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ABSTRACT

Concentrations of non–methane hydrocarbons (NMHCs) in atmosphere were measured at six urban sites in Mumbai
from February 2005 to January 2006. Seventeen hydrocarbons, i.e., ethane, ethylene, acetylene, propane, propylene,
iso–butane, n–butane, iso–pentane, n–pentane, hexane, benzene, heptane, toluene, ethyl benzene, p–xylene, o–
xylene and n–decane have been identified in 254 urban air samples using a cryogenic pre–concentration system
attached to a Gas Chromatograph (GC) with a Flame Ionization Detector (FID). C2–C5 hydrocarbons were determined
on 2 m x 2 mm i.d., stainless steel (S.S.) column packed with n–octane/Poracil C. The components of C6 and above are
determined on a 3 m x 2 mm i.d., S.S. column filled with 10% OV – 101 on chromosorb WAW. All these species show
well–defined winter season (November–February) high and summer season (March–June) low values. Factor analysis
(FA), a receptor modeling technique, has been used for quantitative source apportionment. Varimax rotated factor
analysis identified five possible sources. The mean percent contribution from the vehicular exhausts was found to be
33% while that from refinery sources contribute 21%. Petrochemical industries and paint solvent contributed 15% and
11% respectively. Eight percent of the NMHCs were coming from polymer manufacturing industries. The remaining
12% is contributed by other unidentified sources.
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1. Introduction

Atmospheric non–methane hydrocarbons (NMHCs) play a
major role in the complex set of reactions which generate
photochemical oxidants such as ozone and peroxyacyl nitrates
(PAN) which are extremely injurious to human health and
vegetation. Understanding the temporal and spatial characteristics
of NMHCs gives insight into likely emission sources and their
control strategies. The contributors to the ambient concentrations
of NMHCs include natural and anthropogenic sources. Major urban
sources of NMHCs are releases from chemical industries, refinery
operations, solvent evaporation and vehicular exhaust (Pandit et
al., 1990; Liu et al., 2008). The levels of NMHCs in the ambient air
are related to the fuels used, vehicle types and ages, flow rates and
speeds of traffic as well as road and environmental conditions in
the city. The increased aromatics, olefins and other organic
compounds in fuels used in vehicles lead to an increase in the
emission of volatile aromatic hydrocarbons, especially from
vehicles which are not supplied with catalytic converters. Volatile
aromatic hydrocarbons represent a significant fraction of gasoline
and other fuels as well as automobile exhausts (Liu et al., 2008). In
urban atmosphere benzene, toluene and xylenes are the most
abundant among the aromatic volatile hydrocarbons (Srivastava et
al., 2005). Among benzene, toluene, ethyl benzene and xylenes
(BTEX), xylenes are considered the more reactive species with
respect to ethyl benzene, whereas benzene has a lower reactivity
and more stable in the atmosphere, due to its relatively longer
lifetime (Calvert et al., 2002). Xylenes are the most dominant
contributor to ozone formation among BTEX (Na et al., 2005). The
major sink processes for the NMHCs are their reactions with the
hydroxyl and nitrate radicals (Atkinson and Arey, 2003). It is also
recognized that halogen atom reactions may also be an important

NMHCs sink in certain areas such as in some coastal regions
(Arsene et al., 2007) and in the Antarctic boundary layer (Read et
al., 2007).

Some of the hydrocarbons emitted in the atmosphere can
have harmful effects on human health and the environment (WHO,
2000). Many NMHCs may lead to ozone production via their
reaction with hydroxyl radicals in the presence of sufficient levels
of nitrogen oxides. In view of this, information on ambient levels of
NMHCs is necessary to evolve a proper strategy for controlling
tropospheric ozone buildup and to maintain the desired air quality.
Recent improvements in the gas chromatographic techniques have
made it possible to analyze many NMHCs which are present in the
ambient air. Pre–concentration at cryogenic temperatures with
subsequent thermal desorption into a gas chromatograph makes it
possible to analyze very accurately the parts per billion (ppb) levels
of various NMHCs in the atmosphere.

Multivariate models are important statistical tools used to
identify and quantify the sources contributing to the observed
aerosol mass. In the multivariate method, one need not make
assumptions about the nature and composition of contributing
sources unlike chemical mass balance method. Factor analysis, a
multivariate method is used in this study for source apportion
ment. It is a statistical technique which can be applied to a set of
variables in order to reduce their dimensionality. That is to replace
a large set of inter–correlated variables with a smaller number of
independent variables. These new variables (components) are
derived from the original ones and are simply linear combinations
of those variables.
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Considering these, a study has been carried out to determine
the ambient levels of NMHCs in the urban atmosphere of Mumbai.
Principal Component Analysis (PCA), a receptor model, was applied
to the ambient hydrocarbon data to identify probable emission
sources for NMHCs in Mumbai city. To quantify the contributions
of each source to the measured pollutant multiple regression
technique was applied. The results are expected to help better
understand chemical emission characteristics in Mumbai urban air.
It will also be helpful to formulate pollution control policies and
implement air quality standards.

2. Monitoring and Modeling

2.1. Study area

Mumbai (47°N, 73°E) is located at the west coast of India and
has a tropical savanna climate with a relative humidity ranging
between 57% and 87%. Annual average temperature in Mumbai
was 25.3 °C with a maximum of 34.5 °C in June and minimum of
14.3 °C in January. Average annual precipitation is 2 078 mm, with
34% of total rainfall occurring in July. The metropolitan city of
Mumbai is one of the rapidly growing cities in India. It has become
an epicenter of trade, commerce and industry. A number of
industries such as a thermal power plant, a fertilizer plant, two
major oil refineries and other chemical industrial units are located
in northern suburbs of Mumbai. Increased use of personalized and
hired vehicles, buses and goods carriers puts enormous strains on
the existing road network. Two wheelers form a major portion of
vehicular population. In Mumbai, three wheelers are one of the
common modes of transportation.

The major possible emission sources related to the sampling
locations were: (i) Diesel internal combustion engines such as
trucks, buses, off road equipment, stationery engines for pumps
and generators. (ii) Gasoline driven vehicles such as cars, three
wheelers, and two wheelers. (iii) Natural gas combustion engines
such as buses, four wheelers (taxies) and three wheelers. (iv)
Evaporative emissions related to petrol loading and unloading at
bulk stations and refueling at retail petrol pumps. Hydrocarbon
pollutants also find their way to air through fuel evaporation from
vehicles. They can be characterized as running losses, hot soak
emissions, diurnal emissions, and resting losses. (v) Surface coating
such as emissions from architectural surface coating. In India 70%
of paints sold account for decorative segment. (vi) Petrochemical
industries, the oil refinery section, where the main activities
included regular and reduced pressure distillation, catalytic
pyrolysis, catalytic reforming, hydrogen–adding lubricant oil
refinery, and gas fractionation, and the major products included
gasoline, diesel fuel, kerosene oil, lubricant oil, and naphtha and
the chemical industrial section where benzene, styrene and glycol,
polyethylene, polypropylene, polystyrene, rubber, ethylene,
propylene, and aromatic–related products are produced. (vii) Dry
cleaning process uses two general types of cleaning fluids:
petroleum solvents like turpentine and synthetic solvents like
perchloroethylene and trichlorotrifluroethane. In metropolitan
cities of India, the upper middle class and upper class population
generally uses dry cleaning facility. (viii) Newspaper/magazines
printing press which uses solvent–borne inks for large scale
publication printing. (ix) Liquid petroleum gas (LPG) which is
commonly used as fuel in homes and hotels for cooking purposes.

2.2. Sample collection

In the present study, air samples were collected at six
different locations as shown in Figure 1. The locations were chosen
in different parts of Mumbai so as to represent different
characteristics, such as residential, Industrial, traffic junctions,
commercial, petrol pumps and remote area. Air samples were
collected in Tedlar gas sample bags of 5 liter capacity using a
battery operated pump for a period of 2 hours at a height of 1.5 m
above the ground level at all chosen locations. Four grab samples

were collected at different times in a day, transported to the
laboratory, fully protected from sunlight and analyzed within an
hour of collection. The mean values were taken as the
representative sample, of that particular day, of that place.

Figure 1.Map of Mumbai showing sampling locations.

2.3. Pre–concentration procedure

The samples were subjected to pre–concentration procedure
as given below.

Air sample collected in the Tedlar bag was transferred into an
evacuated stainless steel canister of 0.5 L capacity fitted with
needle valves at either end. The sample canister was connected to
one port of a four port valve V1 and the equalizing canister is
connected to another port of the same valve. A U column (30 cm
long and 3 mm o.d., 2 mm i.d., partially filled with glass beads of
60/80 mesh) is connected between one port of V1 and another
port of V2. The injection port and the inlet of the analytical column
of gas chromatograph were connected to two ports of V2. The
details about the pre–concentration system and its operation are
given elsewhere (Mohan Rao et al., 1997).

2.4. Chemical analysis

The chemical analysis of sample was carried out using Chemito
Gas Chromatography. C2–C5 hydrocarbons were determined on
2 m x 2 mm i.d., S.S. column packed with n–octane/Poracil C,
80–100 mesh operated at 27 °C isothermal, nitrogen was used as
the carrier gas. The flow of nitrogen was 30 mL/min. The
components of C6 and above were determined on a 3 m x 3 mm
o.d., S.S column filled with 10% OV – 101 on chromosorb WAW,
80/100 mesh. The operating temperature was 60 °C to 120 °C with
programmed heating at 4 °C per minute with zero hold up.
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Nitrogen was used as the carrier gas. The flow of nitrogen was
30 mL/min. Flame ionization detector (FID) was used for detection
of the hydrocarbons. The gas used for FID was hydrogen with flow
rate of 30 mL/min. Using the above operating conditions, n–
hexane, heptane, benzene, toluene, p– and o–xylene, ethyl
benzene, and n–decane were resolved.

2.5. Calibration of gas chromatograph

For the analysis of blanks, nitrogen was filled into Tedlar bags
and entire pre–concentration procedure was followed for estima
tion of hydrocarbons. The absence of any Hydrocarbons indicated
that the entire sampling and analysis line was free from
contamination. Calibration was performed by preparing a synthetic
mixture in the sampling canister which was analyzed in same way
as the samples. There were slight changes in the retention time
when the sample was pre–concentrated in the U column and
released into GC compared to that obtained from the direct
injection of compound into injection port of the GC. Hence, the
retention data for all the compounds were generated by trapping
the compounds first in the U column and then thermally desorbing
into GC. The validity of data was confirmed through different steps.
Duplicate run of samples gave results within 10% variation. The
calibration runs with standard mixture were conducted weekly.
The variation in response of the detector was less than 2% for
standard hydrocarbon mixture.

2.6. Receptor models

There has been no investigation providing source composition
library of NMHCs for Mumbai city. This limits the usage of the
widely accepted chemical mass balance model for source
apportionment of NMHCs. Hence, a multivariate analysis tech
nique, i.e., principal component analysis–multiple regression
technique, which does not require prior information on source
composition was used in this study. The principal component
analysis model used in the field of air pollution is expressed as:

ij
1

C
N

ik kj
j

L S (1)

where Cij is the normalized value of the concentration of the ith

species for the jth sample. N is the total number of sources. Skj is
the factor score of the kth common factor for jth sample. Lik is the
factor loading of the ith species of the kth source (Henry et al., 1984;
Hopke, 2000). The detailed description of the FA model can be
seen in Okamoto et al. (1990), and Thurston and Spengler (1985).
In the present study, we have used the computer software
STATGRAPHICTM for factor analysis which is accurate and easy to
use.

The absolute principal component scores (APCS) were used to
estimate the source contributions to each pollutant. Since, we
performed PCA on standardized (z–transformed) variables; the
yielded normalized factor scores cannot be used directly for
computation of quantitative source contributions. The normalized
factor scores determined subsequently in Equation (1) were
converted to non–normalized APCS. Details on the computation of
APCS have been described in several publications (Thurston and
Spengler, 1985; Okamoto et al., 1990; Johnson and Wichern, 1992).
In brief, the preliminary steps involve standardization of all variable
concentration as Zij:
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ij
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where Xij is the measured concentration of variable j in sample i, is
Xj the arithmetic mean concentration of variable j, and j is the

standard deviation of variable j for all samples included in this
analysis.

The PCA performed on these standardized variables yield
normalized factor scores (Az) with zero mean and unit standard
deviation. An artificial sample with concentration equal to zero for
all the variables was introduced to compute absolute zero scores
for each factor (Thurston and Spengler, 1985; Okamoto et al.,
1990; Johnson and Wichern, 1992), so that:

0
0 j j

j
j j

X X
Z (3)

The absolute zero factor scores (A0) for each sample were
computed from the values of corresponding factor scores
coefficients (S) obtained from PCA performed on standardized
variables and the values of (Z0) computed by above Equation (3) as:

0 0
1

( )
J

kj jk
j
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J is total number of variables. The absolute principal
component scores (APCS) for each sample in each component is
then estimated by subtracting the absolute zero factor score values
(A0) of each sample from the corresponding normalized factor
scores values (Az) obtained by PCA of the standardized variables as
(Thurston and Spengler, 1985):

(5)

Finally, the measured concentration data as dependent
variables were regressed on mass concentrations of different
sources as independent variables, yielding the source contribution
to Cj as (Thurston and Spengler, 1985):

0
1

F
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k
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where, (r0)j is the constant term of multiple regression for pollutant
j, rkj is the coefficient of multiple regression of the source k for
pollutant j, and APCSk is the scaled value of the rotated factor k for
the considered sample. The combined term, (rkj.APCSk) represents
the contribution of source k to Cj. Moreover, the mean of the
product (rkj.APCSk) on all samples represents the average
contribution of the sources (N). Quantitative contributions from
each source for individual contaminant were compared with their
measured values.

3. Results and Discussion

Table 1 summarizes the ranges and mean concentrations of
NMHCs measured at six urban sites in Mumbai during February
2005 to January 2006. The NMHCs composition was similar among
all urban sites, indicating a common and dominant source of
hydrocarbons. The average profile at all the sites is similar, and key
abundant hydrocarbons (i.e., benzene, toluene indicate that motor
vehicle emissions are an important source of many of the VOCs at
all the sites. The mean concentration of acetylene which is a tracer
for auto exhaust is 2.8 ppbv which is much lower than the mean
concentrations of other hydrocarbons such as ethylene, propane,
pentane, iso–butane, n–butane and benzene. Benzene concentra
tion was found to vary from 3.0 to 25.1 ppbv with a mean
concentration of 14.7 ppbv and a standard deviation of 7.0 ppbv at
different sampling sites. Toluene has much shorter lifetime than
benzene so higher benzene to toluene (B/T) ratio will be found in
an aged air via a long range transport. Most of the anthropogenic
NMHCs come from vehicle exhaust in urban areas and thus B/T can
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toluene to benzene ratio has been used to evaluate the
contribution of vehicular sources to the ambient NMHCs, but the
present study shows that the toluene to benzene ratio cannot be
utilized to evaluate source contributions in Mumbai. More complex
receptor models are, therefore, required to find out the source
contribution. Analysis of the data collected at six sites in Mumbai
resulted in isolating and evaluating five major source factors. The
most important isolated factors affecting these sites were found to
be the emissions from vehicular exhaust, refineries, petrochemical
production facilities, paint solvent and polymer manufacturing
industries. Model–derived source apportionment showed that the
combination of vehicle emissions and refineries operation
explained 54% of the total VOC emissions, 15% for petrochemical
industries and 11% for paint solvent. This study yielded useful and
comprehensive information on the distribution and source
apportionment of VOCs in a subtropical Asian city.
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