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Tissue Doppler Imaging: Myocardial Velocities and Strain —
Are there Clinical Applications?

G. Mundigler, M. Zehetgruber

Assessment of regional wall motion plays a major role in daily routine echocardiography. However, reliable visual analysis
remains challenging in a significant number of patients. Tissue Doppler and strain rate imaging are new techniques which
provide velocities of the myocardial wall during the cardiac cycle and therefore allow quantification of both regional and global
systolic and diastolic function. J Clin Basic Cardiol 2002; 5: 125-32.
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O ne hundred and sixty years ago, the Austrian professor
of mathematics Christian Doppler first described the
Doppler principle for light. Applied to ultrasound this tech-
nique has been developed to an essential part of echocardio-
graphy, providing valuable information for diagnosis of
regurgitant, obstructive or shunt lesions. In contrast to two-
dimensional echocardiography, Doppler signals are less af-
fected by tissues between region of interest and the trans-
ducer. Tissue Doppler imaging (TDI) and strain rate imaging
(SRI) are new techniques providing velocities of normal and
pathologic myocardial structures during the cardiac cycle.
Assessment of myocardial wall velocities with respect to tim-
ing and amplitude has been suggested for quantification of
global and regional systolic and diastolic function, additional
applications are under investigation. In this article we will
give an overview about the technical basics of TDI and SRI,
experimental studies and clinical applications, future devel-
opments and the possible role of this new techniques in daily
routine echocardiography.

Historical Review and Experimental Studies

As early as 1973 Kostis et al. [1] first described pulsed wave
Doppler technique for investigation of posterior wall veloci-
ties. Isaaz et al. found that low peak systolic velocity was asso-
ciated with abnormal wall motion [2]. 1992 McDicken and
Sutherland introduced a new technique for producing im-
ages of the velocity of tissue motion within the myocardium
[3]. Based on the autocorrelation signal processing [4] color
Doppler flow images were used to obtain myocardial tissue
velocities. 1994 Yamazaki et al. described this method for
analysis of ventricular wall motion [5].

Several studies by Sutherland and Fleming et al. demon-
strated the feasibility and reliability of color Doppler M-
mode [6]. Measurements using a rotating phantom showed
appropriate color coding allowing velocity assessment. By ex-
amining still images of agar and gel blocks, adequate axial and
lateral resolution of 3 X 3 mm was documented, permitting
accurate recognition of significant wall motion abnormalities.
In open chest pig animal models color coded tissue Doppler
was able to identify wall motion abnormalities [7]. Miyiatake
et al. focused on measurement of the differences of velocity
between the endocardial and epicardial sites of the ventricu-
lar wall, ie, the myocardial velocity gradient (MVG) [8]. Re-
cently, MVG was shown to differentiate transmural from
nontransmural infarction in open chest dogs [9]. In a trans-

genic rabbit model of human hypertrophic cardiomyopathy
TDI accurately identified the mutant rabbits even in the ab-
sence of left ventricular hypertrophy [10].

Technical Principles of TDI

Blood flow Doppler signals are characterized by high veloci-
ties and low amplitude. In contrast, Doppler signals from the
myocardial wall exhibit low velocities (4-8 cm/s in healthy
volunteers) with high amplitude. While in conventional
Doppler techniques a high-pass filter prevents low-ampli-
tude signal detection from the myocardium, in TDI this filter
is bypassed and high frequency blood flow signals are elimi-
nated by gain adjustment (Fig. 1).

Color TDI

In conventional echocardiography Doppler signals from red
blood cells are detected at each sampling site along the ultra-
sound beam. The frequency shift is measured and converted
into a digital format. By autocorrelation method different ve-
locities are correlated with a preset color scheme and, super-
imposed on the 2-dimensional image displayed as color flow
on the monitor. Blood flow towards the transducer is color-
coded in red shades while blood flow away from the trans-
ducer is color coded in shades of blue. Velocities exceeding
the Nyquist limit lead to aliasing and to reversal of color and
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Figure 1. Left: Principle of conventional Doppler. High amplitude
myocardial wall signals are eliminated by high pass filter. Right:
Doppler signals from myocardial wall are extracted, blood flow
signals are eliminated. With friendly permission from: Erbel R,
Nesser HJ (eds). Atlas of tissue Doppler echocardiography.
Steinkopff Verlag, Darmstadt, 1995; 9, fig. 3.1, 3.2.
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variant colors respectively. In TDI, the same principles have
been applied. The upper limit of measurable velocities is de-
termined by the pulse repetition frequency, which is also the
sampling frequency. With the latest techniques, frame rates of
up to 240/s can be obtained. Because ventricular wall motion
velocity at rest is about 10 cm/s or less and increases up to
15 cm/s during stress aliasing is unlikely under these condi-
tions. As for pulsed wave and continuous Doppler, Doppler
shift and hence temporal and spatial resolution are dependent
on frame rate which itself is correlated to probe frequency,
pulse repetition frequency and sector angle.

Pulsed Wave Tissue Doppler Imaging

In contrast to color-Doppler-TDI, pulsed-wave-TDI meas-
ures not mean but peak velocity instantaneously, hence ob-
tained velocities are slightly higher than with color-TDI.
Pulsed-wave-TDI provides real-time Doppler signals with high
temporal resolution but allows only step by step evaluation of
single sampling points of interest, reproducibility therefore
may be lower than for color-Doppler-TDL

Data Acquisition and Processing

At the beginning of TDI color coded images were visually
analyzed using color velocity scales. Now, TDI images can be
obtained real-time and velocity curves may be analyzed later
by postprocessing using integrated or external software.
Echocardiographic images are obtained from the examined
region using a standard phased array 3.5 MHz transducer and

stored as digital cineloops. With recently available TDI soft-
ware conventional 2-dimensional images now can be ob-
tained without loss of grey scale image quality with simulta-
neous TDI acquisition. TDI provides a color-coded velocity
map of cardiac structures. For velocity analysis one or more
sample volumes simultaneously of predefined size, eg 3 x 3
pixels are positioned into the region of interest within the
myocardium. Due to global cardiac motion an average of all
mean velocities, which are moving within the sample region,
are determined. As a special feature simultaneous movement
of the sample volume during the cardiac cycle within the
myocardial wall is possible by “fixing” it at the identical posi-
tion. Doppler signals are converted into single or multiple
velocity curves providing velocity profiles over the whole car-
diac cycle. By Fourier analysis mean peak systolic and
diastolic velocities are generated and displayed on a linear or
logarithmic scale, velocities are measured as cm/s and time
intervals in milliseconds (Fig. 2).

By using curved m-mode a myocardial region of various
length can be analyzed. Wall movement is depicted color
coded where spatial and temporal information is drawn on y-
axis and x-axis respectively, which enables visual analysis of
mechanical propagation during the cardiac cycle.

M-mode color Doppler techniques may provide im-
proved spatial and temporal resolution, moreover, myocar-
dial velocity gradients between epi- and endocardium may be
obtained. Due to angle dependency of Doppler signals this
technique is limited to relatively small segments of paraster-
nal views [11].
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Figure 2. Tissue Doppler velocity curve in a healthy volunteer. Apical 4-chamber view. The sample volume is positioned in the basal inferior
septum. The initial positive excursion represents the isovolaemic contraction phase (IVC), followed by the systole. The negative waves repre-
sent early (E’) and late (A’) diastole.
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TDI in Normal Subjects, Pathophysiologic and
Technical Considerations

Previous studies using radio opaque markers implanted into
the myocardial wall gave important information about re-
gional heterogeneities of wall motion and distribution of ve-
locities within the myocardium [12]. In the human heart
muscular fibers are anatomically oriented in circumferential,
radial and longitudinal manner, resulting contraction patterns
are non-homogenous and complex. TDI can non-invasively
visualize regional differences in mechanical activation and
movement. Image acquisition from the parasternal short and
long axis view allows assessment of myocardial velocity re-
sulting from radial fiber contraction. Velocity of epicardial
circumferential fibers can be evaluated only in small lateral
and septal segments from the parasternal short axis. During
systole basal and mid segments are moving not only inwards
but also longitudinally towards a center of gravity, which is
located between the second and third part of the long axis
[13]. Contraction of subendocardial longitudinal fibers can
be reliably assessed by TDI from the apical views. From base
to apex a velocity gradient with highest velocities at basal seg-
ments can be observed, apical segments thicken during con-
traction but the epicardial apex remains relatively stationary.
Accordingly, also in the normally contracting apex measured
TDI velocities are very low. In addition to regional velocities,
the total movement of the heart with translational and rota-
tional motion during the heart cycle has to be taken into ac-
count for TDI analysis, measured velocities represent a sum
of regional myocardial velocities and global intrathoracic car-
diac motion. Therefore, for prevention of additional artifacts
by total cardiac motion during breathing, it is recommended
to perform image acquisition during apnoea.

TDI Studies Evaluating Normal Subjects

Systolic and diastolic myocardial velocities and also distinct
velocity patterns during specific cardiac phases in healthy in-
dividuals have been investigated for assessment of normal
ranges [14], where aging was significantly correlated with
changes in systolic and diastolic TDI-parameters [15-17].
Wilkenshoff found mean systolic peak velocities measured at
rest between 2.46 = 1.1 cm/s and 7.76 = 1.85 cm/s in the
apical septal region and the posterior wall respectively, similar
results were found by Galiuto et al. [18, 19]. Garcia observed
a similar range for each myocardial segment in 24 normal
subjects for pulsed-wave-TDI assessed velocities and it was
shown that there was a good correlation between wall veloci-
ties obtained by conventional M-mode and by TDI record-
ings [20-22]. In the short axis view, inferoposterior velocities
are higher than in the anteroseptum, there is a gradient in
peak systolic velocities within the myocardium with highest
velocities at the endocardial site [23].

Coronary Artery Disease

Among cardiac imaging modalities 2-dimensional echocardio-
graphy plays an outstanding role in coronary artery disease.
Abnormal myocardial wall motion at rest or during stress is a
sensitive marker for myocardial damage or significant coro-
nary stenosis, respectively. Akinesia is defined by segmental
wall thickening of less than 10 % and hypokinesia as wall
thickening by less than 30 %. However, in routine echo-
cardiography wall motion analysis is performed visually by
“semiquantitative” description. Unlike nuclear or magnetic
resonance imaging techniques echocardiography still allows
no reliable quantification of regional myocardial dysfunction,

accurate wall motion analysis remains dependent on image
quality and operator experience. In stress echocardiography
observer experience is even more important and accurate as-
sessment of regional function becomes more difficult at peak
stress.

Previously described quantitative echocardiographic me-
thods such as acoustic quantification or color — kinesis have
many disadvantages and as yet have not found their way into
daily clinical practice. TDI is a new technology, which has
been proposed for quantification of regional systolic and also
diastolic regional function. MVG between endo-, and epicar-
dium was suggested as a valid quantitative parameter for re-
gional wall motion [11] however, due to angle dependency its
use is restricted to a few segments only. During ischaemia
longitudinal endocardial fibers are primarily affected, hence
velocity changes can be detected by apical approach. During
acute coronary occlusion peak systolic velocities decrease, a
reversal of isovolemic relaxation velocity and reduction of
early and late diastolic velocities can frequently be observed.
These changes are reversible during reperfusion [24, 25].
Compared to healthy subjects, in patients after myocardial
infarction reduced peak systolic velocities were measured at 4
different sites of the mitral annulus, velocities significantly
correlated with ejection fraction. A cut-oft point of 2 7.5 cm/s
had a sensitivity of 79 % and a specificity of 88 % in predicting
preserved systolic function or ejection fraction of = 0.50 or
< 0.50, respectively [26]. In addition to systolic velocities,
diastolic E’ (mitral annulus)-deceleration time and E’/A ratio
have also been shown to correlate with wall motion abnor-
malities. However in apical segments overlap reduces accu-
racy for discrimination between normal- hypo- or akinetic
segments in this region [27]. Gorcsan et al. found a signifi-
cant correlation of several TDI indices, such as time to peak
systolic velocity, systolic duration or systolic time velocity in-
tegrals with the degree of regional dysfunction [21].

Stressechocardiography

Stressechocardiography gains increasing importance as a valu-
able, non-invasive diagnostic tool in coronary artery disease
or in determination of myocardial viability. However, de-
pendency on image quality and subjectivity of the visual
analysis remain major limitations. TDI should provide quan-
tification of wall motion abnormalities, therefore enhancing
objectivity and accuracy. Katz et al. found significantly lower
systolic velocities at peak stress in abnormal than in normal
segments (3.1 £ 1.2 cm/s vs. 7.2 = 1.9 cm/s). However, in
apical abnormal segments the velocity response could not be
distinguished from normal controls. A peak stress velocity re-
sponse of <5.5 cm/s was useful in identifying abnormal
segments in all but apical segments [28]. Wilkenshoff et al.
examined healthy volunteers during exercise with TDI and
observed significant increases in systolic velocities for most
myocardial segments during each workload step [19]. As an
indicator independent from translational motion MVG was
found to increase during dobutamin stress in nonischaemic
segments and remained unchanged in ischaemic segments
[29, 30]. Pasquet found lower peak velocities in both ischae-
mic and scar segments than in normal segments at rest and
during exercise treadmill test [31]. In an ongoing multi-
center study increased accuracy for diagnosis of myocardial
ischaemia could be obtained with TDI by using an adjusted
model rather than cut off-values [32] (Fig. 3a, b).

Viability assessment of DSE in combination with TDI
improved accuracy and showed comparable results to thal-
lium-201 tomography [33]. In PET non-viable segment
systolic peak velocities were significantly lower and demon-
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strated a reduced response during dobutamine stress com-
pared to PET-viable segments [34, 35].

Global Systolic Function

Echocardiographic evaluation of global left ventricular func-
tion is most commonly obtained by visual semiquantitative
analysis. Measurements of fractional shortening (FS), stroke
volume or left ventricular ejection fraction (LVEF) are fre-
quently assessed parameters. However, in many patients ac-
curate estimation is limited by poor image quality. Less de-
pendent on endocardial definition, TDI has been evaluated in
different patient groups for assessment of LVEF. Measure-
ment of longitudinal shortening of the left ventricle to assess
LV-function has gained growing importance during the last

years [36]. Left ventricular long axis contraction is reflected
in mitral annular descent, which can be evaluated by TDI at
different sites. In comparison with radionuclide ventriculo-
graphy the septal and lateral average velocities were well cor-
related with LVEF under identical conditions, this relation-
ship was not significantly affected by wall motion abnormali-
ties. A six-site peak mitral annular descent velocity of
>5.4 cm/s identified LVEF within normal range with reason-
able sensitivity and specificity [37]. However, as for LVEF it
has to be taken into account that mitral annulus-TDI veloci-
ties are dependent on loading conditions, atrial haemo-
dynamics and heart rate as well. Yamada et al. found signifi-
cant positive correlations of endocardial peak systolic velocity
for the LV posterior wall with FS and LVEF in different pa-
tient groups but no correlation between FS or LVEF and peak

velocity of the ventricular

septum [38]. OKki et al. described
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separation of the PW-TDI ob-
tained systolic velocity curve
into 2 peaks (SW1 and SW2)
and suggested SW1 along the
long axis to be a useful param-
eter for evaluation of isovol-
emic myocardial LV contra-
ctility. However, difficulty of
""" clear separation of SW1 and
SW2, regional asynergies and
abnormal septal movement are
frequent limitations [39].

In failing human hearts
betareceptor density decreases
and myocardial cells will be re-
placed by interstitial fibrous tis-
sue with subsequent impair-
ment of left ventricular func-
T tion [40]. Shan et al. examined

- AN myocardial velocities by TDI at
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diastolic velocities were strongly
related to both the number of
myocytes and myocardial beta
receptor density [41].

Diastolic Function

Left ventricular filling is a com-
plex sequence of multiple
systolic and diastolic properties
of the left ventricle combined
with the transmitral pressure
gradient and the atrial systole.
Analysis of both the mitral
inflow pattern and pulmonary
venous flow allows the differ-
entiation of various diastolic
filling patterns, correlating with
the severity of diastolic dys-
function. However, in clinical
routine, the echocardiographer
is faced with several drawbacks
in mitral and pulmonary in-
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flow interpretation when sev-

Figure 3a, b. a) TDI-velocity curves in a patient with ischaemic cardiomyopathy. In contrast to Fig. 2
there is reduced velocity (3.8 cm/s) at rest due to hypokinesis in the inferior basal septum. b) During
peak dobutamine stress there is a significant increase up to approximately 10 cm/s, indicating contrac-
tile reserve. Note the reversal of E'/A’” indicating diastolic dysfunction.

eral haemodynamic alterations
(changes in preload, heart rate,
relaxation) occur simultane-
ously or when pulmonary ve-
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nous signal cannot be registered sufticiently. Thus it is often
quite difficult to 1) discriminate a normal from a pseudo-
normal filling pattern 2) to estimate diastolic function in
atrial fibrillation 3) to differentiate restrictive cardiomyopathy
from constrictive pericarditis. Tissue Doppler holds great
promise as a complementary tool in these cases. In contrast to
mitral inflow, which reflects global diastolic function TDI
enables regional diastolic function by velocity assessment at
different sampling sites to be seen. In apical views areas of
interest are the mitral annulus as well as basal myocardial seg-
ments in both, 4 and 2-chamber view. In these views the mo-
tion of the base is near in parallel with the Doppler beam and
the apex is relatively fixed throughout the cardiac cycle.
Therefore measured velocities are nearly entirely due to con-
traction and relaxation of the cardiac base. In most studies the
Doppler sample is placed at the level of the mitral annulus in
a 4 chamber view. Global diastolic function can also be ex-
pressed by averaging velocities in four segments. A good cor-
relation with conventional measures derived from LV filling
pattern has been demonstrated [42].

The diastolic filling pattern by TDI very closely resembles
the mitral inflow E and A pattern and the E’/Aratio is quite
similar to the E/A ratio. With normal LV filling early (E’)
diastolic velocity range is between > 10 cm/s in the young
and > 8 cm/s in the older patient, late diastolic velocities (A’)
increase with age. Studies demonstrated a negative correla-
tion between age and the ratio of early to late diastolic veloc-
ity [43]. While the mitral inflow very much depends on
preload, thus attributing to problems of interpretation,
diastolic tissue velocities are by far less influenced by these
parameters [44]. In addition, the similarity of ventricular in-
flow and diastolic myocardial velocities gets lost in progre-
dient ventricular diastolic dysfunction. While the mitral in-
flow E wave decreases in the early stages of diastolic dysfunc-
tion (delayed relaxation) and increases again in the more ad-
vanced pseudonormal phase, both phases lead to a reduction
of E’ to < 8 cm/s, decreasing even more in the restrictive
phase. This has additional practical relevance in differentia-
tion of restrictive cardiomyopathy and constrictive pericardi-
tis. A tissue Doppler E’ of 8 cr/s reliably separated these two
entities in a series of patients [45].

TDI is also useful in the detection of impaired left ven-
tricular relaxation and estimation of filling pressure in patients
with atrial fibrillation. In these patients both conventional
mitral and pulmonary Doppler indices are limited because of
the altered atrial pressure and loss of synchronized atrial con-
traction. In a recent study, patients with low E’ had a pro-
longed relaxation (as estimated invasively by tau) [46]. A cut-
off for E’ of 8 cm/s had a sensitivity of 73 % and a specificity of
100 % to predict impaired relaxation. The E/E’ ratio correlated
with left ventricular filling pressures. The E/E’ ratio of > 11
predicted left ventricular filling pressures > 15 mmHg with a
sensitivity of 75 % and a specificity of 93 %.

TDI provides reproducible and complementary measures
of left ventricular relaxation and filling pressures, which
allow a more comprehensive evaluation of diastolic function.

Hypertrophic Cardiomyopathy

Yamada et al. measured significantly reduced peak velocities
in the hypertrophied septum and the posterior wall, however,
velocity gradients were only slightly reduced compared to
normals. In the septum, transmural velocity profiles were
also less uniform than in the posterior wall, possibly reflect-
ing the degree of myocardial disarray [47]. Impairment of
systolic velocities was found not only in the hypertrophied
interventricular septum but also in nonhypertrophied re-

gions suggesting these segments also being affected by the
pathologic process [48].

Arrhythmias

Today with both, pulsed-wave-TDI and color-Doppler-TDI
frame rates of > 200 and temporal resolution of 5 ms can be
achieved by reducing the sector angle. Velocity profiles
assessed at different sampling sites show regional variations
also in healthy individuals [49]. In previous studies, in
patients with Wolff-Parkinson-White syndrome TDI even
with frame rates of 38/s was able to detect early contraction
sites. TDI diagnosis for the left-sided pathways correlated
also well with the ablation site, where feasibility was
remarked lower in right sided pathways. For TDI accelera-
tion mode, a special feature of TDI, an agreement of 90 %
between TDI and accessory pathway localized by invasive
electrophysiological testing was found, and TDI was effective
for localizing left sided accessory pathway in particular in the
anterior, anterolateral and inferior walls. Rein et al. reported a
case where complete atrioventricular dissociation inherent to
ventricular tachycardia was detected by fetal echocardio-
graphy with M-mode-TDI. Moreover, the onset and pattern
of propagation of the tachycardia could be identified by 2-
dimensional TDI [50]. However, accuracy is dependent on
adequate image quality with clear delineation of endocardial
and epicardial borders, visual analysis underlies subjective
interpretation and may be time consuming. Whether this
method will be helpful in patients with preexcitation, eg as
non-invasive screening technique requires further investiga-
tion [51-54].

As a promising tool in treatment of patients with heart
failure and inter/intraventricular desynchronisation biventri-
cular pacing has been suggested. TDI could evaluate asyn-
chrony between different wall segments by simultaneous
measurement of time intervals helping to discriminate pa-
tients who will benefit from this new therapy [55].

Limitations

Unsatisfactory reproducibility is still a main limitation of
TDI. For pulsed wave TDI interobserver reproducibilities
for peak systolic velocity have been reported from 4 % for the
lateral annulus to 24 % for the short axis, reproducibility was
better in the long axis than in the short axis view and in gen-
eral was dependent of observer experience [57, 58]. Katz et al.
reported a relatively good interobserver variability of 3.8 +
16.5 % for color coded TDI [28]. For myocardial velocity
gradients the mean difference between two observers was 0.9
+ 0.5 cm/s [29]. Reproducibility in general is better in basal
than in apical segments and can be invariably high in seg-
ments obtained from the parasternal long axis. In a
multicenter trial, coefficients of variation for basal, mid-ven-
tricular, and apical segments were 8-13 %, 11-21 %, and 15—
47 %, respectively. For anteroseptal segments reproducibility
in the parasternal long axis was 104 % [59]. Several reasons
contribute to this problem. As for conventional echo image
minor changes in transducer position during image acquisi-
tion can lead to significant changes, which gain increased im-
portance when serial examinations as for stress echo are nec-
essary. As described above, artifacts and regional hetero-
geneities within the myocardial wall may result in large ve-
locity differences, hence sample volume position has to be
“standardized” when comparison of images is required. Un-
like PW-TDI color Doppler-TDI has the advantage of off-
line postprocessing and analysis however, identical position-
ing of the sample volume may be challenging as well.
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Although Doppler signals are less influenced by poor im-
age quality TDI analysis may be impossible when there is no
delineation between myocardium and surrounding struc-
tures or when signal to noise ratio is low, subsequently black
zones may OCCUr.

For both, evaluation of global or regional systolic and
diastolic function whole cardiac motion and tethering effects
in scar regions may limit accuracy by substantial “false” velo-
city increase of dysfunctional segments, since it cannot differ-
entiate whether velocities are caused by active or passive
movement. Translational motion to a varying degree occurs,
eg, after orthotopic heart transplantation, from right ven-
tricular overload, or during catecholamine stress. While lon-
gitudinal shortening is less affected, whole cardiac motion
may significantly lead to overestimation of assessed velocities
of the posterior wall in the parasternal long axis.

As in conventional Doppler, error occurs with increasing
angle between ultrasound beam and investigated segments.
Velocities may therefore vary according to the incidence
angle of Doppler signal and investigated region, eg in par-
asternal short axis view lateral wall velocities cannot be meas-
ured reliably. For comparative examinations as for stress echo
angle dependency plays a minor role since velocities within
the same region are compared side by side at different steps.

Time is still another crucial limitation of this method.
Although lateral resolution is less in apical views, due to the
heterogeneity of longitudinal velocities also within small seg-
ments and artifacts it takes time to find the best position for
the sample volume. Screening the whole myocardium there-
fore is time consuming with commercially available software.

Strain Rate Imaging (SRI)

As a technical consequence of the limitations of TDI men-
tioned above and based on the myocardial velocity gradient

SRIwas introduced in 1997. Strain means tissue deformation
due to applied stress. Elongation of the myocardium is posi-
tive strain whereas shortening is negative strain, according to
the equation S = Al/ly, where S = strain, Al = change in
length and lp = basal length. Additionally, as a temporal de-
rivative of strain, strain rate (SR) measures the rate of defor-
mation, which is equivalent to the MVG. In contrast to TDI,
the velocity gradient between two points within the myocar-
dium, with a predefined offset can be assessed also in the lon-
gitudinal view and regional strain can be calculated. The re-
sulting information gained from the region of interest is de-
picted color coded, eg as curved M-mode or as a velocity
curve, where strain rate is measured as s™! (Fig. 4).

In a pilot study of Heimdahl et al. real time SRI was able to
differentiate clearly normal from reduced left ventricular
function [60]. In akinetic segments strain rate was zero com-
pared to hypokinetic areas with SR of 0-0.8 s!. Similar re-
sults were found by Voigt et al. who found values of 19 % for
systolic longitudinal strain (=shortening) in normokinetic
segments, which corresponded well to strain obtained by
MRI. Measurement differences between 2 observers were
15 %, 13 % for systolic strain rate and strain respectively [61].
In experimental models systolic strain increased during
dobutamine infusion while SR reduction occurred with
coronary occlusion, this well correlated with strain by
sonomicrometry [62, 63].

Although SRI has the potential for playing a notable role in
diagnosis of coronary artery disease several limitations still
remain to solve. SRI is based on calculation of Doppler sig-
nals and measures distances along the ultrasound beam and
not in tissue. Consecutively, angle dependent errors can oc-
cur, leading to reduced or even inverted strain rates [60, 62,
64]. In contrast to TDI, SRI should be less affected by trans-
lational cardiac motion and segmental tethering eftects, how-
ever, local interactions between segments with different elas-

tic properties, and also different

I =
yro i '

| loading conditions can influence
‘ SR values [61, 63]. Normal SR
"] values in larger cohorts of healthy
i subjects, influence of different
i pathologies such as hypertension,
but also changes due to aging
i processes with respect to systole
118 and diastole have to be defined.
i At present also spatial and tempo-
d ral resolution is limiting the diag-
nostic accuracy. Below 10 mm
.\ samples signal to noise ratio be-
R comes too low. Moreover, ran-
dom noise frequently occurs,
rendering interpretation of strain
rate tracings difficult.

Future Aspects

Accurate quantification of the
normal and impaired myocardial
motion with respect to timing
and amplitude remains a key tar-

get. In future, automated 3-di-

Figure 4. ,Strain rate imaging“. Postprocessing of a color Doppler data set. Left panel: Apical 4-
chamber view with the sample volume positioned in the interventricular septum. Right upper panel:
Color M-mode technique. The image represents the septal “strain” during the cardiac cycle, where
tissue compression is color coded in yellow-orange-red (negative strain), and elongation coded in
blue (positive strain). Extracted velocity profiles are depicted in the mid. With friendly permission by
Steinkopff Verlag Darmstadt from: Voigt JU, v Bibra H, Daniel WG. Neue Techniken zur Quantifizierung
der Myokardfunktion: Akustische Quantifizierung, Kolor kinesis, Gewebedoppler und “strain rate
imaging. Z Kardiol 2000; 89 (Suppl 1): 1/97-1/103.

mensional data acquisition in-
cluding TDI and SRI will be
commercially available, instanta-
neously providing tissue Doppler
Bull’s eyes and myocardial time-
velocity maps of the whole heart
in real time as already described
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previously [65-67]. Higher frame rates, improved signal
processing, and time saving by automization will facilitate
quantification of wall motion abnormalities hence increasing
the value of this method in terms of sensitivity and specificity.

Conclusion

As a matter of fact, pathologic processes due to numerous dif-
ferent reasons are reflected by changes and impairment of the
normal systolic and diastolic velocity patterns. These pat-
terns of velocity curves and numerical values are already well
described for healthy individuals and in a broad spectrum of
cardiac diseases. Due to wide overlaps particularly in the api-
cal regions, age dependency, and a lack of specificity of veloc-
ity patterns, differentiation between normal and pathologic
may still be challenging in the individual patient. However,
for the first time, TDI and SRI provide “numbers” hence
enabling quantification of wall motion. Nevertheless, TDI
and SRI are still experimental methods and so far the only
recommended and reliable clinical application for TDI is as-
sessment of diastolic function.

In the future, new acquisition and analyzing techniques
may overcome present limitations and offer TDI and SRI as
useful complementary tools in clinical echocardiography.
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