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Abstract. The connection between the concepts of the single-experiment and the multi-experiment unobservability of a nonlinear
discrete-time control system is studied. The main result claims that if the system is single-experiment unobservable and the
observable space is integrable, then the system is also multi-experiment unobservable. For the proof of the main result a novel
mathematical technique, the so-called algebra of functions, is used.
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1. INTRODUCTION

Observability is a fundamental property of the control
system. Different applications rely on different observ-
ability concepts. In some situations, one is given just
a single sequence of inputs and the corresponding
sequence of outputs to find the arbitrary initial state.
If this is possible, the system is called single-experi-
ment observable. In some other cases, one is allowed
to use several input sequences together with the cor-
responding output sequences to determine the initial
state. The associated observability concept is called
multi-experiment observability. Obviously, if the system
is single-experiment observable, it is also multi-experi-
ment observable. For continuous-time systems also
the converse is proved to hold, at least for analytic
systems [5]. In the discrete-time case, for the converse
to hold, one has to assume additionally that the (analytic)
system is reversible [5]. However, for discrete-time non-
linear control systems, simple bilinear nonreversible
examples exist, demonstrating that the system may
be single-experiment unobservable but multi-experiment
observable [2] (see also a more complicated example
in [5]). The goal of this short paper is to study further

the connection between two observability notions, and
relate it with the integrability of the observable space.
Note that the possible non-integrability of the observable
space is purely a discrete-time phenomenon [2,3] like the
possibility that the analytic system may be multi-experi-
ment observable but not single-experiment observable.
The main result of this paper claims that if the system
is single-experiment unobservable and the observable
space is integrable, then the system is also multi-
experiment unobservable. No reversibility assumption is
made in proving this result.

2. PRELIMINARIES

Consider a single-input single-output nonlinear discrete-
time control system, described by the state equations

x+ = f (x,u),
y = h(x),

(1)

where x ∈ X ⊂ Rn is the state variable, u ∈ U ⊂ R is
the input variable, y ∈ Y ⊂ R is the output variable,
f : Rn ×U → Rn and h : Rn → Y are the real-analytic
functions. Notice that in this paper we use symbols + and
[i] instead of the arguments t +1 and t + i, respectively, to
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simplify the exposition, so x+ := x(t +1), x := x(t), and
y[i] = y(t + i).

Assume that the map (x,u) 7→ f (x,u) generically
defines a submersion, i.e. generically

rank
∂ f (x,u)
∂ (x,u)

= n (2)

holds. Let K denote the field of meromorphic
functions in a finite number of independent system
variables {x(0),u(t), t ≥ 0}. The forward-shift operator
δ : K →K is defined by δψ(x,u) = ψ( f (x,u),u+).
Over the field K one can define a difference vector space
E := spanK {dϕ | ϕ ∈ K }. The operator δ induces a
forward-shift operator δ : E → E by

∑
i

aidϕi →∑
i

δaid(δϕi), ai,ϕi ∈K .

Under the assumption (2), K is a difference field [2].

2.1. Observability

Both in the single- or multi-experiment context, the
observability property that is easiest to characterize for
nonlinear systems is local weak observability. In the
rest of the paper, local weak observability will simply be
called observability. Further discussion for discrete-time
systems can be found in [1].

Given a system of the form (1), let us denote by X ,
Y k, Y , and U the following subspaces of differential
one-forms:

X := spanK {dx},
Y k := spanK {dy[ j],0≤ j ≤ k},
Y := spanK {dy[ j], j ≥ 0},
U := spanK {du[ j], j ≥ 0}.

The chain of subspaces

0⊂O0 ⊂O1 ⊂O2 ⊂ . . .⊂Ok ⊂ . . . ,

where Ok := X ∩ (
Y k +U

)
is called the observability

filtration. If we denote by O∞ the limit of the observ-
ability filtration, it is easy to see that

O∞ = X ∩ (Y +U )

and we can introduce the following definition.

Definition 1. The subspace O∞ is called the observable
space of system (1).

Proposition 1 ([2]). System (1) is locally single-experi-
ment observable if O∞ = X .

If the observable space is integrable, the system can
be decomposed into the observable and unobservable

subsystems. Unfortunately, unlike in the continuous-
time case for discrete-time systems, O∞ is not necessarily
integrable [2]. If O∞ is integrable, and therefore, has
locally an exact basis {dz1, . . . ,dzr}, one can complete
the set {z1, . . . ,zr} to a basis {z1, . . . ,zr,zr+1, . . . ,zn}
of X , where z1, . . . ,zr are observable coordinates and
zr+1, . . . ,zn are unobservable coordinates. Then, in
these coordinates, the system can be decomposed into
observable and unobservable subsystems

z+
1 = f1 (z1, . . . ,zr,u) ,

...
z+

r = fr (z1, . . . ,zr,u) ,

z+
r+1 = fr+1 (z,u) ,

...
z+

n = fn (z,u) ,
y = h(z1, . . . ,zr) .

For each control sequence ω ∈ Rk, define f ω :
X → X inductively by f e(x) = x for the empty
sequence and f ωu(x) = f ( f ω(x),u). We also let hω :=
h ◦ f ω . For µ = (µ0,µ1, . . .) ∈ R∞, let Hµ(x) :=
(h(x),hµ0(x),hµ0µ1(x), . . .). Two states x1 and x2 are
said to be distinguished by an input sequence µ ∈ R∞

if Hµ(x1) 6= Hµ(x2) [5].

Definition 2. System (1) is said to be multi-experiment
observable if any two distinct states x1, x2 can be
distinguished by some input sequence µ .

To prove the main result of the paper, we apply a
special mathematical technique, the so-called algebra of
functions.

2.2. Algebra of functions

The main elements of the algebra of functions are binary
relations, operations, and operators. Here those concepts,
necessary to understand this paper, are recalled; for more
details see [4,6,7].

Let X ⊆ Rn be a vector space. Denote by ℑX the
set of vector functions with the domain X . Consider
two arbitrary functions α : X → S and β : X →W from
ℑX , where S ⊆ Rs and W ⊆ Rr are some vector spaces.
One can define the binary relation of partial preorder for
functions α and β as follows.

Definition 3. We say that α is less than or equal to β and
denote this as α ≤ β if there exists a function γ such that
the composition of α with γ , γ(α(x)) = β (x),∀x ∈ X .

Definition 4. The functions α,β ∈ ℑX are equivalent,
and denoted by α ∼= β , if both inequalities α ≤ β and
β ≤ α hold.

Definition 5. Given α ,β ∈ ℑX ,

α×β = max(γ ∈ ℑX | γ ≤ α ,γ ≤ β ).
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The rule of operation × is simple

(α×β )(x) =
[

α(x)
β (x)

]
.

Definition 6. We say that the functions α,β ∈ ℑX form
a pair and denote this as (α ,β ) ∈ ∆ if there exists a
function f ∗ such that β ( f (x,u)) = f ∗(α(x),u) for every
(x,u) ∈ X ×U .

Definition 7. The function α ∈ ℑX is called f -invariant
if (α,α) ∈ ∆, i.e if there exists a function f ∗ : S ×
U → S such that α( f (x,u)) = f ∗(α(x),u) for every
(x,u) ∈ X ×U .

Definition 8. The function α ∈ ℑX is called a maximal
f -invariant function if for every f -invariant function α∗
the following holds: α∗ ≤ α .

Note that Definitions 3–8 hold sometimes only
locally. In such a case all claims hold for some open
and dense subset of X rather than for X . Consider for
instance the following example1.

Example 1. Consider the functions α = arctan
(

x1
x2

)
and

β = arctan
(

x2
x1

)
. To verify whether the functions are

equivalent or not, first we show that

α ∼= x1

x2
. (3)

Since there exists a function γ such that γ
(

x1
x2

)
= α ,

according to Definition 3, x1
x2
≤ α . Moreover, there exist

γ̄ = tan(·) such that γ̄ (α) = x1
x2

, which demonstrates that
α ≤ x1

x2
. As a consequence, according to Definition 4,

the relation (3) holds. In a similar manner one can show
that β ∼= x2

x1
. But since arctan is a multivalued function,

in both cases we can speak only about local equivalence.
Even if we consider only the main branch of arctangent,
the equivalence still holds only locally. Taking γ̂ = x−1,
one can easily show that x1

x2
∼= x2

x1
. However, the latter

equivalence is violated for x1 = 0 or for x2 = 0. As a
result, α ∼= β holds only locally.

One may define the operator M as follows.

Definition 9. Given a function β ∈ ℑX , the function
M(β ) is defined by the following two conditions:

(M(β ),β ) ∈ ∆, (α,β ) ∈ ∆⇒ α ≤M(β ), (4)

where α is an arbitrary function.

The function M(β ) exists for every function β and
is unique [8], therefore, M(β ) may be understood as an
operator acting on functions from ℑX . The operator M
can be computed in the following way. Let β be a scalar

function such that its composition with the function f can
be represented as

β ( f (x,u)) =
s

∑
i=1

ai(x)bi(u), (5)

where a1(x), a2(x), . . ., as(x) are arbitrary functions and
b1(u), b2(u), . . ., bs(u) are linearly independent. Then

M(β ) := a1×a2×·· ·×as. (6)

If (5) does not hold, the procedure to compute the
operator M(β ) is given in the theorem below.

Theorem 1 ([8]). Let the composition β ( f ) be repre-
sented as

β ( f (x,u)) = χ(α1(x),α2(x), . . . ,αs(x),u),

where the function χ ∈ V ⊂ Rs+1 is a function,
α1(x), α2(x), . . . , αs(x) are the functions satisfying
the following condition: there exist inputs u = c1,
u = c2, . . . , u = cr, such that every function αi(x)
may be expressed via the family of composite functions
β ( f (x,c1)), β ( f (x,c2)), . . . , β ( f (x,cr)); i.e. the
following functional inequality holds:

β ( f (x,c1))×β ( f (x,c2))×·· ·×β ( f (x,cr))≤ αi(x),
i = 1,2, . . . ,s.

Then M(β )∼= α1×α2×·· ·×αs.

One of the properties of the operator M is

M(α×β )∼= M(α)×M(β ). (7)

3. MAIN RESULT

Theorem 2 ([6,7]). The system is multi-experiment un-
observable if and only if there exists an f -invariant non-
injective function α satisfying the condition α ≤ h.

Observability criterion. Let the vector function α
be the maximal f -invariant function satisfying α ≤ h. In
order to find α , one has to define the sequence of vector
functions αi as follows:

α i = h×M(h)×·· ·×Mi(h), i = 1,2, . . . . (8)

It is easy to note that the functions α0 := h,α1,α2, . . .
form the non-increasing sequence: α0 ≥ α1 ≥ α2 ≥ ·· · .
The sequence converges, thus for the first k, which
satisfied the equivalence relation αk ∼= αk+1, we define
α := αk. According to Theorem 2, system (1) is observ-
able if the function α is injective, otherwise the system
is unobservable.

The following examples show how the observability
criterion can be practically used.

1 This example was suggested by the reviewer C. Moog.
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Example 2. Consider the control system

x+
1 = ux2,

x+
2 = x3,

x+
3 = ux1 + x4,

x+
4 = x2,

y = x3.

(9)

Compute:

α0 := h,

α1 := h×M(h),
α2 := h×M(h)×M2(h),
α3 := h×M(h)×M2(h)×M3(h).

To compute M(h), one has to find the composition
h( f (x,u)) = ux1 + x4. Thus, now in (5) the functions
a1(x) = x1, a2(x) = x4, b1(u) = u, b2(u) = 1 and
according to (6), M(h) = x1 × x4. Note that M2(h) =
M(M(h)) and due to (7) can be computed as
M(x1) × M(x4). The composition x1 ◦ f (x,u) = ux2
which yields that for M(x1) the functions a1(x) = x2,
b1(u) = u and according to (6), M(x1) = x2. The
composition x4 ◦ f (x,u) = x2 yielding that for M(x4)
the functions a1(x) = x2, b1(u) = 1 and according to
(6), M(x1) = x2. Consequently, M2(h) ∼= x2. Since
M3(h) = M

(
M2(h)

)
= M(x2), one has to find the

composition x2◦ f (x,u)= x3, which yields that for M(x2)
the functions a1(x) = x3, b1(u) = 1 and M(x2) = x3. As
a result, one obtains:

α0 := x3,

α1 := x3× x1× x4,

α2 := x3× x1× x4× x2,

α3 := x3× x1× x4× x2× x3.

Note that according to Definition 5, the product of two
functions is their maximal bottom and, as a consequence,
x3 × x3 = x3. (We always keep only the functionally
independent components of the result, trying to simplify
the result as much as possible.) As a result, α3 = x3 ×
x1 × x4 × x2 and α2 ∼= α3, yielding that the function
α = α2 = x1 × x2 × x3 × x4 is the maximal f -invariant
satisfying α ≤ h. Since α is injective, system (9) is multi-
experiment observable.

Example 3. Consider the system

x+
1 = x2(u+ x3),

x+
2 = u(x1− x3),

x+
3 = x2x3,

y = x1− x3.

(10)

For this system the sequence of functions αi, i = 1,2, . . . ,
is the following:

α0 := h = x1− x3,

α1 := h×M(h) = (x1− x3)× x2,

α2 := h×M(h)×M2(h) = (x1− x3)× x2.

Obviously α1 ∼= α2, consequently α = α1 =
(x1− x3)× x2 is the maximal f -invariant function,
satisfying the condition α ≤ h. Since α is not injective,
system (10) is multi-experiment unobservable.

We are now ready to present the main result of the
paper.

Theorem 3. If system (1) is single-experiment unobserv-
able and the observable space O∞ is integrable, then (1)
is multi-experiment unobservable.

Proof. Under the assumption of the theorem there exists
the coordinate transformation

ϕ =
[

ϕ̃
ϕ̄

]

such that z̃ = ϕ̃(x) are the unobservable coordinates,
z̄ = ϕ̄(x) are the observable coordinates and

z̄+ = f ∗(z̄,u),
y = h∗(z̄)

(11)

is the observable subsystem [2]. Note that the function ϕ̄
is non-injective. One can write

z̄+ = ϕ̄(x+) = ϕ̄( f (x,u))

and
z̄+ = f ∗(ϕ̄(x),u),

which yields

ϕ̄ ◦ f (x,u) = f ∗(ϕ̄(x),u). (12)

By Definition 7 it follows from (12) that (ϕ̄, ϕ̄) ∈ ∆
and therefore ϕ̄ is an f -invariant function. Additionally,
from (1) and (11) one obtains h(x) = h∗(ϕ̄(x)), which by
Definition 3 means ϕ̄ ≤ h. Since ϕ̄ is an f -invariant non-
injective function and ϕ̄ ≤ h, system (1) is, according to
Theorem 2, multi-experiment unobservable.

Example 4 (Continuation of Example 3). The observ-
able space of this system O∞ = spanK {dx1−dx3,dx2}
is integrable and the system is single-experiment un-
observable. As was shown in Example 3, the system is
also multi-experiment unobservable, which confirms the
statement of Theorem 3.

The example below demonstrates that the converse
statement of Theorem 3 is not valid. Obviously, if
the system is multi-experiment unobservable, it is also
single-experiment unobservable. However, one cannot
say anything about integrability of O∞.
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Example 5. Consider the system

x+
1 = (1+u)x3,

x+
2 = u,

x+
3 = ux1− x2,

x+
4 = x2,

y = x3.

(13)

In order to verify that the system is multi-experiment
unobservable, compute the sequence of functions α i,
defined by (8):

α0 := h = x3,

α1 := h×M(h) = x3× x1× x2,

α2 := h×M(h)×M2(h) = x3× x1× x2.

Obviously α1 ∼= α2, consequently α = α1 = x3×x1×x2
is the maximal f -invariant function satisfying α ≤ h.
Since α is not injective, system (13) is multi-experiment
unobservable. The observable space of system (13) is
O∞ = spanK {udx1−dx2,dx3}. Although system (13)
is also single-experiment unobservable, its observable
space O∞ is not integrable.

ACKNOWLEDGEMENTS

This work was partially supported by the Estonian
Science Foundation through grant No. 8365, the Estonian
Governmental funding project No. SF0140018s08, and
Doctoral School in Information and Communication
Technology (IKTDK).

REFERENCES

1. Albertini, F. and D’Alessandro, D. Observability and
forward–backward observability of discrete-time
nonlinear systems. Math. Control Signals Syst., 2002,
15, 275–290.
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Ühel ja mitmel eksperimendil põhinevate vaadeldavuse definitsioonide vahelisest
seosest diskreetajaga mittelineaarsete süsteemide jaoks

Vadim Kaparin, Ülle Kotta, Alexey Ye. Shumsky ja Alexey N. Zhirabok

On uuritud seoseid kahe erineva vaadeldavuse definitsiooni vahel mittelineaarse diskreetajaga juhtimissüsteemi korral.
Üks definitsioonidest põhineb ühel eksperimendil ja teine mitmel. Artikli põhitulemus on, et kui süsteem ei ole
vaadeldav ühe eksperimendi andmetest ja vaadeldav ruum on täielikult integreeruv, siis ei ole süsteem vaadeldav ka
mitme eksperimendi andmetest. Tõestuses on kasutatud uudset funktsioonide algebra aparatuuri. Tegemist on puhtalt
diskreetaja nähtustega, sest pidevate analüütiliste süsteemide korral kaks vaadeldavuse mõistet kattuvad ja vaadeldav
ruum on alati täielikult integreeruv.


