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Abstract. In this paper, we give some characterizations of Mannheim partner curves in the Minkowski 3-space 3

1 .E  Firstly, we 
classify these curves in 3

1 .E  Next, we give some relationships characterizing these curves and we show that the Mannheim theorem is 
not valid for the Mannheim partner curves in 3

1 .E  Moreover, by considering the spherical indicatrix of the Frenet vectors of those 
curves, we obtain some new relationships between the curvatures and torsions of the Mannheim partner curves in 3

1 .E  
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1. INTRODUCTION 
 

In differential geometry, special curves have an important role. Especially the partner curves, i.e., the 
curves which are related to each other at the corresponding points, have attracted the attention of many 
mathematicians. Well-known partner curves are the Bertrand curves, which are defined by the property 
that at the corresponding points of two space curves the principal normal vectors are common. Bertrand 
partner curves are studied in refs [1–4,13,15]. Ravani and Ku transported the notion of Bertrand curves to 
the ruled surfaces and called them Bertrand offsets [12]. Recently, Liu and Wang [5,14] defined a new 
curve pair for space curves. They called these new curves Mannheim partner curves: Let x  and 1x  be two 
curves in the three-dimensional Euclidean space 3.E  If there exists a correspondence between the space 
curves x  and 1x  such that, at the corresponding points of the curves, the principal normal lines of x  
coincide with the binormal lines of 1,x  then x  is called a Mannheim curve, and 1x  is called a Mannheim 
partner curve of .x  The pair 1{ , }x x  is said to be a Mannheim pair. They showed that the curve 1 1( )x s  is 
the Mannheim partner curve of the curve ( )x s  if and only if the curvature 1κ  and the torsion 1τ  of 1 1( )x s  
satisfy the following equation 

 

2 21
1

1
(1 )d

ds
κττ λ τ
λ

= = +&  
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for some non-zero constants .λ  They also studied the Mannheim partner curves in the Minkowski 3-space 
and obtained the necessary and sufficient conditions for the Mannheim partner curves in 3

1E  (see [5] 
and [14] for details). Moreover, Oztekin and Ergüt [11] studied the null Mannheim curves in the same 
space. Orbay and Kasap [10] gave new characterizations of Mannheim partner curves in Euclidean  
3-space. They also studied [9] the Mannheim offsets of ruled surfaces in Euclidean 3-space. The 
corresponding characterizations of Mannheim offsets of timelike and spacelike ruled surfaces were given 
by Onder et al. [6,7]. 

In this paper, we give new characterizations of Mannheim partner curves in the Minkowski 3-space 
3
1 .E  Next, we show that the Mannheim theorem is not valid for the Mannheim partner curves in 3

1 .E  
Moreover, we give some new characterizations of the Mannheim partner curves by considering the 
spherical indicatrix of some Frenet vectors of the curves. 

 
 

2. PRELIMINARIES 
 

The Minkowski 3-space 3
1E  is the real vector space 3E  provided with the standard flat metric given by 

 
2 2 2
1 2 3, ,dx dx dx= − + +  

 

where 1 2 3( , , )x x x  is a rectangular coordinate system of 3
1 .E  According to this metric, in 3

1E  an arbitrary 
vector 1 2 3( , , )v v v v=r  can have one of three Lorentzian causal characters: it can be spacelike if , 0v v >r r  
or 0,v =r  timelike if , 0,v v <r r  and null (lightlike) if , 0v v =r r  and 0v ≠r  [8]. Similarly, an arbitrary 
curve ( )sα α=r r  can locally be spacelike, timelike, or null (lightlike) if all of its velocity vectors ( )sα′r  are 
spacelike, timelike, or null (lightlike), respectively. We say that a timelike vector is future pointing or past 
pointing if the first compound of the vector is positive or negative, respectively. For the vectors 

1 2 3( , , )x x x x=r  and 1 2 3( , , )y y y y=r  in 3
1 ,E  the vector product of xr  and yr  is defined by 

 

1 2 3

1 2 3 2 3 3 2 1 3 3 1 2 1 1 2

1 2 3

( , , ),
e e e

x y x x x x y x y x y x y x y x y
y y y

− −
∧ = = − − −r r  

 

where 

1 2 3
1        ,       

 ( , , )
0       ,        ij i i i i

i j
e

i j
δ δ δ δ

=
= = ≠

 and 1 2 3 2 3 1 3 1 2, , .e e e e e e e e e∧ = − ∧ = ∧ = −  

 

The Lorentzian sphere and hyperbolic sphere of radius r  and centre 0 in 3
1E  are given by 

 
2 3 2
1 1 2 3 1{ ( , , ) : , }S x x x x E x x r= = ∈ =r r r  

 

and 
 

2 3 2
0 1 2 3 1{ ( , , ) : , },H x x x x E x x r= = ∈ = −r r r  

 

respectively [6,7]. 
Denote by { , , }T N B

r r r
 the moving Frenet frame along the curve ( )sα  in the Minkowski space 3

1 .E  For 
an arbitrary spacelike curve ( )sα  in the space 3

1 ,E  the following Frenet formulae are given: 
 

1

1 2

2

0 0
0 ,

0 0

T k T
N k k N
B k B

ε
   ′  
    ′ = −    
    ′     

r r

r r

r r
                                                      (1a) 

 

where ( , ) 1,g T T =
r r

 ( , ) 1,g N N ε= = ±
r r

 ( , ) ,g B B ε= −
r r

 ( , ) ( , ) ( , ) 0,g T N g T B g N B= = =
r r r r r r

 and 1k  and 2k  
are curvature and torsion of the spacelike curve ( ),sα  respectively. Here, ε  determines the kind of 
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spacelike curve ( ).sα  If 1,ε =  then ( )sα  is a spacelike curve with spacelike principal normal N
r

 and 
timelike binormal .B

r
 If 1,ε = −  then ( )sα  is a spacelike curve with timelike principal normal N

r
 and 

spacelike binormal .B
r

 Furthermore, for a timelike curve ( )sα  in the space 3
1 ,E  the following Frenet 

formulae are given: 
 

1

1 2

2

0 0
0 ,

0 0

T k T
N k k N
B k B

   ′  
    ′ =    
    ′ −    

r r

r r

r r
                                                        (1b) 

 

where ( , ) 1,g T T = −
r r

 ( , ) ( , ) 1,g N N g B B= =
r r r r

 ( , ) ( , ) ( , ) 0,g T N g T B g N B= = =
r r r r r r

 and 1k  and 2k  are 
curvature and torsion of the timelike curve ( ),sα  respectively (see [8] and [16] for details). 

 

Definition 2.1.  
  (i)  Hyperbolic angle: Let xr  and yr  be future pointing (or past pointing) timelike vectors in 3

1 .E  Then 
there is a unique real number 0θ ≥  such that , | || | cosh .x y x y θ< >= −r r r r  This number is called the 
hyperbolic angle between the vectors xr  and .yr  

 (ii)  Central angle: Let xr  and yr  be spacelike vectors in 3
1E  that span a timelike vector subspace. Then 

there is a unique real number 0θ ≥  such that , | || |cosh .x y x y θ< >=r r r r  This number is called the 
central angle between the vectors xr  and .yr  

(iii)  Spacelike angle: Let xr  and yr  be spacelike vectors in 3
1E  that span a spacelike vector subspace. 

Then there is a unique real number 0θ ≥  such that , | || |cos .x y x y θ< >=r r r r  This number is called the 
spacelike angle between the vectors xr  and .yr  

 (iv)  Lorentzian timelike angle: Let xr  be a spacelike vector and yr  be a timelike vector in 3
1 .E  Then 

there is a unique real number 0θ ≥  such that , | || |sinh .x y x y θ< >=r r r r  This number is called the 
Lorentzian timelike angle between the vectors xr  and yr  [6,7]. 

 

In this paper, we study the Mannheim partner curves in 3
1 .E  We obtain the relationships between the 

curvatures and torsions of the Mannheim partner curves with respect to each other. Using these relation-
ships, we give the Mannheim theorem for the Mannheim partner curves in the Minkowski 3-space 3

1 .E  
 
 

3. MANNHEIM  PARTNER  CURVES  IN  THE  MINKOWSKI  3-SPACE  3
1E  

 
In this section, by considering the Frenet frames, we give the characterizations of the Mannheim partner 
curves in the Minkowski 3-space 3

1 .E  
 

Definition 3.1. Let C  and *C  be two curves in the Minkowski 3-space 3
1E  given by the parametrizations 

( )sα  and ( ),sα ∗ ∗  respectively, and let them have at least four continuous derivatives. If there exists a 
correspondence between the space curves C  and *C  such that the principal normal lines of C  coincide 
with the binormal lines of *C  at the corresponding points of curves, then C  is called a Mannheim curve 
and *C  is called a Mannheim partner curve of .C  The pair *{ , }C C  is said to be a Mannheim pair [5]. 

 

By considering the Lorentzian casual characters of the curves, it is easily seen from Definition 3.1 that 
there are five different types of the Mannheim partner curves in the Minkowski 3-space 3

1 .E  Let the  
pair *{ , }C C  be a Mannheim pair. Then according to the characters of the curves C  and *C  we have the 
following cases: 
Case 1. The curve *C  is timelike. 
If the curve *C  is timelike, then there are two cases. 
 (i)  The curve C  is a spacelike curve with a timelike principal normal. In this case, we say that the pair 

*{ , }C C  is a Mannheim pair of type 1. 
(ii)  The curve C  is a timelike curve. In this case, we say that the pair *{ , }C C  is a Mannheim pair of 

type 2. 
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Case 2. The curve *C  is spacelike. 
If the curve *C  is a spacelike curve, then there are three cases. 
(iii)  The curve *C  is a spacelike curve with a timelike binormal vector and the curve C  is a spacelike 

curve with a timelike principal normal vector. In this case, we say that the pair *{ , }C C  is a Mann-
heim pair of type 3. 

(iv) The curve *C  is a spacelike curve with a timelike binormal vector and the curve C  is a timelike 
curve. In this case, we say that the pair *{ , }C C  is a Mannheim pair of type 4. 

  (v) The curve *C  is a spacelike curve with a timelike principal normal vector and the curve C  is a space-
like curve with a timelike binormal vector. In this case, we say that the pair *{ , }C C  is a Mannheim 
pair of type 5. 

 
 

Theorem 3.1. The distance between the corresponding points of the Mannheim partner curves is constant 
in 3

1 .E  
 

Proof. Let us consider the case when the pair *{ , }C C  is a Mannheim pair of type 1. From Definition 3.1 
we can write 

 

( ) ( ) ( ) ( )s s s B sα α λ∗ ∗ ∗ ∗ ∗= +
rr r                                                           (2) 

 

for some function ( ).sλ ∗  By taking the derivative of Equation (2) with respect to s∗  and using Equa-
tions (1), we obtain 
 

* * *.dsT T N B
ds

λτ λ∗
∗ = + +

r r r r
&                                                            (3) 

 

Since N
r

 and *B
r

 are linearly dependent, we have *, 0.T B =
r r

 Then, we get 
 

0.λ =&  
 

This means that λ  is a nonzero constant. On the other hand, from the distance function between two 
points, we have 

 

* * * * *( ( ), ( )) ( ) ( ) .d s s s s Bα α α α λ λ= − = =
r

 
 

Namely, * *( ( ), ( )) constant.d s sα α =  For the other cases, we obtain the same result.             
 
 

Theorem 3.2. For a curve C  in 3
1 ,E  there is a curve *C  such that *{ , }C C  is a Mannheim pair. 

 

Proof. Since N
r

 and *B
r

 are linearly dependent for all types, Equation (2) can be written as 
 

.Nα α λ∗ = −
rr r                                                                     (4) 

 

Now, there is a curve *C  for all values of nonzero constant .λ                 
 
 

Theorem 3.3. Let *{ , }C C  be a Mannheim pair in 3
1 .E  Then the relations between the curvatures and 

torsions of the curves *,C C  are given as follows: 
 (i) If the pair *{ , }C C  is a Mannheim pair of type 1 or 4, then 

 

.κτ
λτ

∗ −=  
 

(ii) If the pair *{ , }C C  is a Mannheim pair of type 2, 3, or 5, then 
 

.κτ
λτ

∗ =  
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Proof. (i) Let the pair *{ , }C C  be a Mannheim pair of type 1. By considering the nonzero constant λ  in 
Equation (3), we obtain 

 

* * *.dsT T N
ds

λτ∗ = +
r r r

                                                             (5) 
 

Considering Definition 2.1, we have 
 

* *

* *

sinh cosh
,

cosh sinh

T T N

B T N

θ θ
θ θ

 = +


= +

r r r

r r r                                                          (6) 

 

where θ  is the angle between the tangent vectors T
r

 and *T
r

 at the corresponding points of the curves C  
and *.C  From Equations (5) and (6), we get 

 
* *

*cosh , sinh .ds ds
ds ds

θ λτ θ= =                                                     (7) 
 

By considering Equation (1), the derivative of Equation (4) with respect to s∗  gives us the following 
 

*
* *(1 ) .ds dsT T B

ds ds
λκ λτ= − −

r r r
                                                        (8) 

 

From Equation (6), we get 
 

*

*

sinh cosh
.

cosh sinh

T T B

N T B

θ θ
θ θ

 = − +


= −

r r r

r r r                                                           (9) 

 

From Equations (8) and (9), we obtain 
 

* *cosh , sinh ( 1) .ds ds
ds ds

θ λτ θ λκ= − = −                                          (10) 
 

Then by Equations (7) and (10), we see that 
 

2 2 * 2cosh , sinh 1,θ λ ττ θ λκ= − = −  
 

which gives us 
 

.κτ
λτ

∗ −=  
 

The proof of the statement given in (ii) can be given in a similar way.               
 
Theorem 3.4. Let *{ , }C C  be a Mannheim pair in 3

1 .E  The relationship between the curvature and torsion 
of the curve C  is given as follows: 
 (i)  If the pair *{ , }C C  is a Mannheim pair of type 1, 2, or 5, then we have 

 

1.µτ λκ+ =  
 

(ii) If the pair *{ , }C C  is a Mannheim pair of type 3 or 4, then the relationship is given by 
 

1,µτ λκ− =  
 

where λ  and µ  are nonzero real numbers. 
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Proof. (i) Assume that the pair *{ , }C C  is a Mannheim pair of type 1. Then, from Equation (10), we have 
 

cosh sinh ,
1

θ θ
λτ λκ

− −=
−

 
 

and so, we get 
 

1 (tanh ) ,λκ λ θ τ− =  
 

which gives us 
 

1,µτ λκ+ =  
 

where λ  and tanhµ λ θ=  are nonzero constants.  
The proof of statement (ii) can be given in the same way.                

 
Theorem 3.5. Let *{ , }C C  be a Mannheim pair in 3

1 .E  Then, the relationships between the curvatures and 
the torsions of the curves C  and *C  are given as follows: 
(a) If the pair *{ , }C C  is a Mannheim pair of type 1, then 

 

 (i) *
* ,d

ds
θκ = −  (ii) * cosh sinh ,τ κ θ τ θ= +  (iii) * cosh ,κ τ θ=  (iv) * sinh .τ τ θ= −  

 

(b) If the pair *{ , }C C  is a Mannheim pair of type 2, then 
 

 (i) *
* ,d

ds
θκ = −  (ii) * sinh cosh ,τ κ θ τ θ= − −  (iii) * sinh ,κ τ θ=  (iv) * cosh .τ τ θ= −  

 

(c) If the pair *{ , }C C  is a Mannheim pair of type 3, then 
 

 (i) *
* ,d

ds
θκ = −  (ii) * sinh cosh ,τ κ θ τ θ= − +  (iii) * sinh ,κ τ θ=  (iv) * cosh .τ τ θ=  

 

(d) If the pair *{ , }C C  is a Mannheim pair of type 4, then 
 

 (i) *
* ,d

ds
θκ =  (ii) * cosh sinh ,τ κ θ τ θ= −  (iii) * cosh ,κ τ θ=  (iv) * sinh .τ τ θ=  

 

(e) If the pair *{ , }C C  is a Mannheim pair of type 5, then 
 

 (i) *
* ,d

ds
θκ = −  (ii) * sin cos ,τ κ θ τ θ= +  (iii) * sin ,κ τ θ=  (iv) * cos .τ τ θ=  

 
 

Proof. (a) Let the pair *{ , }C C  be a Mannheim pair of type 1 in the Minkowski 3-space. 
(i) By taking the derivative of the equation *, sinhT T θ=

r r
 with respect to *,s  we have 

 

* * *
*, , cosh .dN T T N

ds
θκ κ θ+ =

r r r r
 

 

Furthermore, by considering N
r

 and *B
r

 as linearly dependent and using Equations (2) and (9), we have 
 

*
* .d

ds
θκ = −  

 

By considering the equations *, 0,N N =
r r

 *, 0,T B =
r r

 and *, 0,B B =
r r

 the proofs of the statements (ii), 
(iii), and (iv) of (a) in Theorem 3.5 can be given in a similar way of the proof of statement (i).            
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From statements (iii) and (iv) of Theorem 3.5, we obtain the following result. 
 

Proposition 3.1. The torsion of the curve *C  is given by 
 

* 2 2.τ κ τ= −  
 
 

The statements (b), (c), (d), and (e) can be proved as given in the proof of the statement (a). 
 
Theorem 3.6. Let *{ , }C C  be a Mannheim pair in 3

1 .E  For the corresponding points ( )sα  and * *( )sα  of 
the curves *,C C  and for the curvature centres M  and *M  at these points, the ratio 

 

* * * * *

*

( ) ( )
:

( ) ( )

s M s M

s M s M

α α
α α

 

 

is not constant. 
 

Proof. Assume that the pair *{ , }C C  is a Mannheim pair of type 1. Then, we obtain the following 
equations: 

 

* * * * 2 * *
* * 2

1 1 1 1( ) , ( ) , ( ) , ( ) .
( )

s M s M s M s Mα α α λ α λ
κ κκ κ

= = = − = −  

 

So, we have 
 

* * * * *
2 * 2

*

( ) ( )
: (1 ) ( ) 1 constant.

( ) ( )

s M s M

s M s M

α α
λκ λ κ

α α
= − − ≠  

 

If the pair *{ , }C C  is a Mannheim pair of type 2, 3, 4, or 5, we again find that the ratio is not constant.     
 
Proposition 3.2. The Mannheim theorem is invalid for the Mannheim curves in 3

1 .E  
 
Theorem 3.7. Let the spherical indicatrix of the principal normal vector of the curve C  be denoted by 2C  
with the arclength parameter 2s  and let the spherical indicatrix of the binormal vector of the curve *C  be 
denoted by *

3C  with the arclength parameter *
3 .s  If *{ , }C C  is a Mannheim pair in 3

1 ,E  then we have the 
following: 
  (i) If the pair *{ , }C C  is a Mannheim pair of type 1, we have 

 
* *

* *
* *

2 23 3

cosh , sinh .ds ds ds ds
ds dsds ds

κ τ θ τ τ θ= = −  

 

 (ii) If the pair *{ , }C C  is a Mannheim pair of type 2 or 3, we get 
 

* *
* *

* *
2 23 3

sinh , cosh .ds ds ds ds
ds dsds ds

κ τ θ τ τ θ= − = −  

 

(iii) If the pair *{ , }C C  is a Mannheim pair of type 4, we have 
 

* *
* *

* *
2 23 3

cosh , sinh .ds ds ds ds
ds dsds ds

κ τ θ τ τ θ= − =  

(iv) If the pair *{ , }C C  is a Mannheim pair of type 5, we have 
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* *
* *

* *
2 23 3

sin , cos .ds ds ds ds
ds dsds ds

κ τ θ τ τ θ= =  

 
 

Proof. (i) Suppose that the pair *{ , }C C  is a Mannheim pair of type 1. Let 2T
r

 be the tangent vector of the 
spherical indicatrix of the principal normal vector of the curve C  and let 3T ∗r  be the tangent vector of the 
spherical indicatrix of the binormal vector of the curve *.C  Since N

r
 and *B

r
 are linearly dependent, the 

spherical indicatrix of the principal normal of the curve C  is the same with the spherical indicatrix of the 
binormal of the curve *.C  Subsequently, we have 

 

2
2

( ) dsT N T B
ds

κ τ′= = +
r r r r

 

 

and 
 

*
* * * *

3 *
3

.dsT B N
ds

τ′= =
r r r

 

 

Since N
r

 and *B
r

 are linearly dependent, we can assume that 
 

*
2 3 .T T=
r r

 
 

Thus, we obtain the following equations: 
 

*
*

*
2 2 3

sinh cosh , cosh sinh ,ds ds ds
ds ds ds

κ θ τ θ κ θ τ θ τ= − + =  

 

which gives us 
 

* *
* *

* *
2 23 3

cosh , sinh ,ds ds ds ds
ds dsds ds

κ τ θ τ τ θ= = −  

 

which are desired equalities. 
The proofs of the statements (ii), (iii), and (iv) of Theorem 3.7 can be given in a similar way.            

 
Example 1. Let us consider the spacelike curve ( )C∗  given by the parametrization 

 

1 1 5( ) sinh , cosh , .
2 2 2

s s s sα ∗  
= −  
 

 

 

The Frenet vectors of ( )sα ∗  are obtained as follows: 
 

1 1 5cosh , sinh , ,
2 2 2

( sinh ,cosh ,0),

5 5 1cosh , sinh , .
2 2 2

T s s

N s s

B s s

∗

∗

∗

 
= − 
 

= −

 
= − 
 

r

r

r

 

 

For 20,λ =  the parametric representation of the Mannheim partner curve ( )C  of the curve ( )sα ∗  is 
obtained as 
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1 1 5sinh 10 5 cosh , cosh 10 5 sinh , 10 .
2 2 2

s s s s sα
 

= − − + +  
 

 

 

Then, the pair *{ , }C C  is a Mannheim pair of type 3. Figure 1 shows the different appearances of the 
curves α ∗  and α  in space. 
 
Example 2. Let us now consider the timelike curve ( )C∗  given by the parametrization 

 

( ) (2sinh , 2cosh , 3 ).s s s sα ∗ =  
 

The Frenet vectors of ( )sα ∗  are obtained as follows: 
 

(2cosh ,2sinh , 3),

(sinh ,cosh ,0),

( 3 cosh , 3 sinh , 2).

T s s

N s s

B s s

∗

∗

∗

=

=

= − − −

r

r

r
 

 

Then for 20,λ =  the Mannheim partner curve ( )C  of the curve ( )sα ∗  is obtained as 
 

(2sinh 20 3 cosh ,2cosh 20 3 sinh , 3 40).s s s s sα = − − −  
 

Then, the pair *{ , }C C  is a Mannheim pair of type 1. Figure 2 shows the different appearances of the 
curves α ∗  and α  in space. 

 
 
 

          
 

Fig. 1. The spacelike curve α* and its Mannheim partner curve α. 
 
 

 

 



T. Kahraman et al.: Some  characterizations  of  Mannheim  partner  curves  in  the  Minkowski  3-space  3
1E  219

               
 

Fig. 2. The timelike curve α* and its Mannheim partner curve α. 
 
 

4. CONCLUSIONS 
 

In this paper, we give some characterizations of the Mannheim partner curves in the Minkowski 3-space 
3
1 .E  Moreover, we show that the Mannheim theorem is not valid for the Mannheim partner curves in 3

1 .E  
Also, by considering the spherical indicatrix of some Frenet vectors of the Mannheim curves we give 
some new characterizations for these curves.  
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Tanju Kahraman, Mehmet Önder, Mustafa Kazaz ja H. Hüseyin Uğurlu 

 
Käesolevas töös anname Mannheimi partnerkõverate iseloomustuse Minkowski 3-ruumis. Kõigepealt me 
klassifitseerime need kõverad ruumis. Seejärel esitame mõned seosed, mis iseloomustavad neid kõveraid, 
ja näitame, et Mannheimi teoreem ei kehti Mannheimi partnerkõverate jaoks ruumis. Veelgi enam, uurides 
nende kõverate Frenet’ vektorite sfäärilist indikatrissi, saame uusi seoseid Mannheimi partnerkõverate 
kõveruste ja väänete vahel. 

 
 


