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Abstract 
 
This work investigated the consistency of both the category-level and the map-level accuracy 
measures for different scenarios and features using Support Vector Machine. It was verified that 
the classification scenario and the features adopted have not influenced the accuracy measure 
consistency and all accuracy measures are highly positively correlated. 
 
Keywords: Image Classification, Accuracy Measures, Category-level, Map-level, Comparison. 

 
 
1. INTRODUCTION 

In geoscience, Pattern Recognition methods have been shown useful for detecting targets in 
images obtained by satellites for many different purposes. Monitoring natural resources such as 
forests, rivers and glaciers [1; 2; 3], study areas affected by natural disasters [4] and urban 
planning and road monitoring for governmental purposes [5] are some examples. The Pattern 
Recognition techniques used to identify targets on images are called Image Classification. 
 
Several accuracy measures are developed to quantify category-level and map-level accuracy 
measures based on the confusion matrix, which is computed from the Image Classification 
results. Each accuracy measure may be more relevant than others for a particular objective, 
since different measures incorporate different information about the confusion matrix. 
 
In [6], the consistency of both category-level and map-level measures was investigated through 
the statistical correlation analysis of the confusion matrices using the probability of concordance. 
These confusion matrices were collected from previous studies presented in literature. 
 
The objective of this work is to investigate the consistency of category-level and map-level 
accuracy measures, for image classification results with different numbers of classes. The image 
classification process was done using the Support Vector Machine (SVM) method and LISS-3 
multi-spectral optical images, onboard of the Indian Remote Sensing Satellite (IRS). 

 
2. ACCURACY MEASURES 

Confusion matrix is one of the most effective ways to represent the Image Classification 
accuracy, being able to describe inclusion and exclusion errors. A generic error matrix is 
represented in Table 1, where for a given class ��, ��� is the number of pixels from �� sample that 



Graziela Balda Scofield, Eliana Pantaleão & Rogério Galante Negri 

International Journal of Image Processing (IJIP), Volume (9) : Issue (1) : 2015 12 

was classified as ��, ��� and ��� denotes the marginal producer and user, respectively, to a given 

class ��, and � is the total of validation pixels. 

 
 
 
 

 
 
 
 

 
 

TABLE 1: A Generic Error Matrix and Its Elements. 

 
Several measures of thematic map accuracy were developed using the confusion matrix [7; 8; 9; 
10]. These measures are organized into two groups: category-level and map-level accuracy 
measures. The category and map-level measures shown in Table 2 were analyzed. 
 

 Measure name Formula Range 

C
a
te

g
o
ry

-l
e
v
e
l 

User accuracy [11] ��� = ���/��� [0,1] 
Producer accuracy [11] ��� = ���/��� [0,1] 

User conditional kappa [9] ���� = (��� − ���)/(1 − ���)  ] − ∞, 0] 
Producer conditional 

kappa [9] 
���� = (��� − ���)/(1 − ���)  ] − ∞, 0] 

Modified user conditional  
kappa [10] 

����� = (��� − ��)/(1 − ��)  [−1,1] 
Modified producer conditional 

kappa [10] 
����� = (��� − ��)/(1 − ��)  [−1,1] 

M
a
p
-l

e
v
e
l 

Overall accuracy [8] �� = � ���
�

���  [0,1] 
Average accuracy user 

perspective [11] 
��� = 1� � ���

�
���  [0,1] 

Average accuracy producer 
perspective [11] 

��� = 1� � ���
�

���  [0,1] 
Double average user and 
producer accuracy [12] 

���� = ��� − ���2  [0,1] 
Average of Hellden mean  

accuracy index [13] 
���ℎ = 1� � 2������ + ���

�
���  [0,1] 

Average of Short mapping  
accuracy index [13] 

�� = 1� � ������ + ��� − ���
�

���  [0,1] 
Combining accuracy from both  

user and producer perspectives [11] ���� = ��� − ���ℎ2  [0,1] 
Kappa [7] ��� = �� − ∑ (��� + ���)������ − ∑ (��� + ���)����  ] − ∞, 1] 

Modified kappa [12] ���� = (�� − 1�)/(1 − 1�) ] − ∞, 1] 
Average mutual information [14] ��" = 1� � ��� ������ + ��� − ���

�
�,���  [−∞, 1[ 

 

TABLE 2: Category-level and Map-level Accuracy Measures [6]. 

  User  
  �� �# ⋯ �%  
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r �� ��� ��# ⋯ ��% ��� �# �#� �# ⋯ �#% �#� ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ �% �%� �%# ⋯ �%%  �%� 

  ��� ��# ⋯ ��% � 
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The overall accuracy is the sum of the total correct pixels divided by the total number of pixels, 
since the accuracies of individual classes are calculated by the producer accuracy. The producer 
accuracy gives the probability of a pixel being correctly classified. On the other hand, the user 
accuracy indicates the probability that a pixel on the map represents the same class on the 
ground [11]. In [15], the averages of the user and producer accuracy are proposed. 
 
The Kappa coefficient, introduced by [7], is a widely used accuracy measure for classification 
assessment. Kappa may be used as a measure of agreement between prediction and reality, or 
to determine if the values in a confusion matrix represent a significantly better than a randomly 
obtained one [16]. Several modifications on Kappa coefficient, for category and map-level 
assessment, have been suggested. The Conditional Kappa [9] and the Modified Conditional 
Kappa [10] have been presented as the additional means of incorporating an adjustment for 
hypothetical chance agreement into the category-level accuracy assessment. Among many other 
map-level measures, the Average Accuracy of the user, the producer, and the combination of 
both perspectives [11], Average of Short Mapping Accuracy Index [12], Hellden’s Mean Accuracy 
Index [13] and the Average Mutual Information [14] may be mentioned. 
 
In [6], it is conducted a consistent analysis of accuracy measures using Kendall’s Tau (()), which 
is the difference between percentage of concordance (*+) and the percentage of discordance 
(*,) of two accuracy measures computed on a collection of confusion matrices. Formally, given - 
confusion matrices (.�, .#, … , .0) and two accuracy measures (� and 1), a series of pairs is 
determined from these n confusion matrices, that is: (��, 1�),(�#, 1#),…,(�0, 10). For two specific 
confusion matrices .� and .�, if either �� > �� and 1� > 1� or �� < �� and 1� < 1�, there is a 

concordant pair; if either �� > �� and 1� < 1� or �� < �� and 1� > 1�, there is a discordant pair. For - confusion matrices, 4 = -(- − 1)/2, for 1 ≤ ", 6 ≤ -, is the number of pairs of possible matrix 
combinations. Denoting + and , as the number of concordance and discordance pairs, *+ and *, are the concordance and discordance percentage, written respectively, as +/4 and ,/4. 

 
3. METHODOLOGY 
The adopted methodology consists of four steps: definition of a classification problem; attributes 
extraction from an adopted study image; classification of the selected image; calculation and 
comparison of accuracy measures. The image and the adopted study area are shown in 
Subsection 3.1, Subsection 3.2 presents the adopted image classification method and the 
attributes extracted from the study image to process the classifications are mentioned in 
Subsection 3.3. For each classification result, the different accuracy measures presented in Table 
2 are computed with basis on validation samples (Table 3). It is worth mentioning that the aim of 
this study is to investigate the assessment measures previously discussed and not the obtained 
classification results. 
 
It is worth mention that in this study, different from [6] where confusion matrices were observed 
from previously studies through diverse images and classification methods, the confusion 
matrices were obtained using a particular image classification method, various features extracted 
from a selected image and considering distinct classes (classification problems).  
 
3.1 Data and Study Area 
The study area corresponds to a region near to Tapajós National Forest (FLONA), Brazil. The 
FLONA is a federal conservation unit having approximately 544 thousand hectares. This unit is 
bounded by the urban area of Belterra at North, by the BR-163 highway at East, by the Tapajós 
River at West and by the Tinga and Cupuari rivers at South. It is also characterized by wood 
extraction that occurred over the past two decades, provoking significant formation of secondary 
forest areas, concentrated mainly along the BR-163 highway. Additionally, this area has received 
governmental incentive for mechanized grain production, aiming to export in the first decade of 
2000 [17]. 
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Examples of land cover samples collected on the study area are shown in Figure 1
samples were verified in a field work performed during September 2009. Fortunately, the 
LISS-3 multispectral sensor (23
FLONA area with low cloud coverage in September 10
to train the classification method and to validate the results. For each class, two sets of samples 
were randomly defined, where the first one is responsible for training and another for validation. 
The training set is approximately twice larger than the validation one. Table 3 summarizes the 
quantity of pixels adopted to train the classification method and to validate its results.
 
Based on the field work information, a hierarchical class tree was organized, as shown 
2. This arrangement allows to define four scenarios, that is, four ways to partitionate the set of 
classes. The first scenario is the most specific, since it uses all the tree leaves. The complete tree 
presents 15 classes, which are: cloud, cloud
high grass, abandoned agriculture, primary forest, secondary forest with 1 to 5 years, secondary 
forest with 6 to 12 years, secondary forest with 13 to 30 years, urban area, soil with rest of 
agriculture, prepared soil for agricultural use, bare soil and water (river). Superclasses were used 
to generate the second scenario, which are pasture, agriculture use and secondary forest, 
together with cloud, cloud shadow, bare soil, primary forest, urban area,
grass and water, completing 10 classes. The term “superclass” determines that a class is 
composed by the union of similar classes. The third scenario is composed by 8 superclasses 
which are cloud, cloud shadow, urban area, water, soi
scenario gathers superclasses cloud, cloud shadow, urban area, water, soil and vegetation.
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scenario gathers superclasses cloud, cloud shadow, urban area, water, soil and vegetation.
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Examples of land cover samples collected on the study area are shown in Figure 1. These 
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is approximately twice larger than the validation one. Table 3 summarizes the 
quantity of pixels adopted to train the classification method and to validate its results. 

Based on the field work information, a hierarchical class tree was organized, as shown in Figure 
2. This arrangement allows to define four scenarios, that is, four ways to partitionate the set of 
classes. The first scenario is the most specific, since it uses all the tree leaves. The complete tree 
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scenario gathers superclasses cloud, cloud shadow, urban area, water, soil and vegetation. 
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Classes 
Ground Truth Pixels 
Training Validation 

Cloud 205 96 
Cloud Shadow 117 53 
Dirty Pasture 246 126 
Clean Pasture 397 185 
Agriculture with High Grass 34 14 
Abandoned Agriculture 60 28 
Primary Forest 115 61 
Secondary Forest (1 to 5 years) 80 37 
Secondary Forest (6 to 12 years) 191 99 
Secondary Forest (13 to 30 years) 23 9 
Urban Area 81 40 
Soil with Rest of Agriculture 59 30 
Prepared Soil for Agriculture 37 16 
Bare Soil 26 12 
Water (River) 28 12 

 
TABLE 3: A summary about the quantity of ground truth pixels used to train the classification method and to 

validate the classification results. 

 
 

 
 

FIGURE 2: Hierarchical Class Tree Used In This Study. 

 
 
3.2 Support Vector Machine 
The Support Vector Machine (SVM) method was adopted in this study. SVM is a recent technique 
which has received great attention in recent years due to its excellent generalization ability, data 
distribution independence and its robustness on the Hughes phenomena. 
 
This method consists of finding a separation hyperplane between the training samples with the 
larger margins. The separating hyperplane is the geometric place where the following linear 
function is zero: 
 :(;) = 〈;, =〉 + 1 (1) 
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where = represents the orthogonal vector to the hyperplane :(;)  =  0; 1/‖=‖ is the distance 
from the hyperplane to the origin and 〈⋅,⋅〉 denotes the inner product. The parameters of (1) are 
obtained from the following quadratic optimization problem [18]: 
 

� A� − 12 � � A�A�B�B�〈C(;�), C(;�)〉�
���

�
���

�
���  

 �16D�E E�: G0 ≤ A� ≤ +;   " = 1, … , �
� A�B�

�
��� = 0 I (2) 

  
where A� are Lagrange multipliers, B� = J−1, +1K define the class of ;�, since SVM is a binary 
classifier, + acts  as an upper bound of A values and C(;) is a function adopted to remap the 
input vectors into a higher dimensionality space. The inner product 〈C(;�), C(;�)〉 is known as 

Kernel function. A popular example of Kernel is the Radial Basis Function (RBF), expressed by 〈C(;�), C(;�)〉 = exp OP;� − ;�P#/2Q#R, Q ∈ ℝ�, which was adopted in this study. The parameters + and Q tunning was performed according to a Grid Search procedure considering as values + = J1, 10, 100, 1000K and Q = J0.5, 1.0, 1.5, 2.0, 2.5K. 
 
The optimization problem (2) is solved considering a training set U = J(;�, B�): " = 1, … , VK, where ;� ∈ ℝW. Let XY = J;� ∶  A� ≠ 0; " = 1, … , V K, known as support vector set. The parameters = and 1 
are computed by: 
 = = � A�B�C(;�);\∈]^  (3) 

  

1 = 1#XY � B�;\∈]^ + � � A�A�B�B�〈C(;�), C(;�)〉`
���

`
���  (4) 

  
To apply this method to a multiclass problem (problems with more than two classes), the adoption 
of a multiclass strategy is necessary, such as “one-against-all” or “one-against-one”. Here, the 
“one-against-all” strategy was adopted. For more details about multiclass strategies, please refer 
to [19]. The ENVI 4.7 software was used to perform the SVM classifications. 
 
3.3 Feature Extraction and Classification 
Several features were extracted from the multispectral IRS LISS-3 image using the ENVI 
software. These features were obtained using the LISS-3 Red (R), Green (G), Blue (B) and Near 
Infrared (IRNear) spectral bands, the Normalized Difference Vegetation Index (NDVI) [20] and the 
Haralick’s Texture Features [21] such as mean (M), variance (Var), homogeneity (H), contrast 
(C), dissimilarity (D), entropy (E), second moment (SM), and correlation (CR).  
 
The Principal Component Analysis (PCA) [22] was applied to extract features optimally 
uncorrelated, and the Minimum Noise Fraction technique (MNF) [23] was applied to reduce the 
data dimensionality and isolate the noise. Combinations of these features were used on SVM to 
classify each set of classes mentioned in the Subsection 3.1. Finally, the consistency of the 
accuracy measures were computed and then their consistency were investigated. 
 
The next step was to investigate the consistency of category-level and map-level accuracy 
measures through statistical correlation analysis. Figure 3 shows the activities flow chart. 
 
Initially, the SVM was applied on the Red, Green, Blue and Near Infrared (R+G+B+IRNear) 
bands. The NDVI information was added to Red, Green, Blue and Near Infrared bands 
(NDVI+R+G+B+IRNear) for the second classification. 
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The PCA was applied in the Red, Green, Blue, Near Infrared and NDVI features and the 
three principal components (PCA 1, 2 and 3 respectively) were used on the third classification. 
The forth classification uses all features together, that is, the spectral, NDVI and texture (denoted 
by NDVI+R+G+B+IRNear+M+Var+H+C+E+D+SM+C). The PCA wa
bands (i.e., M+Var+H+C+D+E+SM+CR) and the first three PCA components were used for 
classification. The three first PCAs for NDVI+R+G+B+IRnear+E+D+SM were also classified.
 
The features entropy (E), dissimilarity (D) and second
analysis, since they presented more information in the contrast between different classes. The 
NDVI+R+IRNear bands are selected as a color composition to generate a HSV color 
transformation [22]. This HSV transformation was used for classification. Finally, the MNF 
transform was applied on the NDVI, R, G, B and IRNear features and the first three produced 
features (denoted by MNF1, 2 and 3) were used for classification.
 

 
Each combination of features, illustrated in Figure 3, was used to classify each of the four set of 
classes. As a result, 28 confusion matrices were obtained. Afterwards, these matrices were used 
to compute the accuracy measures.

 
4. RESULTS 
For each of the four scenarios defined on Subsection 3.1, SVM cl
the seven feature combinations determined in Subse
classification results and its respective confusion matrices we
matrices, the accuracy measures presented in Table 2 were calc
map-level measures). To summarize a comparison among category*, (percentage of concordance and discordanc
scenario, and then () was calculated. These results are shown in Table 4. Table 5 presents the() between each pair of map-level accuracy measure.
 
Analyzing the results, the () varied between 
Scenario 2, and 48% to 100%��� − ����, () were kept equal to 
may be used equivalently. For �� − ����. The observed () for the other producer measures was 
 
As expected, () was not so different when users and producers measures are compared.
Observing the results on different scenarios, most of the category
correlation for the second scenario (10 classes).
 
As can be seen in the map-
discordance compared with other measures. The 
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differently from other measures that use just the class (���), producer (���) and user (���) 
accuracies, which explains this behavior. It may also observed that ��, ���, ��� and ���� are 
perfectly concordant. Except for ��", the measures present more than 90% of concordance. 
 
The map-level measures, computed from each one of the 28 confusion matrices, are represented 
on the line graphic of Figure 4. The confusion matrices are organized as follows: 1, 8, 15 and 22 
refers for classification 1 of the scenarios 1, 2, 3 and 4, respectively; 2, 9, 16 and 23 for 
classification 2; 3, 10, 17 and 24 for classification 3; 4, 11, 18 and 25 for classification 4; 5, 12, 19 
and 26 for classification 5; 6, 13, 20 and 27 for classification 6; and 7, 14, 21 and 28 for 
classification 7. 
 
Based on the accuracy levels, it was possible to verify that the analyzed map-level measures 
have very similar results. The fourth set of classes (22

nd
 to 28

th
 confusion matrices) presented an 

increase in the accuracy measures in comparison with the other sets. This is explained by the 
class configuration, since a less specific scenario tends to provide less complexity on 
classification problems. 
 

             

Scenario 1 �� ��� ��� ���� ����  Scenario 2 �� ��� ��� ���� ���� �� .68 1.0 .60 1.0 .68  �� .41 1.0 .34 1.0 .41 ��  .68 .82 .68 1.0  ��  .41 .84 .41 1.0 ���   .60 1.0 .68  ���   .34 1.0 .41 ���    .60 .82  ���    .34 .84 ����     .68  ����     .41 

             

Scenario 3 �� ��� ��� ���� ����  Scenario 4 �� ��� ��� ���� ���� �� .48 1.0 .49 1.0 .48  �� .48 1.0 .56 1.0 .48 ��  .48 .94 .48 1.0  ��  .48 .92 .48 1.0 ���   .49 1.0 .48  ���   .56 1.0 .48 ���    .49 .94  ���    .56 .92 ����     .48  ����     .48 
             

 

TABLE 4: () between each category-level accuracy measure pair: Scenario 1 (15 classes), Scenario 2 (10 
classes), Scenario 3 (8 classes) and Scenario 4 (6 classes). 

 
 

 ��� ��� ���� ���ℎ ��  ���� ��� ���� ��" �� .889 .778 .836 .815 .825 .915 .968 1.00 -.640 ���  .825 .894 .884 .873 .921 .857 .889 -.593 ���   .931 .942 .931 .862 .767 .778 -.450 ����    .979 .968 .921 .804 .836 -.508 ���ℎ     .989 .899 .794 .815 -.497 ��       .910 .804 .825 -.508 ����       .884 .915 -.556 ���        .968 -.619 ����         -.640 
 

TABLE 5: Results of () between each map-level accuracy measure pair. 

 
 



Graziela Balda Scofield, Eliana Pantaleão & Rogério Galante Negri 

International Journal of Image Processing (IJIP), Volume (9) : Issue (1) : 2015 19 

5. CONCLUSIONS 
The objective of this study was to evaluate the consistency of measures used to quantify the 
accuracy of image classification results. The SVM method was applied in different classification 
scenarios using different features extracted from the IRS multi-spectral images. Results showed 
that measures, for category or map-level accuracy, are consistent with every classification 
scenario and the adopted features. This consistency is expected since all analyzed measures are 
computed from the same information source, which is the confusion matrix. 
 
User measures are equivalent for category-level assessment, since they present 100% of 
concordance. However, the producer measures are not equivalent, but show a high level of 
concordance (at least 82%). In general, map-level accuracies are highly correlated. Lower levels 
of concordance are verified between the Average Mutual Information measure which every other 
measures. 
 
Unlike most of the measures based on class accuracy and the marginal user and producer, 
Average Mutual Information uses all confusion matrix information. 
 
According to the results, the analyzed accuracy measures reflect a common behavior for most 
situations. None of them can be used to mask or highlight certain results, and they do not lead to 
divergent conclusions. 
 
As future perspectives, this investigation must be reproduced using others methodologies for 
scenario definition, instead use an intuitive scenario definition, as performed in this study. 
Additionally, different features and other image classification methods, more/less robust than 
SVM, must be considered too. 
 

 
 

FIGURE 4: Map-level measures computed for each confusion matrix. 
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