
deciduous and coniferous forest, agriculture and grassland (Bucheli
and Brandli, 2006). Such EF variations are larger than analytical
(typically 1% or less) and can be attributed to local microbial
communities.

Microbial processes in soil degrade POPs, but also lead to
sequestering of residues into the soil matrix. These “bound
residues” are less degradable and bioaccessible (Gevao et al., 2003;
Barruiso et al., 2008; Yang et al., 2009). Use of chiral compounds to
follow this diagenesis was investigated by Wong and Bidleman
(2011) and Wong et al. (2012). Chiral and achiral POPs were spiked
into soil and aged for one year. Over that time, portions of the soil
were extracted with dichloromethane (DCM) and analyzed.
Volatilization potential was determined by passing nitrogen
through a soil column and collecting the stripped residues on a
sorbent trap. Increased binding to the soil and decreased volatility
over time were indicated by a rise in the equilibrium soil–air
partition coefficient, KSA = CSOIL/CAIR. Spiked –HCH and chiral BFRs
–1,2,5,6–tetrabromocyclooctane ( –TBCO) and –1,2–dibromo–

4–(1,2 dibromoethyl)cyclohexane ( –tetrabromoethylcyclohexane,
–TBECH) were partially degraded by enantioselective microbial

activity, and over the aging period the EF in air deviated
increasingly from the EF in DCM extracts of the soil (Figure 2).
Results suggest that air stripping accesses the exchangeable, more
easily degraded pool of chemical, while DCM extracts both the

exchangeable and less degraded bound pools, resulting in the
discrepancy between EFAIR and EFSOIL.

Climate change may impact soil microbial diversity and
respiration by altering CO2, soil temperature, precipitation patterns
and soil moisture, vegetation communities and productivity, and
the rate of organic matter decomposition (EEA, 2008; Anderson,
2011). The relative abundance of bacteria and fungi in soil were
changed by manipulating CO2, temperature and precipitation
(Castro et al., 2010), pH (Rousk et al., 2009) and soil frost (Haei et
al., 2010; Haei et al., 2011) in experimental plots. Effects of such
changes on the diagenesis of chiral compounds are poorly known
but evidence suggests that enantioselectivity will be affected. In a
pioneering study, Lewis et al. (1999) found that the degradation
preferences for enantiomers of the herbicide methyl dichlorprop
and the organophosphate insecticide cruformate (Ruelene) were
shifted or even reversed by simulated global warming (increasing
the soil temperature by 5 °C), nutrient amendments or
deforestation (conversion from forest to pasture). Analysis of 16S
ribosomal RNA indicated changes in microbial populations. The
authors surmised that enantioselectivity is controlled by activation
of metabolically quiescent microbes or induction of specific
enzymes.

3.2. Water

Early reports of enantioselective degradation of –HCH in the
North Sea (Faller et al., 1991) and the Baltic Sea (Huhnerfuss et al.,
1992) sparked a new line of research on chiral pollutants in the
marine environment. Today, –HCH is by far the most investigated
chiral compound in marine and fresh water. The PCCH degradation
products of –HCH and –HCH are also chiral, but are seldom
reported (Huhnerfuss et al., 1992; Badea et al., 2011).
Observations of nonracemic –HCH in aquatic systems are
compiled in Figure 3, where older data reported as ERs have been
converted to EFs. Although measurements span two decades,
systematic monitoring of EFs in water bodies has not been done to
assess temporal trends. Degradation of (+) –HCH is favored in
most cases, but preferential loss of ( ) –HCH has been found in
surface waters of some regions (Figure 3), and in ground water
(Law et al., 2004) and dense nonaqueous phase liquids (DNAPL)
(Badea et al., 2011) at industrial waste sites. Concentrations of
HCHs decrease, and enantioselective degradation of –HCH
increases, with depth in the Arctic Ocean (Jantunen and Bidleman,
1996; Harner et al., 1999; Harner et al., 2000a). Total degradative
loss of HCHs in an aquatic system is due to enantioselective and
nonenantioselective microbial processes. Hydrolysis is an
important removal mechanism in warm temperate waters, but is
much slower in cold lakes and polar oceans (Ngabe et al., 1993).
Estimated half lives in the eastern Arctic Ocean due to microbial
degradation were 5.9, 23 and 18 y for (+) –HCH, ( ) –HCH and –
HCH (Harner et al., 1999; Harner et al., 2000a). These rates were
included with measured temporal trends in concentration,
estimates of advective flows and air–water gas exchange into a
mass balance of –HCH in the western Arctic Ocean, with the
result that microbial degradation was the major loss term. The
mass balance suggested that –HCH could be virtually eliminated
by 2040, with concentrations dropping from 1–2 to <0.004–0.006
ng L 1 within this decade (Pucko et al., 2012).

Concentrations and EFs of –HCH have been reported in the
Laurentian Great Lakes between Canada and the U.S.A., small lakes
and wetlands in Ontario, Canada, and arctic lakes and wetlands
(Law et al., 2001). Racemic –HCH or preferential degradation of
the (+) enantiomer was found in all systems. The low EF extremes
were found in cold, oligotrophic lakes and arctic wetlands (Figure
3) and they were related to higher –HCH concentrations and
dissolved inorganic carbon, while more nearly racemic –HCH was
found in mesotrophic and eutrophic systems with higher
particulate organic carbon and total phosphorus. Enantioselective
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Figure 2. Increase in KSA (top) and biphasic first order plots of enantioselective degradation (middle) for the chiral brominated flame retardants
tetrabromoethylcyclohexane ( TBECH) and tetrabromocyclooctane ( TBCO) in urban soil over 360 days after spiking. Bottom left: Chromatograms of
TBECH enantiomers in an analytical standard, soil extracted with dichloromethane 360 days after spiking, and air equilibrated with the soil 360 days after

spiking. Bottom right: Divergence of EFs of TBECH in air and soil with aging time (Wong et al., 2012).

Figure 3. Range of EFs reported for HCH in aquatic systems, red line indicates racemic HCH (EF = 0.5). Data are from: Faller et al.,1991; Falconer et al.,
1995; Jantunen and Bidleman, 1996; Ridal et al., 1997; Jantunen and Bidleman, 1998; Harner et al., 1999; Helm et al., 2000; Law et al., 2001; Wiberg et al.,
2001b; Padma et al., 2003; Jantunen et al., 2004; Sundqvist et al., 2004; Jantunen et al., 2008a; Jantunen et al., 2008b; Lohmann et al., 2009; Pucko et al.,

2010; Pucko et al., 2011; Wong et al., 2011; Zhang et al., 2012b.
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degradation was greater (lower EFs) in lakes where –HCH
concentrations became elevated due to past loadings, and long
water retention times maximize contact with sediments. Lower EFs
occurred in arctic streams during low–flow periods when greater
contact would take place with biofilms on rocks and sediment
(Falconer et al., 1995; Helm et al., 2000; Law et al., 2001). Non–
enantioselective microbial degradation with a half life of 0.6–1.4 y
was the main loss process in an arctic lake over winter (Helm et al.,
2000).

Padma et al. (2003) found greater enantioselective
degradation of (+) –HCH within the saline part of a temperate
estuary with lower bacterial activity than in the upper freshwater
reach with higher bacterial activity. Law et al. (2001) surmised that
greater enantioselective degradation of –HCH in oligotrophic
systems is due to bacteria that have the ability to survive under
low nutrient conditions by inducing multiple enzymes, shifting
metabolic pathways, and taking up and using mixed carbon
sources. The inverse relationship between enantioselectivity and
lake trophic status may be due to the ability of oligotrophic
microbes to metabolize or co–metabolize –HCH whereas
eutrophic microbes have ample carbon sources that are more
easily metabolized.

Other chiral OCPs in water have been less investigated. TC and
CC were racemic in the central Arctic Ocean in 1994 (Jantunen and
Bidleman, 1998) and the Beaufort Sea in 1998–2001 (Hoekstra et
al., 2003). CC was racemic in the North Atlantic – Greenland Sea in
2004 for most samples (Lohmann et al., 2009), while both TC and
CC were nonracemic in 2008 (Zhang et al., 2012a). Depletion of
(+)TC was found in the Laurentian Great Lakes Superior, Erie and
Ontario. CC was racemic in lakes Superior and Erie and (+)CC was
depleted in Lake Ontario (Jantunen et al., 2008a). Enrichment of
(+)HEPX was found in the central Arctic Ocean (Jantunen and
Bidleman, 1998), the North Atlantic (Lohmann et al., 2009; Zhang
et al., 2012a) and the Great Lakes (Jantunen et al., 2008a), while
HEPX was racemic in the Beaufort Sea (Hoekstra et al., 2003).

Climate warming is likely to impact algal and microbial
communities in aquatic systems through loss of ice cover and
consequently increased light intensity, earlier spring phytoplankton
blooms, hydrological changes in wetlands which drain into rivers
and lakes; and in the ocean by freshening due to lowered salinity
(Macdonald et al., 2005). Impacts on enantioselective degradation
of –HCH and other OCPs are difficult to predict, especially since
EFs are also apt to change due to decline in primary and rise in
secondary emissions. Measurements over the last decade can
serve as a baseline from which to assess these changes through
future monitoring.

4. Soil–Air and Water–Air Exchange

Because enantiomers have the same physicochemical
properties (see Section 2), EFs are not changed when evaporating
from soil or water (Bidleman and Falconer, 1999). An example is
shown in Figure 4 which shows EFs of racemic o,p’–DDT and
slightly nonracemic chlordanes volatilizing from an Ontario farm
soil during flux studies (Kurt–Karakus et al., 2006). The EFAIR =
EFSOIL and is distinguishable from more nonracemic residues in
background air. Sampling of air was carried out at 15 cm over
agricultural soils in the midwestern U.S. for TC, CC, OXY, HEPX and
o,p’–DDT (Leone et al., 2001). When their published data for all
compounds and sites are considered, EFSOIL and EFAIR are strongly
correlated (r2=0.88, p=10–11, n=24). The EFAIR for o,p’–DDT at 40 cm
above agricultural soils in the southern U.S. was correlated to EFSOIL
(r2=0.65, p=0.0008, n=11) (Bidleman and Leone, 2004). Close
agreement was found between EFAIR and EFSOIL for TC and CC
sampled at 3 cm over soil at a farm in the U.K. (Meijer et al., 2003).
Studies of TC and CC volatilization at experimental sites in
Connecticut, U.S.A. found highest concentrations and EFAIR = EFSOIL
at 50 cm, with lower concentrations and greater deviation
between EFAIR and EFSOIL at 1.5 2.5 m due to dilu on and mixing
with chlordanes in background air (Mattina et al., 2002; Eitzer et
al., 2003). PCB–95 from primary sources (see Section 5) was
racemic in air sampled at 10–130 cm over a grassland site in the
U.K., but nonracemic in the soil, air at 3 cm, and grass (Desborough
and Harrad, 2011).

Figure 4. EFs of trans chlordane (TC), cis chlordane (CC) and o,p’ DDT in agricultural soil from an Ontario farm in 2004 2005 (Kurt Karakus et al., 2006),
multiple air samples collected within 200 cm of the soil surface, single sample of background air (1) from a site 30 km away during this study, and multiple

samples of background air (2) from the same site in 2002 2003 (Gouin et al., 2007). Vertical lines are standard deviations where multiple samples were taken.
Note close agreement of EFs in soil and air over soil, and differences from the background air samples.
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Levels of –HCH in arctic air have declined in step with
reduced production and emissions of technical HCH after 1983 (Li
and Bidleman, 2003). Consequently, water bodies that were loaded
with –HCH during the peak production in the 1970s – early 1980s
became sources to the atmosphere beginning in the early 1990s
(Jantunen and Bidleman, 1995; Wania et al., 1999; Pucko et al.,
2012). Nonracemic –HCH has been used to trace volatilization by
air sampling over oceans (Jantunen and Bidleman, 1996; Harner et
al., 1999; Jantunen et al., 2004; Ding et al., 2007; Jantunen et al.,
2008b; Lohmann et al., 2009; Wong et al., 2011; Zhang et al.,
2012a) large lakes (Ridal et al., 1997; Jantunen et al., 2008a) and
seas (Wiberg et al., 2001b; Sundqvist et al., 2004). EFs in air over
these systems varied from nearly racemic when long–range
transport dominated to nonracemic upon volatilization from water.
Such changes occurred seasonally or spatially in response to water
temperature (Ridal et al., 1997; Sundqvist et al., 2004; Jantunen et
al., 2008a) and ice cover (Jantunen and Bidleman, 1996; Jantunen
et al., 2008b; Wong et al., 2011). Regional influences of these
secondary sources are discussed in Section 5.2.

In the Arctic, ice effects are particularly dramatic. On a trans–
arctic expedition in 1994, ( ) –HCH was depleted in the Bering–
Chukchi seas whereas (+) –HCH was depleted in the central Arctic
Ocean and Greenland Sea. The –HCH in air over these regions
showed the same enantiomer depletions, except over the ice–
covered portion of the central Arctic Ocean where –HCH in air
was racemic (Jantunen and Bidleman, 1996). Subsequent
investigations in the Canadian Archipelago in 1999 (Jantunen et al.,
2008b) and 2007–2008 (Wong et al., 2011) found an abrupt rise in
–HCH air concentrations and an increased proportion of

nonracemic –HCH in air during the spring–summer ice breakup
(Figure 5). EFs of –HCH help to speciate delivery and removal
mechanisms from the Arctic Ocean snowpack and ice; e.g.
atmospheric deposition which delivers nearly racemic –HCH vs.

brine intrusion which brings nonracemic –HCH from seawater
upward into the ice and snow cover (Pucko et al., 2011).

5. Regional and Long–Range Transport

5.1. Chlordanes

Soils worldwide contain chlordanes with enantiomer depletion
frequencies: (+)TC 56%, ( )TC 29%, (+)CC 22%, ( )CC 64%. Racemic
TC and CC were found in 15% and 14% of the soils (Figure 1). Soils
around house foundations treated with chlordane for termite
control (Eitzer et al., 2001) and air within termiticide–treated
homes (Jantunen et al., 2000; Leone et al., 2000) contained
racemic TC and CC. Chlordanes in air of rural and background areas
of North America tend to be nonracemic with depletion of (+)TC
and ( )CC, and closer to racemic in the air of large ci es where
some termiticide use would be expected (Shen et al., 2004; Gouin
et al., 2007; Ulrich and Falconer, 2011). EFs of TC and CC in
ambient air of the Laurentian Great Lakes region are intermediate
between nonracemic EFs in regional soils and racemic termiticides
(Ulrich and Hites, 1998; Bidleman and Falconer, 1999; Gouin et al.,
2007), showing the contribution of both source types. Racemic and
nonracemic CC were found in the snowpacks of national parks in
the western U.S.A., and explained by proximity to either urban or
agricultural sources (Genualdi et al., 2011). TC and CC in the air of
Mexico were closer to racemic (Wong et al., 2009a) than in the
Great Lakes region, while soils in Mexico contained low and
nonracemic residues, suggesting that chlordanes in the air of
Mexico are derived from sources other than soil emissions (Wong
et al., 2010). Nonracemic TC and CC were found in air of Costa Rica
(Daly et al., 2007). HEPX in air is nearly always enriched in the (+)
enantiomer (Venier and Hites, 2007; Ulrich and Falconer, 2011),
and is likely derived from soil emissions (Bidleman et al., 1998).

Figure 5. Top left: Sources of HCH in the marine boundary layer from long range transport (racemic) and volatilization from the ocean (nonracemic).
Top right: Expeditions in the Canadian Archipelago: Resolute Bay on Tundra Northwest 1999, ArcticNet 2007 and International Polar Year (IPY) –

Circumpolar Flaw Lead (CFL) 2008. Bottom left: Increase in air concentrations of HCH sampled from shipboard after spring ice breakup at
Banks Island (IPY CFL 2008) and bottom right: switch from racemic HCH in air before ice melt (EF = 0.504 ± 0.008) to nonracemic HCH
(EF = 0.476 ± 0.010) after ice melt, in response to volatilization of nonracemic HCH from seawater (EF = 0.457 ± 0.019) (Wong et al.,

2011). Similar results were found at Resolute Bay in 1999 (Jantunen et al., 2008b).
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TC and CC were racemic in air at Okinawa, Japan in 2004, and
ratios of TC/CC were similar to those in technical chlordane. These
diagnostics suggest fresh sources or limited biotransformation
(Genualdi et al., 2009). The frequency of racemic TC and CC was
50% at 500 m, 89% at 1 249 m, and 92% at 2 763 m at mountain
sites in the U.S. Pacific Northwest during 2003–2006, suggesting
that chlordanes may be racemic in the free troposphere (Genualdi
et al., 2009).

Ground–level air samples collected at the arctic monitoring
stations Alert, Canada; Dunai, Russia; and Pallas, Finland, and at
the temperate station Rorvik on the Swedish west coast during the
mid–1990s to 2001 showed depletion of (+)TC, ( )CC, and E1 of
chlordane MC5 (Bidleman et al., 2002; Bidleman et al., 2004). In
contrast, racemic TC and CC were found in archived samples of
atmospheric deposition collected in Sweden, Iceland and Slovakia
in 1971–1973 (Bidleman et al., 2004). A sediment core collected in
1999 from a lake on Devon Island (Canadian Arctic) recorded the
trend of chlordane deposition (Bidleman et al., 2004; Stern et al.,
2005). Depletion of (+)TC was found with EFs closest to racemic in
the 1940s – 1950s, decreasing in the 1960s –1970s, and lowest in
the 1980s –1990s.

Ulrich et al. (2009) found general depletion of (+)TC and ( )CC
in sediments of U.S. lakes, rivers and reservoirs, where sources
included soil erosion and atmospheric deposition. In several
systems, DFR was greatest in the upper, more recent sediment
layers and less at depth, similar to the Devon Island profile.
Although diagenesis of deposited chlordanes cannot be ruled out,
these studies and an investigation in Long Island Sound, U.S.A. (Li
et al., 2007) indicates that enantioselective degradation of TC and
CC does not take place in deposited sediments. Otherwise,
deviation from racemic would be greater in the deeper sediment
layers (Ulrich et al., 2009; Ulrich and Falconer, 2011).

These observations suggest that sources of chlordane have
changed over time. Atmospheric transport and soil erosion were
dominated by racemic chlordanes in the past and now are
influenced to a greater extent by volatilization and erosion of
nonracemic residues in soils. Sediment cores from other areas may
be useful for inferring recent and historic chlordane deposition
from erosion and atmospheric sources.

5.2. –HCH

Regional patterns of –HCH in air were examined throughout
Europe and over the Atlantic Ocean (Covaci et al., 2010). The
proximity to a large water body had a strong influence on EFs
which were predominantly: Baltic air <0.5, Mediterranean air >0.5,
North Atlantic above 40–50°N <0.5 and lower latitudes >0.5. No
clear trend in EFs was seen in air samples from the African coast
and South Atlantic. Inland air samples contained racemic –HCH at
higher concentrations and variable EFs at lower concentrations.
Urban air tended to have EFs 0.5 while EFs 0.5 were found in
rural air. Preferential degradation in grassland and woodland soils
was largely of ( ) –HCH and EFs increased with higher
concentration. Latitude and longitude influences were also evident
in the air–soil–grass system. The survey showed that
concentrations and EFs in air are controlled by secondary sources
from water and soil, in which local microbial populations play a
major role, and also by continuing emissions from primary sources;
e.g., past production/waste disposal sites in eastern Europe.

Influence of large water bodies on the EFs of –HCH in air is
seen in other studies. Bethan et al. (2001) found that the
enantiomer composition of –HCH in rain collected on the Wadden
Sea coast was seasonally dependent, depleted in the (+)
enantiomer in late summer – early autumn and closer to racemic in
the colder months. Genualdi et al. (2009) sampled air at mountain
sites in western U.S. national parks and found that for trans–pacific

events, –HCH tended to be racemic for transport above and
nonracemic for transport below the marine boundary layer. A
passive air sampling campaign across North America found that –
HCH was racemic or slightly depleted in the ( ) enan omer in air
samples from inland and in the high Arctic where the sea is mainly
ice covered (Shen et al., 2004). Higher concentrations and strong
depletion of (+) –HCH were found over the eastern Canadian
Archipelago, the eastern Canada seaboard and the north shore of
Lake Superior due to volatilization from open water. Depletion of
( ) –HCH was found on the west coast of Canada (Shen et al.,
2004), possibly from similar signatures in regional soils (Falconer et
al., 1997) or trans–pacific transport (Genualdi et al., 2009).

5.3. DDT compounds

DDT was applied in Mexico for malaria control until 2000,
particularly in the southern part of the country, and high levels
have been reported in soils of communities where DDT was
applied (Herrera–Portugal et al., 2005). Surveys in air (Wong et al.,
2009) and nonagricultural soils (Wong et al., 2010) in Mexico found
a greater proportion of “fresh” DDT, as indicated by the fraction
FDDTE = p,p’–DDT/(p,p’–DDT + p,p’–DDE), in the southern part of
the country. The o,p’–DDT in air samples was racemic in some
cases or depleted in either enantiomer in others. The DFR was less
at more southern latitudes (r2 = 0.57, p= 0.001, n=15) with higher
DDT use (r2 = 0.33, p = 0.03, n=15). This agrees with the relative
“freshness” of DDT in southern Mexico, indicated by the higher
FDDTE (see above), or may indicate lack of enantioselective
degradation in sites with greater DDT applications. A single study
has reported nonracemic o,p’–DDD, in ambient air of Arkansas,
U.S.A. (Venier and Hites, 2007), although nonracemic o,p’–DDD
was found in soils of the Czech Republic (Koblizkova et al., 2008).
DDT has an exemption under the Stockholm Convention when
used for vector control in accordance with World Health
Organization guidelines (WHO, 2004). DDT residues, particularly
o,p’–DDT and o,p’–DDE, are impurities in the pesticide dicofol and
contribute to air contamination in the Taihu Lake region of China
(Qiu et al., 2004; Qiu et al.,2005; Li et al., 2006). Together with
proportions of parent and metabolite compounds, chiral analysis
of o,p’–DDT and o,p’–DDD could be useful in speciating DDT
sources.

5.4. Chiral PCBs

Chiral PCBs 95, 136 and 149 were racemic in ambient air of
the Birmingham, U.K. region, while soil residues were generally
nonracemic. Significant differences between air and soil were
found at a greater number of sites when comparing DFRs rather
than EFs, since the soil EFs varied from above 0.5 to below 0.5 at
the sites (Jamshidi et al., 2007). Racemic PCBs in air and
nonracemic PCBs in soil were found at other U.K. sites, despite
calculations showing that PCB fugacity in soil was higher than in air
and net volatilization would be expected (Robson and Harrad,
2004). PCB 95 was racemic in air samples collected 10–130 cm over
a grassland site in the U.K., but nonracemic in the soil. However,
PCB 95 was nonracemic in air at 3 cm height and in grass
(Desborough and Harrad, 2011). Enantioselective degradation of
PCBs 95,132, 149 and 174 was found in background soils collected
on a transect from the southern U.K. to Norway in 2008, while
racemic PCBs 95 and 149 were found in 2006–2008 air samples
from along the route (Schuster et al., 2011). A similar application
was used to investigate sources of PCBs in the air of the Hudson
River estuary (Asher et al., 2007). PCBs 91, 95, 136 and 149 were
racemic in air, but nonracemic in water and sediment, suggesting
that undegraded local sources dominated PCB input to the air and
not volatilization from the estuary. These measurements provide
evidence that primary emissions continue to dominate the burden
of PCBs in the atmosphere rather than volatilization from soils. The
situation is likely to evolve in the future, as primary sources
dissipate and secondary sources become dominant.
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6. New Direction: Coupling Enantiospecific and Stable
Isotope Analyses

Microbial degradation of organic compounds is frequently
accompanied by shifts in carbon stable isotope composition which
can be followed by compound–specific isotope analysis (CSIA)
(Elsner et al., 2005; Hoffstetter et al., 2008). For example, reductive
dechlorination of –HCH by sulfate–reducing bacteria resulted in
13C enrichment of the residual –HCH as the 12C– –HCH was
preferentially utilized (Badea et al., 2009). Isotopic fractionation
occurs mainly during formation or cleavage of chemical bonds and
to a much smaller extent during phase transformation processes
such as volatilization, sorption or diffusion (Hoffstetter et al.,
2008). In this respect, CSIA and enantioselective analyses are
complimentary tools for investigating sources, transport and
transformation pathways, but they have seldom been coupled.
Recently Badea et al. (2011) reported an enantiomer–specific
stable isotope carbon analysis (ESIA) to investigate the fate of –
HCH. ESIA was applied to –HCH degraded in anaerobic laboratory
culture of Clostridium pasteurianum and naturally in DNAPL below
ground at a former chemical plant. Spiked racemic –HCH was
degraded within nine days of laboratory incubation and although
residues were enriched in 13C– –HCH, the degradation process was
not enantioselective. The DNAPL samples also showed 13C isotopic
fractionation, and for two of three samples this isotopic
fractionation was accompanied by shifts in EFs away from racemic.
This pioneering study exemplifies the potential of the coupled ESIA
technique for probing microbial degradation pathways that may or
may not proceed enantioselectively.

7. Chiral Tracers and Climate Change

Nizzetto et al. (2010b) discussed the transition from a primary
source controlled world to one dominated by secondary emissions,
where POPs accumulate in reservoirs of organic carbon and
biogeochemical processes govern their transport and fate. These
processes are likely to involve enantioselective degradation in soil
and water and exchanges with the atmosphere. Chiral tracers can
aid transport and fate investigations in situations where there is
enantioselective degradation:

(a) Enantioselective degradation metrics (EFs, DFRs and
degradation preference frequencies) reflect the present
composition and activity of microbial communities, and these are
likely to shift with climate change. Including chiral analysis in long–
running atmospheric and aquatic monitoring programs for POPs
could reveal large–scale impacts on microbial processing of POPs in
soil and water, as well as continuing primary–secondary source
transitions. The range of EFs for chiral OCPs (see the SM, Table S1)
and PCBs (Table S2) in background soils is much greater than in air,
attesting to enantioselective degradation following atmospheric
deposition. Re–emission of these deposited POPs will inject a more
weathered EF signature into the atmosphere. The present
potential for soils and water bodies to influence OCP EFs in air is
suggested by their global data base (see the SM, Tables S1 and S2,
Figures 1 and 3), though there are likely regional differences in EF
“footprints” which have not yet been defined. Such differences are
clearly shown for –HCH in water (Figure 3 and Covaci et al., 2010)
and for chlordanes in soil (Section 3.1).

(b) Chiral POPs could be useful for following cycling within
forest ecosystem; e.g., volatilization from soil, atmospheric
deposition, foliar uptake and release. Climate change is predicted
to impact accumulation and release of POPs from the forest
canopy (Nizzetto and Perlinger, 2012). Enantioselective transport
and/or metabolism of chiral POPs within plant tissues of food crops
has been demonstrated for chlordanes (Mattina et al., 2002) and in
poplar trees for PCBs (Zhai et al., 2011). It has been argued that
global warming may alter uptake and distribution of radionuclides
in plants due to changes in soil physicochemical properties,

precipitation and temperature (Dowdall et al., 2008), and these
considerations may also apply to organic chemicals.

(c) Revolatilization of POPs from the Arctic Ocean takes
place in open water areas, which expand as the ocean loses ice
cover seasonally and over the longer term due to climate warming.
Chiral tracers are a sensitive indicator of re–emission during ice
breakup, as demonstrated for –HCH (see Section 5), and this
concept could be applied to other chiral OCPs and PCBs in the
Arctic Ocean and large seasonally frozen lakes.

(d) Melting glaciers release stored POPs into receiving
waters (Geisz et al., 2008; Bogdal et al., 2009; Schmid et al., 2011).
Sediment cores record the change in chlordane deposition from
racemic in the past to nonracemic recently (Section 5). Similarly,
snow/ice cores and glacial runoff might be examined for
chlordanes and other chiral POPs to determine their diagenetic
history.

(e) Microbial processes in soil degrade POPs, but also lead to
sequestering of residues into the soil matrix. Chiral compounds
show promise for following degradation and changes in volatility
during aging of POPs in soil, and migration from exchangeable to
bound pools (Section 3.1).
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