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Monitoring and modelling carbon monoxide concentrations in a
deep street canyon: application of a two box model
Fabio Murena

P.le Tecchio, 80, 80125 Napoli, Italy

ABSTRACT

Carbon monoxide concentrations were monitored at 3, 10 and 30 meters in a deep street canyon with an aspect
ratio of (H/W) 5.8 and were modelled using a two–box model developed in a previous CFD study. The
monitoring campaign lasted 5 days, from 11th to 15th July, 2011. The turbulent kinetic energy at the rooftop level
and traffic flow was also measured in the same period. Experimental data were used to evaluate parameters
(mass transfer velocities and overall mass transfer velocity) of the box model. The daily pattern shows a
significant increase of the overall mass transfer velocity from 9:00 to 11:00 and a decrease until 14:00. Turbulent
kinetic energy measured at the rooftop level seems to play a major role with respect to wind velocity in
determining the mass transfer between the canyon and the atmosphere above. The evaluation of the overall
mass transfer velocity contributes to the use of operational street canyon dispersion models in the case of deep
street canyons.
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1. Introduction

Modelling air pollution in large urban areas is a challenging
task that is engaging researchers in finding an effective solution.
Deterministic models such as Computational Fluid Dynamic (CFD)
models can provide useful information if focused on the study of a
single or a few streets (Sini et al., 1996), but their application over
a whole urban area is not feasible due to the large extension and
complexity of urban areas, thus incurring high calculation time and
costs. Operational models are much less sophisticated, need fewer
input parameters and the mathematics is often reduced to simple
algebraic equations. For this reason, operational models seem to
be more appropriate if a large–scale urban problem must be
addressed. The most well–known operational models (e.g., STREET,
OSPM, and ADMS) are frequently used at local (single or few
streets) or urban scale and perform reasonably well but not
always, and not under all operating conditions (Vardoulakis et al.,
2007).

The mass transfer between the canyon and the atmospheric
flow above is one of the key parameters in operational models.
High concentrations of vehicular pollutants can occur in street
canyons at pedestrian height in the case of high vehicular
emissions and ineffective mass transfer due to the flow regimes
established. Flow regimes are classified as isolated roughness flow,
wake interference flow and skimming flow (Oke, 1987) depending
on the aspect ratio (H/W). If (H/W) > 1.6–2, the street canyon is
classified as deep (Vardoulakis et al., 2003), and two counter–

rotating vortices may form (Sini et al., 1996), with the bottom
vortex weaker than the upper.

Many papers have focused on mass transfer in street canyons
(Bentham and Britter, 2003; Hamlyn and Britter, 2005; Salizzoni et
al., 2009). Mass transfer inside the canyon and between the
canyon and the atmosphere above is influenced by several
parameters, and the conclusions of different papers do not always
agree. The parameters investigated include the following: the
external wind velocity (Murena et al., 2011), the turbulent
structures in the outer flow and the structures in the shear–layer
interface between the outer flow and the canyon (Salizzoni et al.,
2011), the turbulence inside the shear layer that forms between
the canyon and the atmosphere above (Caton et al., 2003), the
aspect ratio (Solazzo and Britter, 2007); the frontal area density of
buildings (Ratti et al., 2002), and the planar area density or packing
density (Bentham and Britter, 2003; Hamlyn and Britter, 2005).

Once a certain understanding of the mass transfer
phenomena inside the canyon and between the canyon and the
atmosphere above is achieved, street scale operational models,
also called mass balance or box models, can be developed
(Salizzoni et al., 2009; Murena et al., 2011).

In a previous paper, Murena et al. (2011) proposed a box
model to simulate mass transfer inside deep street canyons and
between them and atmospheric flow above based on a CFD
simulation study on ideal (2D) deep street canyons. An ideal street
canyon is defined as a single road of infinite length delimited by
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A sensitivity test was performed on the effect of the
dimension of the two volumes in which the street has been divided
(Hb and Hu). Hb could assume values in the range 3 Hb < 10
because, as shown in Figures 4 and 5, the bottom box must include
the 3 m height and exclude the 10 m height. Correspondingly,
Hu = H – Hb. The variation of Hb in the range 3 Hb < 10 m did not
have a significant effect on the results of the model.

5. Conclusions

This paper shows that the carbon monoxide concentrations in
a deep street canyon can be effectively modelled by assuming a
two box model (Murena et al., 2011). The two box model defines
an overall mass transfer coefficient that, once known and with a
few other input parameters, allows the evaluation of the
concentration at the pedestrian level, which is of particular interest
for environmental and health impact assessment studies. The
overall mass transfer coefficient depends on many variables, both
geometrical (street geometry) and meteorological (wind speed,
wind direction, atmospheric turbulence, temperature). The results
of the present paper show that, at least in meteorological
conditions occurring during the monitoring campaign (11th 15th

July, 2011) in Naples characterised by a breeze regime, the overall
mass transfer coefficient is quite constant during the 24 h period
apart from a significant increase in the morning from 9:00 to 11:00
followed by a decrease until 14:00. A good correlation of real and
modelled data was obtained by modelling the Uov daily pattern as a
constant plus a Gaussian function.

During the monitoring campaign, the wind direction was rarely
parallel to the street axis, so the results of this paper are related to
a wind direction mainly perpendicular to the street axis. In these
conditions, the results seem to indicate that wind velocity is not a
significant parameter, while the turbulent kinetic energy measured
at the roof level seems to play a more relevant role in determining
the mass transfer rate. These findings have been evidenced by a
simulation study (Salizzoni et al., 2011).

The results of this paper are of practical interest because they
can be used to improve the performance of operational models,
especially if applied at deep street canyons, for which few data are
reported in literature. Additionally, the results of the most popular
operational models, such as OSPM and ASDM, are unreliable
because they were developed and validated for street canyons
with an aspect ratio 1.

Future research will aim at a validation of the model through a
more prolonged monitoring campaign performed in different
seasons and in street canyons with different aspect ratios. The
correct evaluation of the CO emission rate due to vehicles passing
in the street canyon will be a critical issue in the validation
procedure.
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