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Convergence of the p-Bieberbach polynomials in regions with zero angles
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Abstract. Uniform convergence of the p-Bieberbach polynomials is proved in the case of a simply connected region bounded by a
piecewise quasiconformal curve with certain interior zero angles on the corner where two arcs meet.
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1. INTRODUCTION

Finding the Riemann mapping function for a given region is a very famous and important problem for
researchers. The reason is that this function has many applications in some branches of mathematics. There
are some construction methods of this function for simple regions differing from those for general regions.
So, the best way is to approximate this function by using some extremal polynomials.

Let G be a finite region with 0 ∈ G bounded by Jordan curve L := ∂G and let w = ϕ(z) be a conformal
mapping of G onto the disk {w : |w|< r0} with ϕ(0) = 0, ϕ ′(0) = 1, where r0 is called the conformal radius
of G with respect to 0. Denote by A1

p (G) , p > 0 the set of functions f (z) analytic in G satisfying f (0) = 0,
f ′ (0) = 1 such that

‖ f‖A1
p(G) :=

∥∥ f ′
∥∥

Ap(G) :=




∫ ∫

G

∣∣ f ′ (z)
∣∣p dσz




1
p

< ∞,

where dσz is a two-dimensional Lebesque measure on G, and denote by ℘n the set of all algebraic
polynomials Pn (z) of degree at most n, satisfying Pn(0) = 0, P′n(0) = 1.

Consider the following extremal problem:
{
‖ϕ−Pn‖A1

p(G) : Pn ∈℘n

}
−→min, p > 0. (1.1)

Using a method similar to the one given in [10, p. 137], it is seen that there exists an extremal
polynomial P∗n (z) furnishing to the problem (1.1). These polynomials P∗n (z) are determined uniquely in
case p > 1 [10, p. 142]. In [14] the solution of (1.1) was called p-Bieberbach polynomials and denoted by
Bn,p (z), and its approximation properties in uniform norm were investigated, i.e.

∗ Corresponding author, mkucukaslan@mersin.edu.tr
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‖ϕ−Bn,p‖C(G) := max
z∈G

{|ϕ (z)−Bn,p (z)|} ≤ c
nγ , (1.2)

where γ depends on the geometric properties of Γ and c is a constant independent from n.
In case p = 2 the p-Bieberbach polynomials coincide with the well-known n-th Bieberbach polynomial

Bn(z) ≡ Bn,2(z) (see, for example, [13,20]). Approximation properties in the uniform norm of Bn(z) on G
were first observed by Keldysh in [13] for the domains with sufficiently smooth boundaries. A considerable
progress in this area was achieved in [2,4,6,7,11,12,16,18,20] and others.

In [14], approximation properties of p-Bieberbach polynomials were investigated in case the region was
bounded by a quasiconformal curve. It is well known that these curves do not allow interior zero angles. The
effect of zero angles for these extremal polynomials has not yet been studied but our results show this effect.
First, we will investigate the approximation rate of Bn,p(z) to the function ϕ in A1

p-norm (Theorem 1),
and by using the well-known Simonenko and Andrievskii method (see, for example, [6] and [18]), the
approximation rate of Bn,p(z) to the function ϕ in the uniform norm will be obtained (Theorems 2–6).

2. MATERIAL AND METHODS

Definition 1 [15, p. 97]. The Jordan arc (or a curve) L is called a K-quasiconformal (K ≥ 1) arc (or curve)
if there is a K-quasiconformal mapping f of a region D containing L such that f (L) is a line segment
(or a circle).

Let F(L) denote the set of all sense-preserving plane homeomorphisms f of regions D ⊃ L such that
f (L) is a line segment or circle and let

KL = inf{K ( f ) : f ∈ F(L)} ,

where K ( f ) is the maximal dilatation of such a mapping f . Then L is K-quasiconformal if and only if
KL < ∞. If L is a K-quasiconformal, then KL ≤ K.

D ≡ C gives the global definition of a K-quasiconformal arc or curve consequently. This definition is
common in the literature. Through this work, the global definition will be considered.

Definition 2 [2]. For given K > 1, α > 0, we say that G ∈ PQ(K,α) if L := ∂G is expressed as a union of
a finite number K j-quasiconformal arcs connected at the points z0, z1, z2,...,zm−1, K = max

1≤ j≤ m

{
K j

}
, L is

locally K-quasiconformal at z0, and in the local co-ordinate system (x,y) with origin at z j, 1 ≤ j ≤ m−1,
the following conditions are satisfied:

(i)
{

z = x+ iy : a1x1+α ≤ y≤ a2x1+α ,0≤ x≤ ε1
}⊂ G,

(ii) {z = x+ iy : |y| ≥ ε2x, 0≤ x≤ ε1} ⊂CG

for some constants −∞ < a1 < a2 < ∞, εi > 0, i = 1,2.

It is clear from Definition 2 that each domain G ∈ PQ(K,α) may have m−1 interior zero angles. If G
does not have those interior zero angles (i.e α = 0), then G is bounded by a K-quasiconformal curve and we
say that G ∈ Q(K) .

Throughout this paper, c,c1,c2, ... are positive constants and ε,ε1,ε2, ... are sufficiently small positive
numbers which in general depend on G. By the notation “a 4 b” we mean that a ≤ c1b for a constant c1,
which does not depend on a and b. The relation “a ³ b” indicates that c2b ≤ a ≤ c3b, where c2,c3 are
independent of a and b.

Let G⊂ C be a finite region bounded by Jordan curve L and let w = Φ(z) (w = ϕ̂ (z)) be the conformal
mapping of Ω := extG (G) onto

∆̂ = {w : |w|> 1} ({w : |w|< 1}) ,
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normalized by
Φ(∞) = ∞, Φ′ (∞) > 0

(
ϕ̂(0) = 0, ϕ̂ ′(0) > 0

)
.

The level curve (exterior or interior) can be defined for t > 0 as

Lt := {z : |ϕ̂ (z)|= t, if t < 1 ; |Φ(z)|= t, if t > 1} ,L1 ≡ L.

Let us denote

Gt := intLt ,Ωt := extLt , and d(z,L) := inf{|ς − z| : ς ∈ L} .

Let L be a K-quasiconformal curve. By using the facts in ([15, p. 97]; [5, p. 76]; and [8, p. 26]) we can
find a C(K)-quasiconformal reflection α(.) across L such that it satisfies the following

|z1−α (z)| ³ |z1− z| , z1 ∈ L, ε < |z|< 1
ε ,

|αz| ³ |αz| ³ 1,ε < |z|< 1
ε ,

|αz| ³ |αz|2 , |z|< ε , |αz| ³ |z|−2 , |z|> 1
ε

(2.1)

and Jacobian Jα = |αz|2−|αz|2 of α(.) satisfied Jα ³ 1.

Lemma 1 [8, p. 97]. Suppose that the function w = F (ζ ) is K-quasiconformal mapping of the plane onto
itself and F (∞) = ∞. Assume also that ζi ∈ C, wi = F (ζi) , i = 1,2,3. Then,
(a) The statements |ζ1−ζ2|4 |ζ1−ζ3| and |w1−w2|4 |w1−w3| are equivalent.
(b) If |ζ1−ζ2|4 |ζ1−ζ3| , then

∣∣∣∣
w1−w3

w1−w2

∣∣∣∣
1
K

4
∣∣∣∣
z1− z3

z1− z2

∣∣∣∣ 4
∣∣∣∣
w1−w3

w1−w2

∣∣∣∣
K

.

Lemma 2 [1]. Let L := ∂G be a quasiconformal curve. Then for every z ∈ L there exists an arc β (z0,z) in
G joining z0 to z with the following properties:
(a) d(ξ ,L)³ |ξ − z| for every ξ ∈ β (z0,z);
(b) if β̃ (ξ1,ξ2) is the subarc of β (z0,z) joining ξ1 to ξ2, then

mes β̃ (ξ1,ξ2) 4 |ξ1−ξ2|
for every pair ξ1,ξ2 ∈ β (z0,z).

Lemma 3 [6]. Let L := ∂G be a quasiconformal curve. Then

mes `³ mes α (`)

for every rectifiable arc `⊂ G.

3. APPROXIMATION IN THE A1
p(G)-NORM

Suppose that G ∈ PQ(K,α) for some K > 1 and α ≥ 0 is given. For the sake of simplicity, but without
loss of generality, we assume that m = 2, z1 =−1, z2 = 1; (−1,1)⊂G and let the local co-ordinate axes be
parallel to Ox and Oy in the co-ordinate system

L1 := {z : z ∈ L, Imz≥ 0} , L2 := {z : z ∈ L, Imz≤ 0} .

Then z0 is taken as an arbitrary point on L2 (or on L1 subject to the chosen direction).
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We recall that the region G ∈ PQ(K,α) has interior zero angles in the nearest neighbourhood of each
point z1 =−1 and z2 = 1, respectively.

We can say that the function w = ϕ̂(z) for the domain G ∈ PQ(K,α) satisfies the conditions described
in Lemma 1 in the neighbourhood of point z1,2 =∓1. So, we can easily get

d(z,L) 4 (|ϕ̂(z)|−1)K−1
; |z±1|4 |ϕ̂(z)− ϕ̂(±1)|K−1

, (3.1)
∀z ∈ M := {z ∈ G : |z±1|> ε1} .

On the other hand, using the properties of the function w = ϕ̂(z) in the neighbourhood of point z1,2 =∓1
(see [6,9]), we obtain

|z±1|4 [− ln |ϕ̂(z)− ϕ̂(±1)|]−α−1
. (3.2)

Because each L j, j = 1,2 is a K j-quasiconformal arc, α j(.) must be the quasiconformal reflection
across L j.

Let us also denote:

γ1
1 := α1

({
z = x+ iy : y =

2a1 +a2

3
(x+1)1+α

})
,

γ2
1 := α2

({
z = x+ iy : y =

a1 +2a2

3
(x+1)1+α

})
,

and

γ1
2 := α1

({
z = x+ iy : y =

2a1 +a2

3
(1− x)1+α

})
,

γ2
2 := α2

({
z = x+ iy : y =

a1 +2a2

3
(1− x)1+α

})
,

where the constants ai, (i = 1,2) are taken from Definition 2.
It is easy to check from Lemma 3 that

mes γ j
i (ξ1,ξ2) 4 |ξ1−ξ2|

for all ξ1,ξ2 ∈ γ j
i , i, j = 1,2.

Let N = N(R0) be a sufficiently large natural number. For n > N and arbitrary 0 < ε < 1, let us choose
R = r0 + cnε−1 such that r0 < R < R0 and points z j

i , i, j = 1,2 such that they are in the intersection of LR

and γ j
i .

According to the positive direction on LR, these points divide LR into four parts as follows

L1
R := LR(z1

3,z
1
2), L2

R := LR
(
z2

2,z
2
3
)
, L3

R := LR
(
z1

2,z
2
2
)
, L4

R := LR
(
z2

3,z
1
3
)

and γ j
i (R) is a subarc of γ j

i joining points ∓1 with z j
i . Denote

Γ j
R := γ j

1(R)∪L j
R∪ γ j

2(R), U := int(Γ1
R∪Γ2

R) and UR := U \G.

We can extend the function ϕ (z) to U in the following way

ϕ̃(z) :=





ϕ(z) ;z ∈ G,

r2
0

ϕ(α j(z))
;z ∈UR, j = 1,2.
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Then,

ϕ̃z(z) =
{

0 ;z ∈ G,

ϕ ′
(α j(z))α j

z (z) ;z ∈UR, j = 1,2.

From the Cauchy–Pompeiu formula [15, p. 148] we get

ϕ(z) =
1

2πi

∫

ΓR

ϕ̃(ξ )
ξ − z

dξ − 1
π

∫ ∫

UR

ϕ̃ξ (ξ )

ξ − z
dσξ , z ∈ G.

Then, using the above notations we obtain

ϕ(z) =
1

2πi

∫

LR

f (ξ )
ξ − z

dξ +
1

2πi

2

∑
i=1

2

∑
j=1

∫

γ j
i (R)

ϕ̃(ξ )−ϕ((−1) j)
ξ − z

dξ − 1
π

∫ ∫

UR

ϕ̃ξ (ξ )

ξ − z
dσξ , (3.3)

where

f (ξ ) =





ϕ̃ (ξ ) ;ξ ∈ L1
R∪L2

R

ϕ (−1) ;ξ ∈ L3
R

ϕ (1) ;ξ ∈ L4
R

.

Since the first part of (3.3) is analytic in G, there exists a polynomial Pn−1(z) where degPn−1(z) ≤
n−1 [19, p. 142] such that

∣∣∣∣∣∣
1

2πi

∫

LR

f (ξ )

(ξ − z)2 dξ −Pn−1(z)

∣∣∣∣∣∣
<

c
n
. (3.4)

Let Qn(z) :=
z∫

0
Pn−1(t)dt. Then Qn (0) = 0 and from (3.3) and (3.4) we have

∣∣ϕ ′(z)−Q′
n(z)

∣∣≤ c
n

+
1

2π

∣∣∣∣∣∣∣

2

∑
i=1

2

∑
j=1

∫

γ i
i (R)

ϕ̃(ξ )−ϕ((−1) j)

(ξ − z)2 dξ

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣
− 1

π

∫ ∫

UR

ϕ̃ξ (ξ )

(ξ − z)2 dσξ

∣∣∣∣∣∣
,

and let us take integrals over G of the p-th power of both sides

∫ ∫

G

∣∣ϕ ′(z)−Q′
n(z)

∣∣p dσz 4 1
np +

∫ ∫

G

∣∣∣∣∣∣∣

2

∑
i=1

2

∑
j=1

∫

γ j
i (R)

ϕ̃(ξ )−ϕ((−1) j)

(ξ − z)2 dξ

∣∣∣∣∣∣∣

p

dσz

+
∫ ∫

G

∣∣∣∣∣∣

∫ ∫

UR

ϕ̃ξ (ξ )

(ξ − z)2 dσξ

∣∣∣∣∣∣

p

dσz. (3.5)

From the Calderon–Zygmund inequality [5, p. 98], we obtain

∫ ∫

G

∣∣∣∣∣∣

∫ ∫

UR

ϕ̃ξ (ξ )

(ξ − z)2 dσξ

∣∣∣∣∣∣

p

dσz 4
∫ ∫

UR

∣∣ϕ ′(α j(ξ ))
∣∣p

dσξ , j = 1,2. (3.6)
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So, (3.5) and (3.6) give us

∥∥ϕ ′−Q′
n

∥∥p
Ap(G) 4 1

np +
2

∑
i=1

2

∑
j=1

∥∥∥∥∥∥∥

∫

γ j
i (R)

ϕ̃(ξ )−ϕ((−1) j)
(ξ − z)

dξ

∥∥∥∥∥∥∥

p

Ap(G)

+
∫ ∫

UR

∣∣ϕ ′(α j(ξ ))
∣∣p

dσξ . (3.7)

Let us consider two cases of p in the last double integral in (3.7) as: 1 < p < 2 and p≥ 2.
If 1 < p < 2, then using the Hölder inequality [21, p. 105] we obtain

∫ ∫

UR

∣∣ϕ ′(α j(ξ ))
∣∣p

dσξ 4




∫ ∫

UR

∣∣ϕ ′(α j(ξ ))
∣∣2

dσξ




p
2



∫ ∫

UR

dσξ




1− p
2

4




∫ ∫

α j(UR)

∣∣ϕ ′(ξ )
∣∣2 dσξ




p
2



∫ ∫

α j(UR)

dσξ




1− p
2

=
[
mes ϕ(α j(UR))

] p
2
[
mes α j(UR)

]1− p
2 . (3.8)

Thus, (3.7) and (3.8) give

∥∥ϕ ′−Q′
n

∥∥p
Ap(G) 4 1

np +
2

∑
i=1

1

∑
j=1

∥∥∥∥∥∥∥

∫

γ j
i (R)

ϕ̃ (ξ )−ϕ((−1) j)

(ξ − z)2 dξ

∥∥∥∥∥∥∥

p

Ap(G)

+





[mes ϕ(α j(UR))]
p
2 [mes α j(UR)]1−

p
2 ;1 < p < 2, j = 1,2

∫∫
UR

∣∣ϕ ′(α j(ξ ))
∣∣p dσξ ; p≥ 2, j = 1,2.

(3.9)

We introduce the following notations:

a : = min
{

2− (p+2)α
2(1+α)(K2 +1)

,
p

2K2 +
(2− p)

K2 (K2 +1)

}
,

b : = min

{
2− (p+2)α

2(1+α)(K2 +1)
,

1
K2 −

(p−2)
(
K2−1

)

K2 (K2 +1)

}
.

Theorem 1. Let G ∈ PQ(K,α) for some K, K > 1 and α, 0 6 α < min
{

2(p−1)
p+2 , 2

p+2

}
for p > 1. Then, for

any number n = 2,3, ... the p-Bieberbach polynomials Bn,p (z) satisfy

‖ϕ−Bn,p‖A1
p(G) 4 n−ϑ ,

where

ϑ ∈




(
0, 1

p a
)

;1 < p < 2,
(

0, 1
p b

)
;2 6 p < 2+ K2+1

K2−1 .
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Proof. We shall obtain the proof by using (3.9). Firstly, assume that G ∈ PQ(K,α) for some K > 1 and
0≤ α < min

{
2(p−1)

p+2 , 2
p+2

}
.

Let us choose g j(ξ ) := ϕ̃(ξ )−ϕ((−1) j), j = 1,2, and ϑ(t) = t1− 1+α
p by using Lemma 2.4 [3], we

obtain ∥∥∥∥∥∥∥

∫

γ j
i (R)

ϕ̃(ξ )−ϕ
(
(−1) j

)

(ξ − z)2 dξ

∥∥∥∥∥∥∥
Ap

4





∣∣ln`i, j
∣∣ 1

p `
2−(p+2)α

2p
i, j ;α < 2(p−1)

p+2 ,1 < p≤ 2,

`
2−(p+2)α

2p
i, j ;α < 2

p+2 , p > 2,
(3.10)

where `i, j := mes γ j
i (R). On the other hand, we have d(z j

i ,L
j) 4 n−

2
K2+1 according to [17, Lemma 9.9]. Then,

from (2.1), (3.1), and (3.2) we get

`i, j 4
∣∣∣z j

i − (−1) j
∣∣∣ 4 d

1
1+α (z j

i ,L
j) 4

(
1
n

) 2−ε
(1+α)(K2+1)

(3.11)

for all ε > 0. Combining (3.10) and (3.11), we have
∥∥∥∥∥∥∥

∫

γ j
i (R)

ϕ̃(ξ )−ϕ
(
(−1) j

)

(ξ − z)2 dξ

∥∥∥∥∥∥∥
Ap(G)

4
(

1
n

) 2−(p+2)α−ε
2p(1+α)(K2+1)

, p > 1,

where i, j = 1,2.
For sufficiently small 0 < ε0 < ε1, we shall use the following notations:

UR := V 1
1 ∪V 2

1 ∪V 1
2 ∪V 2

2 ∪V3,

where

V 1
i : = UR∩D

(
(−1)i ,ε0

)
∩{z : Imz > 0} , i = 1,2;

V 2
i : = UR∩D

(
(−1)i ,ε0

)
∩{z : Imz < 0} , i = 1,2;

V3 : = UR \ [D(−1,ε0)∪D(1,ε0)] .

Secondly, assume that G ∈ PQ(K;α) for some K > 1,α ≥ 0. Then for all ε > 0

mes ϕ
(

α j
(

V j
i

))
4 (n)

ε−1
K2 ,mes ϕ

(
α j (V3)

)
4 (n)

ε−1
K2 , i, j = 1,2

in [3, p. 658]. Then, from Lemma 1 it is easy to obtain

mes α j (UR) 4 (n)
ε−2

K2(K2+1) , j = 1,2

for all ε > 0. Finally, for all ε > 0

∫ ∫

UR

∣∣ϕ ′ (α j (ξ )
)∣∣p

dσξ 4
(

1
n

) 1−κ
K2 −ε

, 2 6 p < 2+
K2 +1
K2−1

,

where κ := (p−2) K2−1
K2+1 and j = 1,2 in [14, Lemma 3.2].
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We get the following result by using these estimates and (3.9): let G ∈ PQ(K;α) for some K > 1,

0 6 α < min
{

2(p−1)
p+2 , 2

p+2

}
. Then there exists a polynomial Qn (z) with Qn (0) = 0 for any number

n = 2,3,4, ... such that

‖ϕ−Qn‖A1
p(G) 4

(
1
n

)ϑ
, (3.12)

where

ϑ ∈





(
0,min

{
2−(p+2)α

2p(1+α)(K2+1) ,
p

2K2 + (2−p)
pK2(K2+1)

})
;1 < p < 2,

(
0,min

{
2−(p+2)α

2p(1+α)(K2+1) ,
1

pK2 − (p−2)(K2−1)
pK2(K2+1)

})
;2 6 p < 2+ K2+1

K2−1

.

Now let us consider the polynomial

Q̃n(z) := Qn(z)+
[
1−Q′

n(0)
]

z.

It is clear that Q̃n ∈℘ satisfies normalization conditions Q̃n(0) = 0, Q̃′
n(0) = 1. From the Mean Value

Theorem we have ∣∣1−Q′
n(0)

∣∣ 4 1

πd
2
p (0,L)

∥∥ϕ ′−Q′
n

∥∥
Ap(G)

and by means of (3.12) we obtain
∥∥∥ϕ− Q̃n

∥∥∥
A1

p(G)
4

(
1
n

)ϑ
.

So, if we consider the extremal property of the polynomials Bn,p(z), then we have

‖ϕ−Bn,p‖A1
p(G) 4

(
1
n

)ϑ
. (3.13)

This gives the proof of Theorem 1. ¤

4. RESULTS

For the given real numbers K > 1, p > 1, and 0 6 α < 1 let us have the following notations:

α∗ ∈
[
0,
√

2−1
)

, ∆(p,K) :=
(

4− p
2

+
p+2

8(K2 +1)

)2

−4
(

2− p
2

− 1
4(K2 +1)

)

and

β := β (p,K) :=
1
2

√
∆(p,K) −

(
4− p

4
+

p+2
16(K2 +1)

)
.

Theorem 2. Let G∈ PQ(K,α) for some K, K > 1 and α, 0 6 α < min{2(p−1)
p+2 ,β} for 2− 1

2(K2+1) < p < 2.
Then the p-Bieberbach polynomials Bn,p (z) (n > 2) satisfy

‖ϕ−Bn,p‖C(G) 4 n−γ

for each γ with 0 < γ < 2−(p+2)α
2p(1+α)(K2+1) − 2

p (2+2α− p).
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Corollary 1. Let G ∈ PQ(K,α) for some K, 1 6 K 6
√

1
2(2−p) −1 and α, 0 6 α < min

{
2(p−1)

p+2 ,β (p,K)
}

for 7
4 6 p < 2. Then, the p-Bieberbach polynomials Bn,p (z) (n > 2) satisfy

‖ϕ−Bn,p‖C(G) 4 n−γ

for each γ with 0 < γ < 2−(p+2)α
2p(1+α)(K2+1) − 2

p (2+2α− p) .

Although the approximation rate in Theorem 2 and Corollary 1 is the same, p has a lower bound
depending on arbitrary K > 1 in Theorem 2 and K has an upper bound depending on arbitrary p, p ∈ [7

2 ,2
)

in Corollary 1.

Theorem 3. Let G∈PQ(K,α) for some K, 1 6 K <
√

1+ 1
p−2 and α,

√
2−1 6 α < 2

p+2 for 2 6 p < 2
√

2.

Then the p-Bieberbach polynomials Bn,p (z) (n > 2) satisfy

‖ϕ−Bn,p‖C(G) 4 n−γ

for each γ with 0 < γ < 2−(p+2)α
2p(1+α)(K2+1) − 2

p (2+2α− p) .

Theorem 4. Let G ∈ PQ(K,α) for some K,
√

1+ 1
p−2 6 K and for some α,

min
{√

2−1,
2(p−2)K2−2(p−1)
(8− p)K2 +2(p−1)

}
6 α <

2
p+2

for 2 < p < 2
√

2. Then the p-Bieberbach polynomials Bn,p (z) (n > 2) satisfy

‖ϕ−Bn,p‖C(G) 4 n−γ

for each γ with 0 < γ < 2−(p+2)α
2p(1+α)(K2+1) − 2

p (2+2α− p) .

Theorem 5. Let G ∈ PQ(K,α) for some K,
√

1+ 1
p−2 6 K and α,

√
2 − 1 6 α

< min
{

2(p−2)K2−2(p−1)
(8−p)K2+2(p−1) , (3−p)K2+p−1

4K2(K2+1) + p−2
2

}
for 2 < p < 2

√
2. Then the p-Bieberbach polynomials Bn,p (z)

(n > 2) satisfy
‖ϕ−Bn,p‖C(G) 4 n−γ

for each γ with 0 < γ <

(
1

pK2 − (p−2)(K2−1)
pK2(K2+1)

)
− 2

p (2+2α− p) .

Theorem 6. Let G ∈ PQ(K,α) for some K, K > 1 and α, 0 6 α < min
{

2
p+2 ,α∗

}
for 2(1+α∗) 6 p <

2+ K2+1
K2−1 . Then the p-Bieberbach polynomials Bn,p (z) (n > 2) satisfy

‖ϕ−Bn,p‖C(G) 4 n−γ

for each γ with 0 < γ < 1
p min

{
2−(p+2)α

2(1+α)(K2+1) ,
1

K2 − (p−2)(K2−1)
K2(K2+1)

}
.
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5. THE PROOF OF THEOREMS 2–6

To prove Theorems 2–6 we shall use a similar method to the one of Andrievskii and Simonenko employed
in the proofs of analogous theorems for p = 2 (see [7,11] and [18]).

Lemma 4 [14]. Let G⊂ C be a simply connected domain so that

‖ϕ−Bn,p‖A1
p(G) 4 n−µ

for each µ ∈ (0,1), n = 2,3, ..., and

‖Pn‖C(G) 4 ‖Pn‖A1
p(G)





1 , p > 2,√
logn , p = 2,

nη ,0 < p < 2, η > 0,
(5.1)

for all polynomials Pn(z) of degree ≤ n and Pn(0) = 0. Then

‖ϕ−Bn,p‖C(G) 4 nη−µ ,

where 0 < p < 2.

Therefore, replacing µ by ϑ in (3.12) and taking η = 2
p(2α +2− p) from Corollary 4.1 in [3], we obtain

the proof of Theorems 2–6.

6. CONCLUSION

The main goal of this paper was to find the approximation rate of Bn,p to ϕ in the uniform norm when the
region has some certain singularity on the boundary.

It is seen from the theorems (Theorems 2–6) that the approximation rate depends not only on analytic
properties (the quasiconformality coefficient K) but also on the geometric properties (the boundary has xα

type zero angles) of the region.
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p-Bieberbachi polünoomide ühtlane koonduvus nulliliste nurkadega piirkondades

Cem Koşar, Mehmet Küçükaslan ja Fahreddin G. Abdullayev

On tõestatud p-Bieberbachi polünoomide ühtlane koonduvus ühelisidusatel piirkondadel, mis on piiratud
tükiti kvaasikonformse kõveraga, millel on teatud nullilised sisenurgad kahe kaare kokkupuute punktis.


