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GENERALIZATION OF A THEOREM OF
GAUSS-KUZMIN

Ton Coltescu

Abstract

A Gauss-Kuzmin theorem for the natural extension of the regular
continued fraction expansion is given.

Let © denote the set of irrational numbers in I = [0,1]. Given w € Q, let
a1 (w), az(w), ... be the sequence of partial quotients of the continued fraction
expansion of w constructed as follows.

Define 7: Q2 — Q by

_ m w0 7(0) = 0. (1)

T(w) =

Then apy1(w) = a1 (7" (w)), n € N* = {1,2,...,n},with a1(w) = the inte-
ger part of 1/w.

Let A be an arbitrary non-atomic probability measure on the o-algebra B

of Borel subsets of I and let v be the Gauss probability measure on B; defined

as
1 dx
A)=—— [ ——, AeB,.
7(4) 1og2/1+x’ <P
A
Put F,(x) = A (77" ((0,2))), z € I forall ne N*={0,1,...}, with

79 = the identity map on I. Clearly Fy(z) = A\((0,z)), = € I. For any fixed
n € N and = € I, the set 77" ((0,z)) consists of all w € Q for which 7" (w) < =z,
i.e. the continued fractions

is less than x.

@)+t
Qg w .
i an+2(w)
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1
< Tn(W) < =
(3

1
Then, noting that we have 7"+ (w) < 2 if and only if n
x

for some i € N*, we obtain Gauss’equation

Fopa(z)= > (Fn(i)—Fn (;ﬂ)) neN,zel.

iEN*

Assuming that for some m € N the derivative F), exists everywhere in
I and is bounded, it is easy to see by induction that F}, , exists and it is

bounded for all n € N*, and we have

n

1 1
/ o /
nH(:E)_‘ZW-Fn(m),an,xEI. (2)
iEN*
Now, write f,(z) = (z + 1)F),(z), € I,n > m to get fni1 = Ufn, n > m,
with U is the linear operator defined as

z+1 1
Uf(z) =Y (x+i)(x+i+1)f<x+i),feB(I),er (3)

1EN*

B(I) being the Banach space of bounded measurable complex-valued functions
f on I under the supremum norm |f| = sup{|f(z)||z € I}.

Hence (w)
U fin(u
Frin(z) = ——~du, N, 1 4
n() /0 Tl G EN, ze€ (4)
The asymptotic behaviour of F;, as n — oo including the rate of convergence
for 4 = A = the Lebesgue measure is a problem stated by Gauss in a letter
to Laplace exactly 180 years ago.
On October 25, 1800, Gauss wrote in his diary that (in modern notation)

log(1+ 2)
log 2

inllrréo ({w €0,D\Q; 75 <z} = > ,0<2<1. (5)

Later, in a letter dated January 30, 1812, Gauss asked Laplace to give an

estimate of the error term r,(z), defined by r,(2), defined by
log(1+ =
ravz) = A0, 7)) - ES )

The first one who proves and in the same time answering Gauss’question
was Kuzmin. In 1928 Kuzmin showed that r,(z) = O(¢V") with ¢ € (0, 1),
uniformly for z.

Independently, Lévy showed one year later that r,(z) = O(¢") with ¢ =
0,7..., uniformly for z.

,n>1.
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Theorem 1.1. For every Borel set E C [0,1), one has

A(T7"E) — u(E)| < bA(E)o(n),where 1 is the so-called Gauss measure on
([0,1],B), B being the collection of Borel sets of [0,1), defined by

1 dz
E) = 2 g
HE) 10g2/1+a:’ €B (6)
B

b is a constant and o : N — R satisfies

o(n) < 3¢", n>1 where q= 3 _2

Proof. An essential ingredient in any proof of any proof of the Gauss-
Kuzmin theorem is the following observation.

=

Let w € [0,1)\Q and put 74 = 7%w, k > 0, where 7 : [0,1) — [0, 1) is the
operator defined in (1). From (1) it follows at once that

oo
0<m <zxr&T, EU Ll
>~ Tn41 > n e T+l’7k} .

Thus if we put my,(x) = A({w € [0,1);7"w < x}), n > 0, then
@ =3 (m (1) —ma (1)) n >0 0
Mp+1(T) = — mn L My k—Fl‘ , =

To be more precise, a Gauss-Kuzmin theorem is related to the natural
extension

(Q,B,5,7), Q=10,1) x [0,1],

_ 1 1
where [1 is a probability measure on (Q, B) writh density @ : W7 and
T : Q — Q is defined by
1 —
T(ga :U’) = Tfa 17 ’ (57 77) € Q. (8)
+1
H
Let w € [0,1)\Q, the regular continued fraction expansion
1
=[0;a1, ..., Qn,...] - (9)
a;+ - 1
n

an +
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Finite truncation (9) yields the sequence of regular convergents of w

= [O;alw"?an]v n > 1.

One easily shows that

g-1(w) =0, g(w) =1, ¢gn(w) = angn-1(w) + gn—2(w), n > 1

and )
1 P (W ‘ 1
—  <|w- < s> 1.
2¢n (W) gn+1(w) qn(w) qn (W) * gnr1(w)
Put
(T Vi) = T™(&,m), for (§,m) €, m>1
and (Tp, Vo) = (&,71). Then
Ty = [O;am+l7"'7am+n7"']a Vin = [O;am7"'7a27al +T]]7 m > 1.

Finally, we define for m > 1 the function m,(x,y) by
ma(z,y) = X ({(&n) € Y (Tn, Vo) € Ty })
where X is the Lebesgue measure on € and
Toy = [0,2] x 0,y].

Theorem 1.2. For all N > 2 and all (x,y) € Q, one has

1
my(z,y) = Tog? log(1 4 zy) + O(g")

and the constant of the O symbol is universal.

Proof. The definition of 7 yields

1 1
0<V, 1 <yl ——— <y ——a <V, <1
S V41 XY _an+1+Vn_y y n+l > Vn >

1
Thus, putting I, = {] , one has
Y

> 11
(Tn+1aVn+1) € Tx,y <~ (TnaVn) S (k erl [mv k’} X [07 H) U
=1

(10)
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a5 -1))
ll—l—x’ll y 1, .
i A({(g ) e T (T V)e[ ! 1}%1 z 1]})
ince , (T, Vi, = 2, _
g Lhi+z' Iy y
(1) = () e (e =) = (g -0
=Mn | 7 —Mp\ 7> mog\ 74—~ — —Mp |\ 7= — 3
I I+ L+a'y L'y

o0

one finds my41(z,y) = kgl (m" (%’ 1) — Mn (k"‘%’ 1)) B

11 1 1
_(mn (llay7ll>_mn (ll+x’y_ll)) (*)

Let fo(z,y) be a continuous function on Q, and define the sequence of
functions f,(x,y) on Q recursively by

o0

fari(@,y) = kz:l:l (fn (;1) — fa (kixl» _

11 1 1
(fn <l1ayl1)fﬂ (ll‘f'x’yll))’

[} Then one easily shows that i is an eingenfunction of the
Yy
above equation.

where [; =
Lemma 1.3. Let N € N, N > 2, and let y € (0,1) N Q, with regular
continued fraction expansion

Y= [0;117"‘7ld:|7 lla"'ald € Na2 <d< [N/2}

Then one has for each x,x* € [0,1] with z* < x,

(v (@) — ma(3*,)) — — - log ( L+ay )] <

B log 2 . 1+ 2%y
<AN(Toy\ Lo ) bo (N — d),
where ¢ = g*> and b, o(N — d) as given in Theorem 1.1.

Proof. (A). Puty; = Té = [0;li41, .., lg] = 0,...,d. Note that yo =y
and yq = 0).
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From (%) we at once have that my(x,y) — my(z*,y) =

= 1 1

& (oo () e ()

k=l

l + 71 +
-MmN-1 ll’yl my-1 lﬁ—:ﬂ’yl

> 1 1
+ Z (le (k’ 1) -MN—1 (k—!—x*’ 1))

k=l

LA 1

“MN-1 ll,yl mMN-1 I +x*ay1 .

Now for each D € B one has

1 < 1

D) < a(D) <
STog2 P S HD) = 105

(D). (11)

For each n € N and a = (ay,...,a,) € N™, we consider the fundamental
intervals

Ap(a) = {w € [0,1);pn(w)/qn(w) = [0;a1, ..., anl}

From (11) and the fact that 7 is measure-preserving with respect to f, it
follows that

oo

1 1 > )
;(k—km* k:+ac> :];A(([kaer]a[kaer 1) x[0,1]) <

< 2log?2 Z a((z%,x) x Ar(k)) < 2(x —x")A (O, 1) <4(zx—z")y.
k=l

From this and Theorem 1.1, it follows

§ o e ) oo e
:gl <M<[’“i‘”’f+1$]> i <k+1x B kix) O(QN_1)> =

]. ll + x - N—1
= 1 ATy iy \ T .
log 2 0g <l1 +x*) + A (T2 \ T y) O (q )
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For each 2 <17 < d,

Z 03k, L1y oy by + 2] = [05 L1y oy liga] | <
k=11

< 2log?2 Z I (Ti ([O;k,li_l, ol + J)*] s [O;k‘,li_l, " —|—.Z‘])) <
k=l

S Z 5\ ((I*,I) X Az (117 ...7li_1,l€)) S 2(13—39*))\ (Ai—l (ll, ~--7li—1)) S 4(I’—I*)y
k=l

Now applying (*) to

1 1
mN—-1 (val) —my-1 (W#ﬂ)

yields
lo + L
1 lh+z 1 Ttz
_ * = .1 1
my(z,y) —my (2", y) g2 %8 (l1+x*> Tog2 8 o T +
2 l1 +x*
+A (T2 \ Tz ) O (qN_l) +A (Z2y\ Tz ) O (qN_Q) +
1 1
TN | ——7 Y2 [ —mMN—2 | 7 Y2
l l
2+11—|-x 2+ll—|—z*
After the step d, we get
() = (') = o o (e e )
N NAE log 2 I+ o lala—t, oy lo, 11 + x%]

+;\ (%,y\%*,y) o (qN_l) +ot 5‘ (7;,1/\7;*77/) o (qN_d) + (12)
+Mmy—d ([Oa ld7 eeey l?a ll + l‘} ,yd) —MN—d ([Ov lda (X3} 127 ll + ZL’*] ayd) .
(B). Now define
P,.=1FP=0P=qFP_1+F_ o i=1,.,d
Q1=0,Q0=1; Qi=0;Q;_1+Q;_2,1=1,....d

where a1 =11 +x, ag = o, ...,aq = lg.
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1 i-1 .
Then one has ———— = [0;1;, ..., [; + 2] = b, 1=1,...,d and
L+ @
! 1
n
ll +I’
therefore
(I + ) ([l 1y + ) (I3 Lo, + 2]) . = % : %...Q(ii = Qq.
Py
Furthermore 04 = [0; a1, a2y ooy g) = (0511 + @, 2y .oy L] -
d
Similarly, one has
P*
Q% = [O;ll —‘rl'*,lg,...,ld] .
Note that P; = PJ, so that
(ll + .T) ([lg,ll + .’1?]) ([ld;ldfl, ey byl + I]) _ Qq _
(ll =+ IL'*) ([lg,ll =+ I*]) ([ld7 ld—17 ceey ZQ, ll + JE*D QZ
x4+ !
:Pj.@: 1 '(CC+[11'12 ldDZ y _ 1+ 2y
Qy Py x4 [l . 14) e e I 142y
Y

(C). Since V= 4 gN=dH1 4 4 N1 =¢N 4 (14 g+..+¢7 1) <
> 1
s (Z ql) =" =g d"
=0

and yq = 0.

142y
1+z*y

1 _
(my(z,y) —my(z*,y)) — log? log < )’ < 1290 (T3, 4\ T2+ ) qN—d.
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