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Robust state controller via reflection coefficient assignment
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Abstract. A solution to the robust pole assignment problem via reflection coefficients of polynomials is provided for discrete-time
single-input single-output (SISO) and multi-input multi-output (MIMO) linear systems. For SISO systems a robust state controller
and the polytopic uncertain plant which is stabilized by this controller have been found. For MIMO systems the problem is solved
for an uncertain interval plant.
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1. INTRODUCTION

In [1] a solution to the robust pole assignment problem via reflection coefficients of polynomials has
been provided for discrete-time single-input single-output (SISO) linear systems following the ideas of
fixed-order output controller design. In the present paper the reflection coefficient approach is further
developed for both SISO and multi-input multi-output (MIMO) robust state controllers. The solution is
based on polytopic sufficient stability conditions formulated via reflection vectors of a family of stable
polynomials [2].

Several other convex approximations of the stability region such as boxes [3,4], ellipsoids [5,6],
polytopes [7,8], or other convex sets [9,10] are widely used in robust control. In [11] a linear Schur invariant
transformation with a free parameter was introduced in the discrete polynomial coefficient space, which
gives a possibility of generalizing all of these stability conditions by the use of reflection coefficients.

Ideologically, the approach followed in this paper resembles the one given in [12]. In fact, the entire
class of controllers attaining polytopic or interval specifications is obtained as a convex set which offers
further advantages to the designer. The exact choice of intervals used in specifications is up to the designer.

In order to compare the efficiency of the proposed method with the robust quadratic control, the
volumes of stable reflection vector polytopes and stable ellipsoids derived via optimization over linear matrix
inequalities (LMIs) [5] are calculated. The volumes of stable reflection vector polytopes are slightly greater
than the volumes of stable ellipsoids derived by LMIs.

The reflection coefficients [12] are also known in the literature as Schur–Szegö parameters [13], partial
correlation (PARCOR) coefficients [14], or k-parameters [15, ch. 6]. They have been used efficiently in
many applications in signal processing [15], system identification [14], and robust control [1].

The main tools for robust state controller design used in this paper are (1) the Luenberger feedback-
canonical form [16] of the uncertain plant description and (2) the stable reflection vector polytopes of the
closed-loop system [2,11]. For SISO systems we have found a robust state controller which stabilizes the
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uncertain polytopic plant. For MIMO systems we have found a robust state controller which stabilizes the
uncertain interval plant.

The paper is organized as follows. First, in section 2 the solution to the robust reflection coefficient
assignment problem has been provided for discrete-time SISO linear systems. In section 3 the same problem
has been solved for MIMO systems. A fourth-order example is given for an uncertain interval plant with
two inputs and two uncertain parameters.

2. SISO SYSTEMS

Assume that a plant with parametric uncertainties is given. Our goal is to design a state controller so that the
closed-loop system is robustly stable and the reflection coefficients of it are assigned in a specific region.

For simplicity, let us consider the problem of state controller design for a SISO plant. Let the plant state
space description be given in the feedback canonical form [16]

x(t +1) = Ax(t)+bu(t), (1)

where

A =
[

on−1 In−1
aT

]
, b =

[
on−1

1

]
,

x(t) is an n-dimensional state vector, u(t) is a scalar input, In−1 is a unit matrix, on−1 is a column vector of
zeros with dimensionality n−1, and aT is an n-dimensional row vector of plant parameters.

We are looking for a state controller
u = cT x (2)

such that the closed-loop system

x(t +1) = (A+bcT )x(t) = Fx(t),

F =
[

on−1 In−1
f T

]
=

[
on−1 In−1

aT + cT

] (3)

is stable for a polytopic plant a ∈A .
The next theorem defines a state feedback control c in terms of reflection coefficients [13] of the nominal

closed-loop system as well as the polytope A in terms of reflection vectors [2] of the nominal closed-loop
system.

Theorem 1. Assume that the reflection coefficients ki( f ), i = 1, ...,n of the nominal closed-loop system
satisfy the conditions

k1( f ) ∈ (−1,1),

k2( f ) = ... = kn−1( f ) = 0,

kn( f ) ∈ (−1,1).

Then the controller
c = f −a (4)

stabilizes the plant (1) in the polytope

A = conv{v±i ( f )− c}, i = 1, ...,n,

where v±i ( f ) are reflection vectors of the characteristic polynomial f (z) of the nominal closed-loop
system (3).
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To prove this theorem, we have to introduce some basic definitions and relations in the field of reflection
coefficients of polynomials.

The reflection coefficients ki( f ), i = 1, ...,n of a monic polynomial f (z) can be obtained by using
backward Levinson’s recursion [13]

z f i−1(z) =
1

1− k2
i ( f )

[ f i(z)+ ki( f ) f i∗(z)], (5)

where ki( f ) = − f i
0 and f i

0 denotes the last coefficient of an ith-degree polynomial f i(z) and f n∗(z) is the
reciprocal polynomial of f n(z)

f n∗(z) = f0zn + ...+ fn−1z+1.

The stability criterion via a reflection coefficient is as follows [13]: a polynomial f (z) has all its roots
inside the unit disk if and only if |ki( f )|< 1, i = 1, ...,n.

The reflection vectors of a Schur stable monic polynomial f (z) are defined as the end points of the stable
line segments conv{ f |ki( f ) =±1}

v±1
i = ( f |ki( f ) =±1), i = 1, ...,n,

where conv{ f |ki( f ) = ±1} denotes the linear cover obtained by varying the reflection coefficient ki( f )
between −1 and 1, while all the other reflection coefficients are fixed [2].

The linear cover of all the reflection vectors v±1
i , i = 1, ...,n is called the reflection vector polytope. The

following lemma holds [11].

Lemma. The inner points of a reflection vector polytope of a stable polynomial f (z) with reflection
coefficients k1( f ) ∈ (−1,1), kn( f ) ∈ (−1,1), k2( f ) = ... = kn−1( f ) = 0 are stable.

The proof of Theorem 1 follows immediately from the relations (1)–(3) and the Lemma.
According to Theorem 1, we have two degrees of freedom for choosing the nominal closed-loop system

matrix F , i.e. k1( f ) ∈ (−1,1) and kn( f ) ∈ (−1,1). There are two reasonable principles for choosing
reflection coefficients k1( f ) and kn( f ):
• the volume of the polytope A must be as great as possible,
• pole placement of the nominal system F must be as good as possible.

First, let k1( f ) ∈ (−1,1) and k2( f ) = ... = kn( f ) = 0. Then f (z) = zn−k1zn−1 and its roots are r1 = k1,
r2 = ... = rn = 0.

Second, let kn( f ) ∈ (−1,1) and k1( f ) = ... = kn−1( f ) = 0. Then f (z) = zn−kn and the roots of f (z) are
placed symmetrically against the origin, whereas max|ri|> |kn( f )|.

This means that, according to suggestions for choosing poles of discrete-time systems [17], k1( f ) must
be positive and |kn( f )| must be small in order to obtain a reasonable pole assignment:

0 < k1( f ) < 1,

|kn( f )|<< 1, n > 2,

k2( f ) = ... = kn−1( f ) = 0.

(6)

The volumes of reflection vector polytopes can be easily calculated by the triangulation method [18]. It
is interesting to mention that the volume of reflection vector polytopes does not depend on the first reflection
coefficients k1( f ) of the polynomial f (z) for fixed kn( f ) and n with k2( f ) = ... = kn−1( f ) = 0. The volume
of reflection vector polytopes decreases symmetrically by increasing the absolute value of the last reflection
coefficients kn( f ) of the polynomial f (z) for n odd and unsymmetrically with a maximum in the positive
values of kn( f ) for n even, where k2( f ) = ... = kn−1( f ) = 0 (Table 1). The maximal volume of reflection
vector polytopes decreases by increasing the order n.
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Table 1. The volume of stable ellipsoids derived via optimization over LMIs and stable reflection
vector polytopes for discrete-time polynomials

n = 2 n = 3 n = 4 n = 5

Ellipsoid 2.248 1.479 0.777 0.317

Polytope with k1 = ... = kn−1 = 0, kn= –0.8 3.6 0.478 0.432 0.035

kn= –0.4 2.8 1.12 0.784 0.188

kn= 0.0 2.0 1.333 0.666 0.267

kn= 0.4 1.2 1.12 0.336 0.188

kn= 0.8 0.4 0.478 0.048 0.035

Polytope with k1 = k3 = ... = kn−1 = 0, k2 < 0, kn = kmax
n 4.0 1.773 0.98 0.323

Remark. The volume of stable reflection vector polytopes can be increased by negative values of k2. The
last row in Table 1 gives the volumes for k2 → −1.0 (n = 2), k2 = −0.3 (n = 3), k2 = −0.24 (n = 4),
k2 = −0.21 (n = 5), and kn = kmax

n , where kmax
n is the kn which maximizes the volume of stable reflection

vector polytopes. In order to compare the efficiency of the proposed method with the robust quadratic
control, the volumes of ellipsoids derived via optimization over LMIs are presented in Table 1 (first row) [5].
The volumes of stable reflection vector polytopes are slightly greater than the volume of stable ellipsoids
derived by LMIs.

3. MIMO SYSTEMS

Assume that a MIMO plant in the Luenberger feedback-canonical form is given [16]

x(t +1) = Ax(t)+Bu(t), (7)

where

A =




A11 · · · A1m
...

...

Am1 · · · Amm


 ,

Aii =

[
oni−1 Ini−1

aT
ii

]
, Ai j =

[
oni−1,n j

aT
i j

]
,

B =




b11 · · · b1m
...

...

bm1 · · · bmm


 ,

bii =

[
oni−1

1

]
, bi j =




0
...

0


 ,

i, j = 1, ...,m;
m

∑
i=1

= n,
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x(t) is an n-dimensional state vector, u(t) is an m-dimensional input vector, oi, j is an (i× j)-dimensional
matrix of zeros.

Theorem 2. Assume that the reflection coefficients ki( f ), i = 1, ...,n of the nominal closed-loop system
satisfy the conditions

k1( f ) ∈ (−1,1),

k2( f ) = ... = kn−1( f ) = 0,

kn( f ) ∈ (−1,1).

Then the controller

C =




C11 · · · C1m
...

...

Cm1 · · · Cmm


 , (8)

where
cT

i j =−aT
i j, j 6= i+1; i, j = 1, ...,m,

cT
i,i+1 = [ 1 0 . . . 0 ]−aT

i,i+1,

cT
m = f T −aT

m,

stabilizes the interval plant (7) ai j ∈ (a+
i j ,a

−
i j) if the coefficient vectors of the closed-loop characteristic

polynomials f±i j of all the corner plants are placed in the polytope of reflection vectors v±α ( f ), α = 1, ...,n
of the nominal closed-loop system f .

It is easy to see that the closed-loop system matrix

F = A+BC

is obtained in the companion form

F =

[
on−1 In−1

f T

]
.

Since the last row of F consists of the closed-loop characteristic polynomial coefficients, according to the
Lemma, Theorem 2 holds.

Let us now consider a completely controllable uncertain MIMO plant

x̄(t +1) = Āx̄(t)+ B̄u(t), (9)

where āαβ ∈ (ā−αβ , ā+
αβ ) ∈R and b̄αγ ∈ (b̄−αγ , b̄

+
αγ) ∈R, α,β = 1, ...,n, γ = 1, ...,m.

An arbitrary completely controllable MIMO plant can be transformed to the Luenberger feedback-
canonical form (7) by a state transformation

x(t) = T x̄(t),

A = T ĀT−1,

B = T B̄

(10)

if the input matrix B̄ has full column rank [16]. In order to design a robust state controller for the interval
plant (9), we have to perform the following steps.
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1) For the nominal plant āαβ = (ā−αβ + ā+
αβ )/2, b̄αγ = (b̄−αγ + B̄+

αγ)/2, α,β = 1, ...,n; γ = 1, ...,m find the
transformation matrix T as follows [16].
• Find the controllability matrix of the nominal plant

W = [ B̄ ĀB̄ . . . Ān−1B̄ ].

• Find the controllability indices of inputs ργ , γ = 1, ...,m by inspection of the controllability matrix W .
For the full column rank input matrix B̄, ργ ≥ 1, γ = 1, ...,m.

• According to the controllability indices ργ , transform the controllability matrix W into the form

W̃ = [ b̄1 Āb̄1 . . . Āρ1−1b̄1
... · · ·

· · · ... b̄m Āb̄m . . . Āρm−1b̄m ].

• Calculate
S = W̃−1.

• Pick out m rows sT
rγ , γ = 1, ...,m of the matrix S, where

rγ =
γ

∑
l=1

ρl.

• The transformation matrix T is defined as follows [16]:

T =




sT
r1

sT
r1

Ā
...

sT
r1

Āρ1−1

· · ·
sT

rm

sT
rm

Ā
...

sT
rm

Āρm−1




. (11)

2) Transform the nominal plant into the Luenberger feedback-canonical form (7) by the transformation
T (11).

3) Choose the reflection coefficients k1 and kn of the characteristic polynomial f (z) of the nominal closed-
loop system according to (6).

4) Taking into account that k2 = ... = kn−1 = 0, calculate the vector f of coefficients of the characteristic
polynomial f (z) by [2]

[
f

1

]
=




f0
...

fn−1

1




= Rn(kn)

[
oT

Rn−1(kn−1)

]
...

[
oT

R1(k1)

][
0

1

]
, (12)

where
R j(k j) = I j+1− k jE j+1, (13)
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In is an n×n unit matrix, En is a unit Hankel matrix

En =




0 ... 1

. . .

1 ... 0


 ,

and oT is a row vector of zeros.
5) Find the robust state controller C according to (7) and (8).
6) Transform the state controller into the initial coordinates by the transformation T (11)

C̄ = CT−1.

7) Calculate the reflection vectors of the characteristic polynomial f according to the definition v±α ( f )
= ( f |kα =±1), α = 1, ...,n.

8) Check the stability of the closed-loop system for the interval plant (9). It is sufficient to check if

{ f̄±δ ,∈ V , δ = 1, ...,N},

where N is the number of interval parameters of the plant (9), V is the polytope of reflection vectors
v±α ( f ),α = 1, ...,n and f̄±δ are the coefficient vectors of characteristic polynomials of closed-loop
systems for the corner plants ā±αβ , b̄±αγ , α,β = 1, ...,n, γ = 1, ...,m

f̄±δ (z) = det(zIn− Ā±αβ − B̄±αγC̄
T ).

Remark. In principle the entire class of controllers can be obtained as a convex set which stabilizes the
nominal plant. The exact choice of reflection coefficients k1 and kn from intervals given in specifications is
up to designer’s making use of the volume of the stable reflection vector polytopes (Table 1) and the pole
placement of the nominal system.

Example. Let the interval plant with n = 4, m = 2, and N = 2 be given

Ā =




0 −1.0 0 1.0±0.1

0.7±0.05 −0.4 0 0.5

0 0 0 −1.0

0.3 0 −0.2 0.8




,

B̄ =




1.0 0

0 0

0 0

0 1.0




.

The nominal plant is transformed to the Luenberger feedback-canonical form (7)

A =




0 1 0 0

−0.7 −0.4 −0.5 0.7143

0 0 0 1

0.12 0.3 0.2857 0.8




,
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B =




0 0

1 0

0 0

0 1




by the transformation

T =




0 1.4286 0.7143 0

1.0 −0.5714 0 0

0 0 −1.0 0

0 0 0 1.0




.

By choosing k1 = 0.5 and k2 = k3 = k4 = 0, we obtain the characteristic polynomial coefficient vector of the
nominal closed-loop system from (12)

f T = [ −0.5 0 0 0 ]

and the controller from (8)

C =

[
0.7 0.4 1.5 −0.7143

−0.62 −0.3 −0.2857 −0.8

]

or in the initial coordinates

C̄ =

[
0.56 0.7 −1.1 −0.7143

−0.458 −0.62 −0.0414 −0.8

]
.

The polytope V of reflection vectors of the nominal closed-loop system is described by the n×2n matrix
of vertices

V = [ v+
1 ( f ) v−1 ( f ) ... v+

4 ( f ) v−4 ( f ) ]

=




−1.0 1.0 0 −1.0 −0.5 −0.5 −0.5 −0.5

0 0 −1.0 1.0 0.5 −0.5 0 0

0 0 0 0 −1.0 1.0 0.5 −0.5

0 0 0 0 0 0 −1.0 1.0




and the corner polynomials of the closed-loop characteristic polynomials for the interval plant by the n×2N
matrix

F± = [ f (a+
12,a

+
21) f (a+

12,a
−
21) f (a−12,a

+
21) f (a−12,a

−
21)]

=




−0.16 −0.16 −0.16 −0.16

0.1305 0.1005 0.0989 0.0689

0.2188 0.1949 0.1132 0.1017

0.5808 0.5189 0.5808 0.5198




.

It can be checked that all the corner polynomials f±δ are placed in the polytope of reflection vectors V . So
the controller C̄ stabilizes the interval plant Ā , B̄. Indeed, the roots of the corner polynomials f±δ are as
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follows:

Λ( f±δ ) = [λ ( f (a+
12,a

+
21)) λ ( f (a+

12,a
−
21)) λ ( f (a−12,a

+
21)) λ ( f (a−12,a

−
21))]

=

[
0.6372±0.7162i 0.6257±0.6892i 0.6409±0.6752i 0.6297±0.6501i

−0.5573±0.5669i −0.5457±0.5496i −0.5609±0.5963i −0.5498±0.5764i

]
.

In order to illustrate the effect of the choice (6) of the reflection coefficient k1( f ) of the nominal closed-
loop system, let us choose now k1 =−0.8. By the above procedure we obtain the characteristic polynomial
coefficient vector of the nominal closed-loop system

f̃ T = [ 0.8 0 0 0 ],

the controller
¯̃C =

[
0.56 0.7 −1.1 −0.7143

0.062 0.68 0.33 −0.8

]
,

and the corner polynomials of the closed-loop characteristic polynomials for the interval plant

F̃± = [ f̃ (a+
12,a

+
21) f̃ (a+

12,a
−
21) f̃ (a−12,a

+
21) f̃ (a−12,a

−
21)]

=




−0.16 −0.16 −0.16 −0.16

−0.3486 −0.3786 −0.2762 −0.3062

−0.4268 −0.4006 −0.2959 −0.2833

−0.7201 −0.6492 −0.7201 −0.6492




.

Unfortunately, the corner polynomials f̃±δ are not placed in the polytope of reflection vectors

Ṽ = [ v+
1 ( f̃ ) v−1 ( f̃ ) ... v+

4 ( f̃ ) v−4 ( f̃ ) ]

=




−1.0 1.0 0 1.6 0.8 0.8 0.8 0.8

0 0 −1.0 1.0 −0.8 0.8 0 0

0 0 0 0 −1.0 1.0 −0.8 0.8

0 0 0 0 0 0 −1.0 1.0




.

In fact, the corner polynomials f̃±δ are unstable with roots

Λ̃( f̃±δ ) = [λ ( f̃ (a+
12,a

+
21)) λ ( f̃ (a+

12,a
−
21)) λ ( f̃ (a−12,a

+
21)) λ ( f̃ (a−12,a

−
21))]

=




1.1871 1.1741 1.1318 1.1205

−0.8458 −0.8348 −0.8677 −0.8537

−0.0907±0.8421i −0.0897±0.8089i −0.0521±0.8548i −0.0534±0.8221i


 .

4. CONCLUSIONS

A solution to the robust pole assignment problem via reflection coefficients of polynomials is provided
for discrete-time SISO and MIMO linear systems. The solution is based on polytopic sufficient stability
conditions formulated via reflection vectors of a family of stable polynomials. For SISO systems a robust
state controller which stabilizes the uncertain polytopic plant has been found. For MIMO systems the
problem is solved for an uncertain interval plant by using the Luenberger feedback-canonical form.
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Robustse olekuregulaatori süntees peegelduskoefitsientide kaudu

Ülo Nurges

On esitatud meetod robustse olekuregulaatori sünteesiks peegelduskoefitsientide kaudu nii SISO (ühe
sisendi ja ühe väljundiga) kui ka MIMO (mitme sisendi ning mitme väljundiga) diskreetaja lineaarsete
süsteemide jaoks. SISO süsteemide puhul on leitud robustne olekuregulaator ja polütoopse määramatusega
objekt, mis on stabiliseeritav selle regulaatoriga. MIMO süsteemide puhul on nimetatud probleem lahen-
datud intervallmudeliga esitatud ebatäpsuse korral.


