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Abstract. The paper provides a theorem on the differentiation of a composite function with a vector argument. The theorem shows
how the partial derivative of the total derivative of the composite function can be expressed through the total derivative of the partial
derivative of the composite function. The proof of the theorem is based on Mishkov’s formula, which is the generalization of the
well-known Faà di Bruno’s formula for a composite function with a vector argument.
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1. INTRODUCTION

The theorem proved in this paper was required as an intermediate result in solving the problem of the
transformation of the nonlinear control system, described by state equations, into the observer form and
finding the necessary conditions for the possibility of such transformation [2]. The deduction of the
necessary conditions involves frequent application of the differentiation of the composite functions with
respect to time argument and taking the partial derivatives of the differentiated composite function with
respect to one of the variables or its derivatives. The goal of this paper is to present and prove a formula
(commutation rule) which allows changing the order of taking the total higher-order derivatives of the
composite function and their partial derivatives with respect to one of the variables or its derivative. Since
this result may be useful in the solution of other nonlinear control problems, we propose it as a separate
contribution. For example, probably the main result, provided in the paper, can be applied for observer
design in [4].

The main tool for proving the theorem (commutation rule) is Mishkov’s theorem [3] which provides the
explicit formula for the nth derivative of a composite function with a vector argument. Mishkov’s formula
is a straightforward generalization of the well-known Faà di Bruno’s formula [1] which gives an explicit
equation for the nth-order derivative of the composite function with a scalar argument.
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2. MAIN RESULT

The following theorem shows how the partial derivative of the total derivative of the composite function can
be expressed through the total derivative of the partial derivative of this function. The composite function
with the vector argument with an arbitrary number of components is considered.

Theorem 1. Assume that f (ξ1(t),ξ2(t), . . . ,ξr(t)) is a composite function for which derivatives up to order
a+b are defined; then

∂ ( f (ξ1(t),ξ2(t), . . . ,ξr(t)))
(a+b)

∂ξ (a)
l (t)

= Cb
a+b

(
∂ f (ξ1(t),ξ2(t), . . . ,ξr(t))

∂ξl(t)

)(b)

,

where l = 1,2, . . . ,r, Cb
a+b is the binomial coefficient and a,b are nonnegative integers.

Proof. In the proof we omit the variable t of ξi(t), i.e. use instead of ξi(t) a shorter notation ξi, which allows
the bulky formulas to be written in a more compact form. According to Mishkov’s formula [3], the (a+b)th
derivative of the composite function with a vector argument can be computed by the formula

( f (ξ1,ξ2, . . . ,ξr))
(a+b) = ∑

0
∑
1

∑
2
· · ·∑

a+b

(a+b)!
a+b

∏
i=1

(i!)ki
a+b

∏
i=1

r

∏
j=1

qi, j!

∂ k f
∂ξ p1

1 ∂ξ p2
2 · · ·∂ξ pr

r

a+b

∏
i=1

r

∏
j=1

(
ξ (i)

j

)qi, j
, (1)

where the respective sums are taken over all nonnegative integer solutions of the Diophantine equations as
follows:

∑
0
→ k1 +2k2 + · · ·+(a+b)ka+b = a+b, (2)

∑
i
→ qi,1 +qi,2 + · · ·+qi,r = ki, (3)

for i = 1, . . . ,a+b, and p j and k on the right-hand side of (1) satisfy the relations

p j = q1, j +q2, j + · · ·+qa+b, j, j = 1,2, . . . ,r,

k = p1 + p2 + · · ·+ pr = k1 + k2 + · · ·+ ka+b.
(4)

In taking the partial derivative of sum (1) with respect to ξ (a)
l , only addends of sum (1) with qa,l 6= 0

will matter. Denote by h(·) and g(·) the parts of sum (1) corresponding to qa,l 6= 0 and qa,l = 0, respectively;
then

( f (ξ1,ξ2, . . . ,ξr))
(a+b) = h(·)+g(·). (5)

Note that it is possible to state that h(·) equals the expression in the right-hand side of (1) where, in addition
to the restrictions expressed by (2), (3), and (4), the condition qa,l 6= 0 has to be satisfied. Note also that if
qa,l 6= 0, then ka 6= 0. We prove the formula separately for the cases a > b and a≤ b.

First, consider the case when a > b. Since ka 6= 0 and qa,l 6= 0, in order to satisfy (2) and (3), the
following must hold

ka = 1, ki = 0, b < i≤ a+b, i 6= a,

qa,l = 1, qa, j = 0, j = 1,2, . . . ,r, j 6= l,

qi, j = 0, b < i≤ a+b, i 6= a, j = 1,2, . . . ,r.

(6)

As a result, under the condition qa,l 6= 0, one can rewrite (2) as follows:

∑
0
→ k1 +2k2 + · · ·+bkb = b, (7)

and in (3), now i = 1, . . . ,b.
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Using (6) and changing the notations, taking p̄ j = p j for j = 1,2, . . . ,r, j 6= l, p̄l = pl−1 and k̄ = k−1,
equations (4) may be rewritten as

p̄ j = q1, j +q2, j + · · ·+qb, j, j = 1,2, . . . ,r,

k̄ = p̄1 + p̄2 + · · ·+ p̄r = k1 + k2 + · · ·+ kb.
(8)

Note also that under conditions (6)

a+b

∏
i=1

(i!)ki = a!
b

∏
i=1

(i!)ki ,
a+b

∏
i=1

r

∏
j=1

qi, j! =
b

∏
i=1

r

∏
j=1

qi, j!,

and
a+b

∏
i=1

r

∏
j=1

(
ξ (i)

j

)qi, j
= ξ (a)

l

b

∏
i=1

r

∏
j=1

(
ξ (i)

j

)qi, j
.

Taking into account the above equations and the fact that the partial derivative of g(·) in (5) with respect to
ξ (a)

l equals 0, we obtain, in new variables p̄ j and k̄:

∂ ( f (ξ1,ξ2, . . . ,ξr))
(a+b)

∂ξ (a)
l

= ∑
0

∑
1

∑
2
· · ·∑

b

(a+b)!

a!
b

∏
i=1

(i!)ki
b

∏
i=1

r

∏
j=1

qi, j!

× ∂ k̄+1 f

∂ξ p̄1
1 · · ·∂ξ p̄l−1

l−1 ∂ξ p̄l+1
l ∂ξ p̄l+1

l+1 · · ·∂ξ p̄r
r

b

∏
i=1

r

∏
j=1

(
ξ (i)

j

)qi, j
. (9)

Note that in (9) all the partial derivatives with respect to ξ j are of order p̄ j except with respect to ξl when
the order of the partial derivative is p̄l + 1. In order to unify the orders, denote f̄ := ∂ f

∂ξl
. We also multiply

the right-hand side of equation (9) by b!
b! to obtain

∂ ( f (ξ1,ξ2, . . . ,ξr))
(a+b)

∂ξ (a)
l

= Cb
a+b ∑

0
∑
1

∑
2
· · ·∑

b

b!
b

∏
i=1

(i!)ki
b

∏
i=1

r

∏
j=1

qi, j!

× ∂ k̄ f̄

∂ξ p̄1
1 ∂ξ p̄2

2 · · ·∂ξ p̄r
r

b

∏
i=1

r

∏
j=1

(
ξ (i)

j

)qi, j
. (10)

It is easy to observe now that, according to Mishkov’s formula, the sum on the right-hand side of (10)
together with the conditions (3) for i = 1, . . . ,b, (7) and (8), is the bth-order total derivative of the function f̄ .
Consequently,

∂ ( f (ξ1,ξ2, . . . ,ξr))
(a+b)

∂ξ (a)
l

= Cb
a+b f̄ (b) = Cb

a+b

(
∂ f (ξ1,ξ2, . . . ,ξr)

∂ξl

)(b)

. (11)

Second, consider the case a≤ b. Since ka 6= 0, in order to satisfy (2) and (3), the following must hold:

ki = 0, b < i≤ a+b,

qi, j = 0, b < i≤ a+b, j = 1,2, . . . ,r.
(12)
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Therefore, it is possible to rewrite condition (2) as

∑
0
→ k1 + · · ·+(a−1)ka−1 +a(ka−1)+(a+1)ka+1 + · · ·+bkb = b, (13)

and in (3), now i = 1, . . . ,b.
Again, in order to unify the notation in (13), one can take k̄i = ki for i = 1,2, . . . ,b, i 6= a and k̄a = ka−1.

This allows (13) to be rewritten as follows:

∑
0
→ k̄1 +2k̄2 + · · ·+bk̄b = b, (14)

and (3) as

∑
i

→ qi,1 +qi,2 + · · ·+qi,r = k̄i, i = 1, . . . ,b, i 6= a,

∑
a

→ qa,1 +qa,2 + · · ·+qa,r = k̄a +1.
(15)

Since qa,l ≥ 1, we can denote q̄a,l := qa,l − 1 and the remaining q’s as q̄i, j := qi, j. Thereby (15) can be
rewritten in unified notation as

∑
i
→ q̄i,1 + q̄i,2 + · · ·+ q̄i,r = k̄i, (16)

for i = 1, . . . ,b. Changing notations, taking p̄ j = p j for j = 1,2, . . . ,r, j 6= l, p̄l = pl − 1 and k̄ = k− 1,
equations (4) may be rewritten as

p̄ j = q̄1, j + q̄2, j + · · ·+ q̄b, j, j = 1,2, . . . ,r,

k̄ = p̄1 + p̄2 + · · ·+ p̄r = k̄1 + k̄2 + · · ·+ k̄b.
(17)

Taking (12) into account and using variables k̄i and q̄i, j, we have

a+b

∏
i=1

(i!)ki = a!
b

∏
i=1

(i!)k̄i ,
a+b

∏
i=1

r

∏
j=1

qi, j! = (q̄a,l +1)
b

∏
i=1

r

∏
j=1

q̄i, j!,

a+b

∏
i=1

r

∏
j=1

(
ξ (i)

j

)qi, j

=
(

ξ (1)
l

)q̄1,l · · ·
(

ξ (a−1)
l

)q̄a−1,l
(

ξ (a)
l

)q̄a,l+1 (
ξ (a+1)

l

)q̄a+1,l · · ·
(

ξ (b)
l

)q̄b,l b

∏
i=1

r

∏
j=1
j 6=l

(
ξ (i)

j

)q̄i, j
.

(18)

Furthermore, on the basis of (18) and the fact that the partial derivative of g(·) in (5) with respect to ξ (a)
l

equals 0, we obtain, in new variables p̄ j and k̄

∂ ( f (ξ1,ξ2, . . . ,ξr))
(a+b)

∂ξ (a)
l

= ∑
0

∑
1

∑
2
· · ·∑

b

(a+b)!

a!
b

∏
i=1

(i!)k̄i
b

∏
i=1

r

∏
j=1

q̄i, j!

× ∂ k̄+1 f

∂ξ p̄1
1 · · ·∂ξ p̄l−1

l−1 ∂ξ p̄l+1
l ∂ξ p̄l+1

l+1 · · ·∂ξ p̄r
r

b

∏
i=1

r

∏
j=1

(
ξ (i)

j

)q̄i, j
.
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Like in case a > b we denote f̄ = ∂ f
∂ξl

and multiply the right-hand side of the equality given above by b!
b! to

obtain

∂ ( f (ξ1,ξ2, . . . ,ξr))
(a+b)

∂ξ (a)
l

= Cb
a+b ∑

0
∑
1

∑
2
· · ·∑

b

b!
b

∏
i=1

(i!)k̄i
b

∏
i=1

r

∏
j=1

q̄i, j!

× ∂ k̄ f̄

∂ξ p̄1
1 ,∂ξ p̄2

2 · · ·∂ξ p̄r
r

b

∏
i=1

r

∏
j=1

(
ξ (i)

j

)q̄i, j
. (19)

Again it is not difficult to observe that according to Mishkov’s formula, the sum on the right-hand side
of equation (19), together with the conditions (14), (16), and (17), is the bth-order total derivative of the
function f̄ . Consequently, (11) holds again, and this completes the proof.

Some useful corollaries of the theorem are given below.

Corollary 1. Under the assumptions of Theorem 1

∂ ( f (ξ1(t),ξ2(t), . . . ,ξr(t)))
(m+n)

∂ξl(t)
=

(
∂ ( f (ξ1(t),ξ2(t), . . . ,ξr(t)))

(m)

∂ξl(t)

)(n)

,

where m and n are nonnegative integers.

Corollary 2. Under the assumptions of Theorem 1

∂ ( f (ξ1(t),ξ2(t), . . . ,ξr(t)))
(n)

∂ξl(t)
=

(
∂ f (ξ1(t),ξ2(t), . . . ,ξr(t))

∂ξl(t)

)(n)

,

where n is a nonnegative integer.

3. EXAMPLE

The example in this section illustrates the statement of Theorem 1. Consider the composite function
f (x(t),y(t)) and assume that we need to take the partial derivative with respect to ÿ(t) of the 3rd-order
total derivative of the function. Direct computations yield

∂ ( f (x(t),y(t)))(3)

∂ ÿ(t)
= 3

∂ 2 f (x(t),y(t))
∂y(t)2 ẏ(t)+3

∂ 2 f (x(t),y(t))
∂x(t)∂y(t)

ẋ(t).

On the other hand, taking the partial derivative of f (x(t),y(t)) with respect to y(t) and the total derivative of
the obtained result, one gets

(
∂ f (x(t),y(t))

∂y(t)

)(1)

=
∂ 2 f (x(t),y(t))

∂y(t)2 ẏ(t)+
∂ 2 f (x(t),y(t))

∂x(t)∂y(t)
ẋ(t).

Multiplying both sides of the above equality by C1
3 , we have

C1
3

(
∂ f (x(t),y(t))

∂y(t)

)(1)

= 3
∂ 2 f (x(t),y(t))

∂y(t)2 ẏ(t)+3
∂ 2 f (x(t),y(t))

∂x(t)∂y(t)
ẋ(t).

It is not difficult to check that

∂ ( f (x(t),y(t)))(3)

∂ ÿ(t)
= C1

3

(
∂ f (x(t),y(t))

∂y(t)

)(1)

.
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4. CONCLUSIONS

The paper shows how to commute the operations of taking higher-order total and partial derivatives of
composite functions with vector arguments. The formula, provided in the paper, may be applicable not only
in differential calculus. As already mentioned in the introduction, the theorem was a useful tool in deriving
solvability conditions of a certain problem in nonlinear control theory. With high probability it may be
useful in dealing with other nonlinear control problems where the derivatives of the composite functions
with a vector argument often show up.
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Teoreem vektorargumendiga liitfunktsiooni diferentseerimisest

Vadim Kaparin ja Ülle Kotta

On tõestatud teoreem vektorargumendiga liitfunktsiooni diferentseerimise kohta. Teoreemis esitatud valem
näitab, kuidas liitfunktsiooni täistuletise osatuletist saab väljendada tema osatuletise täistuletise kaudu.
Teoreemi tõestus põhineb Mishkovi valemil, mis omakorda kujutab endast tuntud Faà di Bruno valemi
üldistust vektorargumendiga liitfunktsiooni jaoks. Näide illustreerib teoreetilist tulemust.


